Studies on the Ichinoseki Population of Rana japonica

By

Masayuki Sumida

Laboratory for Amphibian Biology, Faculty of Science, Hiroshima University, Hiroshima, Japan (With 17 Text-figures)

CONTENTS

Introduct	tion	1
Materials	and methods	2
Observat	ion	2
I.	Developmental capacity	2
II.	Developmental velocity	5
III.	Morphology	6
IV.	Biochemical characters	
	Karyological characters	
VI.	Sex and gonads	20
VII.	Reproductive capacity	28
VIII.	Chromosome aberrations in backcrosses of reciprocal hybrids	34
IX.	Sex ratio in backcrosses of reciprocal hybrids	37
Discussio	n	41
Summary	y	44
	edgments	
Literatur	e	45

INTRODUCTION

Rana japonica Günther is widely distributed in Japan excluding Hokkaido, Aomori Prefecture and the northern part of Iwate Prefecture. Although there are some individual differences in color and pattern of this species, no local variations have been reported hitherto in external characters.

Recently, the present author (1979) reported that the Ichinoseki population distributed in the northern extremity of the range of Rana japonica remarkably differed from the Hiroshima population in the results of crossing experiments with Rana tsushimensis. This suggests that differentiation has occurred in some degree between the Hiroshima and Ichinoseki populations of Rana japonica.

In order to examine the existence of reproductive isolating mechanisms between the Hiroshima and Ichinoseki populations, the present author carried out crossing experiments between them as well as compared these two populations morphologically, biochemically and karyologically. Preliminary reports of this research were made previously (1979, 1980).

MATERIALS AND METHODS

Rana japonica Günther were collected in the suburbs of Hiroshima City, Hiroshima Prefecture and Ichinoseki City, Iwate Prefecture. The Hiroshima specimens were caught late in October, 1978, and kept in an outdoor container during hibernation. The Ichinoseki specimens were caught early in August, 1978, and reared in the laboratory until the following year. Crossing experiments were performed in 1979 and 1980. Ovulation was induced by implantation of Rana catesbeiana pituitaries. Reciprocal crosses were made by the routine method of artificial fertilization. A part of the fertilized eggs, about 20 eggs in each series, were kept at 18°C until the completion of metamorphosis for comparison with those of the other series in developmental velocity. In this paper, the embryonic stages follow those of Tahara's table (1959), while the tadpole stages follow those of Taylor and Kollros' table (1946). fed on boiled spinach, while metamorphosed frogs fed on crikets. observation of gonads was made after fixed in Navashin's fluid, sectioned at 10 or 12μ and stained with Heidenhain's iron hematoxylin. Electrophoretic analyses were performed for ten enzymes and two blood proteins. They were carried out by starch gel electrophoresis, basically in accordance with Brewer's methods (1970). The two populations of Rana japonica were compared with each other in sixteen loci of these proteins.

Chromosomes were observed in the tail-tips of tadpoles by Makino and Nishimura's squash method (1952), as well as in bone marrow cells by Omura's vapor fixation method (1967). The karyotype of each population was examined by analyzing 54 metaphase spreads obtained from bone marrow cells. These spreads were also utilized to calculate the relative chromosome length and the centromere position of each chromosome. The karyotypes of two populations were compared with each other by the method of Hubbs and Hubbs (1953).

OBSERVATION

I. Developmental capacity

1. Hybrids between Hiroshima females and Ichinoseki males

On 5 February 1979, a field-caught female of the Hiroshima population $(H \Leftrightarrow 1)$ was mated with a field-caught male of the Hiroshima population $(H \Leftrightarrow 1)$ and a field-caught male of the Ichinoseki population $(I \Leftrightarrow 1)$ (Table 1; Fig. 1a, b). Of 120 eggs in the control series, 111 (92.5%) cleaved normally, 102 (85.0%) hatched normally and 96 (80.0%) metamorphosed normally, while of 157 eggs in the experimental series, 147 (93.6%) cleaved normally, 144 (91.7%) hatched normally and 138 (87.9%) metamorphosed normally.

On 10 March 1980, six field-caught females of the Hiroshima population

TABLE 1
Results of crosses between the Hiroshima (H) and Ichinoseki (I) populations of Rana japonica

Year	Pare	nts	No. of	No. of normally	No. of normal	No. of normally	No. of normally	No. of meta- morphosed
rear	Female	Male	eggs	cleaved eggs	tail-bud embryos	hatched tadpoles	tadpoles feeding tadpoles mo fits 5.0) 101 (84.2) 1.7 1.7) 170 (81.7) 16 7.3) 102 (77.3) 9 0.3) 139 (89.7) 13 7.1) 132 (85.2) 12 3.3) 97 (93.3) 6 6.5) 136 (96.5) 13 1.7) 144 (91.7) 13 8.1) 75 (78.1) 7 7.0) 140 (76.5) 13 1.3) 275 (88.7) 22 2.4) 164 (89.1) 12 6.3) 130 (95.6) 12 9.8) 140 (89.2) 13 0.7) 134 (54.9) 12 5.0) 62 (47.3) 4 4.9) 61 (50.0) 65 6.5) 66 (44.9) 66 8.2) 95 (57.6) 8	frogs
1979	H 1	H 1	120	111 (92.5)	103 (85.8)	102 (85.0)	101 (84.2)	96 (80.0)
1980	H 2	H 2	208	177 (85.1)	170 (81.7)	170 (81.7)	170 (81.7)	164 (78.8)
	Н3	H 3	132	108 (81.8)	102 (77.3)	102 (77.3)	102 (77.3)	98 (74.2)
	H4	H 4	155	142 (91.6)	142 (91.6)	140 (90.3)	139 (89.7)	137 (88.4)
	Н5	H 5	155	136 (87.7)	135 (87.1)	135 (87.1)	132 (85.2)	128 (82.6)
	H 6	H 6	104	98 (94.2)	98 (94.2)	97 (93.3)	97 (93.3)	92 (88.5)
	H 7	H 7	141	137 (97.2)	136 (96.5)	136 (96.5)	136 (96.5)	132 (93.6)
1979	H 1	I 1	157	147 (93.6)	145 (92.4)	144 (91.7)	144 (91.7)	138 (87.9)
1980	H 2	I 2	96	77 (80.2)	77(80.2)	75 (78.1)	75 (78.1)	71 (74.0)
	Н3	I 3	183	144 (78.7)	142 (77.6)	141 (77.0)	140 (76.5)	133 (72.7)
	H 4	I 4	310	293 (94.5)	284 (91.6)	283 (91.3)	275 (88.7)	252 (81.3)
	H 5	I 5	184	178 (96.7)	172 (93.5)	170 (92.4)	164 (89.1)	157 (85.3)
	Н6	I 6	136	134 (98.5)	132 (97.1)	131 (96.3)	130 (95.6)	124 (91.2)
	Н7	I 7	157	141 (89.8)	141 (89.8)	141 (89.8)	140 (89.2)	133 (84.7)
1979	I 1	H 1	244	211 (86.5)	172 (70.5)	148 (60.7)	134 (54.9)	127 (52.0)
1980	I 2	H 2	131	100 (76.3)	80 (61.1)	72 (55.0)	62 (47.3)	57 (43.5)
	I 3	H 3	122	105 (86.1)	86 (70.5)	67 (54.9)	61 (50.0)	54 (44.3)
	I 4	H 4	147	121 (82.3)	95 (64.6)	83 (56.5)	66 (44.9)	62 (42.2)
1979	I 1	I 1	165	147 (89.1)	121 (73.3)	96 (58.2)	95 (57.6)	88 (53.3)
1980	I 2	I 2	137	102 (74.5)	84 (61.3)	76 (55.5)	68 (49.6)	55 (40.2)
	13	I 3	127	106 (83.5)	86 (67.7)	80 (63.0)	73 (57.5)	57 (44.9)
	14	I 4	157	125 (79.6)	101 (64.3)	94 (59.9)	79 (50.3)	63 (40.1)

 $(H + 2 \sim 7)$ were mated with six field-caught males of the Hiroshima population $(H \Leftrightarrow 2 \sim 7)$ and six one-year-old males of the Ichinoseki population ($I \Leftrightarrow 2 \sim 7$) (Table 1; Fig. 1a, b). In six control series, the proportions of normal cleavages were comparatively high, being 81.8~97.2%, 89.2% on the average. While only a small number of normally cleaved eggs died of various abnormalities, 77.3~96.5%, 87.2% on the average, of the respective total number of eggs, hatched normally. During the tadpole stage, only a few individuals died; 74.2~93.6%, 83.9% on the average, of the respective total number of eggs, metamorphosed normally. In six experimental series, 78.7~98.5%, 90.7% on the average, of the respective total number of eggs cleaved normally. While a few normally cleaved eggs died of various abnormalities, 77.0~96.3%, 88.3% on the average, hatched normally. A few tadpoles died of underdevelopment or edema, and eventually 72.7~91.2%, 81.6% on the average, metamorphosed No significant differences were found between the control and experimental series in mortality at each developmental stage and in morphological defects.

2. Hybrids between Ichinoseki females and Hiroshima males

On 5 February 1979, a field-caught female of the Ichinoseki population (I + 1) was mated with field-caught males of both populations stated above (H + 1) and (I + 1) (Table 1; Fig. 1c, d). Of 165 eggs in the control series, 147 (89.1%)

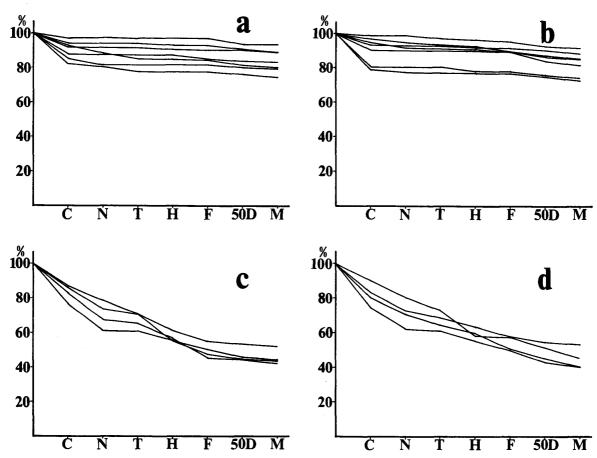


Fig. 1. Survival curves of reciprocal hybrids between the Hiroshima and Ichinoseki populations of Rana japonica.

a. H♀×H♂ C, Cleavage b. H♀× I♂ N, Neurula stage c. I♀×H♂ T, Tail-bud stage

d. I P X I & H, Hatch

F, Feeding tadpole stage

50D, Age of 50 days

M, Climbing out of water

cleaved normally. After normally cleaved eggs died of various kinds of abnormalities at various developmental stages from gastrula to hatching, 96 (58.2%) hatched normally. During the tadpole stage, some individuals died of edema or underdevelopment, and eventually 88 (53.3%) completed metamorphosis. In the experimental series, 211 (86.5%) of 244 eggs cleaved normally. The normally cleaved eggs were nearly the same as the controls in developmental capacity, that is, 148 (60.7%) hatched normally and 127 (52.0%) completed metamorphosis. Morphological defects found in many embryos or tadpoles were similar to those of the controls.

On 10 March 1980, three one-year-old females of the Ichinoseki population (I + 2 - 4) were mated with the same males as those stated above (H + 2 - 4) and I + 2 - 4 (Table 1; Fig. 1c, d). In three control series, 74.5 - 83.5%, 79.1% on the average, of the respective total number of eggs cleaved normally, and

afterwards many of the normally cleaved eggs died of various abnormalities at various embryonic stages from gastrula to hatching. After $55.5 \sim 63.0\%$, 59.4% on the average, hatched normally, some tadpoles also died of underdevelopment or edema, and eventually $40.1 \sim 44.9\%$, 41.6% on the average, completed metamorphosis. In three experimental series, $76.3 \sim 86.1\%$, 81.5% on the average, of the respective total number of eggs cleaved normally. After many of normally cleaved eggs died of similar abnormalities as those of the controls at various embryonic stages, $54.9 \sim 56.5\%$, 55.5% on the average, hatched normally. During the tadpole stage, some individuals died of underdevelopment; $42.2 \sim 44.3\%$, 43.3% on the average, completed metamorphosis.

II. Developmental velocity

The Hiroshima and Ichinoseki populations were compared with each other in developmental velocity at 18°C (Tables 2 and 3). There was a slight difference

TABLE 2 Stages of embryos at definite ages in the two Rana japonica populations at 18° C (1979)

Age(hrs) Kind	3	5	8	22	30	45	54.	69	78	117	144.5	199
Hiroshima population	3E	5E	7aL	10a	12E	13bL	15	17	19E	21	23	25
Ichinoseki population	3	5	7b	10a	11	13b	15E	17E	19E	21	23	25

TABLE 3 Stages of larvae at definite ages in the two Rana japonica populations at 18° C (1979)

Age(days) Kind	18	38	49	67	76	83	89
Hiroshima population	III	$V \sim VIII$	$X \sim XII$	XVII ~XV	III XX(76.2)		
Ichinoseki population	III	IV∼V	VII ∼IX	XIII~XV	XV ~ XVIII	XVIII ~XX	XX(89.3)

in this respect between the two populations during the early embryonic stage. Three hours after insemination, the Hiroshima eggs began to cleave (stage 3E), while the Ichinoseki eggs had almost completed the first cleavage and were at the 2-cell stage (stage 3). Five hours after insemination, the Hiroshima embryos started the third cleavage (stage 5E), while the Ichinoseki embryos had completed the third cleavage and were at the 8-cell stage (stage 5). Eight hours after insemination, the Ichinoseki embryos were at the morula stage (stage 7b), while the Hiroshima embryos were not yet at the same stage (stage 7aL). Twenty

M. SUMIDA

two hours after insemination, invagination of the blastopore was slightly observed in both populations (stage 10a). Thirty hours after insemination, the yolk plug was formed in the Hiroshima embryos (stage 12E), while there was still a horseshoe-shaped blastopore in the Ichinoseki embryos (stage 11). Sixty nine hours after insemination, the Hiroshima embryos were at the tail-bud stage (stage 17), while the Ichinoseki embryos were at the early tail-bud stage (stage 17E). Thereafter the two populations proceeded almost identically in development until TK stage III. Eight days after insemination, the external gills degenerated almost completely (stage 25), and 10 days later they attained TK stage III. After this stage a difference in developmental velocity appeared again between the tadpoles of the two populations. The Hiroshima and Ichinoseki tadpoles required 76.2 days and 89.3 days on the average, respectively, to attain TK stage XX, that is, fore-limb protrusion.

No observations were made on developmental velocity at 18°C in reciprocal hybrids between the two populations. Thus, only the ages of the reciprocal hybrids were observed at the time of attaining TK stage XX at room temperature. At room temperature, 87 Hiroshima eggs required 78~87 days, 81.1 days on the average, to attain TK stage XX, while 85 Ichinoseki eggs required 85~94 days, 87.5 days on the average, to attain the same stage. On the other hand, 138 hybrids between Hiroshima females and Ichinoseki males and 127 reciprocal ones required 87~97 days, 89.3 days on the average, and 86~100 days, 89.4 days on the average, to attain TK stage XX, respectively.

III. Morphology

1. Measurements

The Hiroshima population, the Ichinoseki population and reciprocal hybrids between them were mutually compared by measuring several body sites at Shumway stage 25, TK stage XX, 3 months after metamorphosis and the age of one year (Tables 4~7).

TABLE 4

Measurements of reciprocal hybrids between the Hiroshima and Ichinoseki populations of Rana japonica and the controls at Shumway stage 25

Parent	s	Tadpoles immediately before feeding										
Female	Female Male Total length (mm)		Body length (mm)	Head width (mm)	Tail length (mm)	Tail height (mm)						
н 1	H 1	13.6 ± 0.10	5.6 ± 0.02	2.9 ± 0.01	8.0 ± 0.07	2.8 ± 0.03						
н 1	I 1	12.7 ± 0.08	5.2 ± 0.04	2.6 ± 0.03	7.5 ± 0.06	2.7 ± 0.03						
I 1 I 1	H 1 I 1	12.3 ± 0.26 12.8 ± 0.16	5.2 ± 0.08 5.2 ± 0.06	2.9 ± 0.08 3.0 ± 0.03	7.0 ± 0.19 7.6 ± 0.13	2.9 ± 0.06 2.9 ± 0.04						

a. Tadpoles at stage 25

Measurements were made on ten tadpoles from each series (Table 4). The Hiroshima tadpoles were larger than the Ichinoseki tadpoles in total length, body length and tail length. Reciprocal hybrids were smaller than or almost equal to the tadpoles of the parental population which were smaller in every respect.

b. Tadpoles at stage XX

Ten tadpoles of each series were measured (Table 5). The Ichinoseki tadpoles

TABLE 5

Measurements of reciprocal hybrids between the Hiroshima and Ichinoseki populations of Rana japonica and the controls at TK stage XX

Parent	S		•	ediately after progs (TK stage XX		
Female	Male	Total length (mm)	Body length (mm)	Head width (mm)	Tail length (mm)	Tail height (mm)
H 1	H 1	48.2 ± 0.45	16.8 ± 0.33	8.3 ± 0.16	31.4 ± 0.34	5.9 ± 0.17
H 1	I 1	47.6 ± 0.54	16.6 ± 0.19	8.1 ± 0.13	31.0 ± 0.43	6.1 ± 0.09
I 1	H 1	48.5 ± 0.52	16.9 ± 0.13	9.3 ± 0.15	31.5 ± 0.45	7.0 ± 0.09
I 1	I 1	49.5 ± 0.41	18.0 ± 0.16	9.4 <u>+</u> 0.12	31.5 <u>+</u> 0.44	7.3 <u>+</u> 0.14

were somewhat larger than the Hiroshima tadpoles in total length, body length, head width and tail height. Hybrids between a female of the Hiroshima population and a male of the Ichinoseki population were somewhat smaller than or almost similar to the Hiroshima tadpoles in each of these respects. The reciprocal hybrids were similar to the Hiroshima tadpoles in total length and body length, while they were similar to the Ichinoseki tadpoles in head width and tail height.

c. Froglets three months after metamorphosis

Measurements were made on 20 froglets of each series (Table 6). It was found that the Hiroshima froglets were comparatively larger than the Ichinoseki froglets in hind leg length and tibia length, while they were somewhat smaller

TABLE 6

Measurements of reciprocal hybrids between the Hiroshima and Ichinoseki populations of Rana japonica and the controls 3 months after metamorphosis

Parent	:3		Froglets 3 months after metamorphosis												
Female	Male	Body length (a) (mm)	Head length (mm)	length width		Fore-leg length (mm)	Hind leg length (b) (mm)	Tibia length (mm)	b/a						
H 1	H 1	37.2 ± 0.43	13.6 ± 0.25	12.7 ± 0.24	5.8 ± 0.13	21.9 ± 0.52	60.3 ± 0.83	18.6 ± 0.45	1.60 ± 0.01						
ні	I 1	37.5 ± 0.46	13.4 ± 0.29	12.6 ± 0.25	5.9 ± 0.12	22.2 ± 0.46	58.6 ± 0.85	17.7 ± 0.39	1.56 ± 0.01						
I 1	H 1	35.4 ± 0.45	13.2 ± 0.21	12.3 ± 0.22	5.8 ± 0.08	21.6 ± 0.51	57.7 ± 0.92	17.6 ± 0.40	1.63 ± 0.01						
I 1	I 1	39.0 ± 0.46	13.8 ± 0.16	13.5 ± 0.15	6.0 ± 0.08	22.6 ± 0.29	58.6 ± 0.68	17.7 ± 0.23	1.51 ± 0.02						

8 M. SUMIDA

than the latter in body length. The ratio of hind leg length to body length in the Ichinoseki population was considerably smaller than that in the Hiroshima population. Furthermore, the head length was almost similar to the head width in the Ichinoseki population, while the head length was slightly larger than the head width in the Hiroshima population. Therefore, the head of the Hiroshima froglets appeared to be more slender than that of the Ichinoseki froglets. The hybrids between a female of the Hiroshima population and a male of the Ichinoseki population were nearly the same as the Hiroshima froglets in body length, head length and head width, and similar to the Ichinoseki froglets in hind leg length. The reciprocal hybrids were slightly smaller than the Hiroshima froglets in body length, while they were nearly the same as the above hybrids in size of each body site.

d. One-year-old frogs

Measurements were made on 10 male frogs of each series at the age of one year (Table 7). The Hiroshima frogs were smaller than the Ichinoseki frogs in body

TABLE 7

Measurements of reciprocal hybrids between the Hiroshima and Ichinoseki populations of Rana japonica and the controls at the age of one year

Pare	nts				One-yea	r-old males			
Female	Male	Body length (a) (mm)	Head length (mm)	Head width (mm)	Snout length (mm)	Hind leg length (b) (mm)	Diameter of tympanic membrane (mm)	Metatarsal tubercle (mm)	b/a
H 1	H 1	44.5 ± 0.49	15.9 ± 0.39	15.6 ± 0.25	7.3 ± 0.05	67.3 ± 0.67	3.8 ± 0.10	2.14 ± 0.03	1.53 ± 0.01
H 1	I 1	45.0 ± 0.58	15.3 ± 0.29	15.9 ± 0.27	6.8 ± 0.13	69.7 ± 1.33	3.8 ± 0.09	2.85 ± 0.09	1.50 ± 0.01
I 1	Н 1	43.8 ± 0.57	15.2 ± 0.15	15.5 ± 0.18	7.0 ± 0.12	68.7 ± 1.45	3.6 ± 0.07	2.80 ± 0.04	1.55 ± 0.02
I 1	I 1	47.4 ± 0.77	16.3 ± 0.58	16.9 ± 0.29	7.3 ± 0.10	67.8 ± 0.93	3.8 ± 0.08	2.95 ± 0.06	1.43 ± 0.01

length and size of the metatarsal tubercle. The ratio of hind leg length to body length in the Ichinoseki frogs was somewhat smaller than that in the Hiroshima frogs. Reciprocal hybrids were similar to each other and to the Hiroshima frogs in various respects, although they were somewhat smaller in snout length and larger in size of the metatarsal tubercle. They were more similar to the Hiroshima frogs than the Ichinoseki frogs in the ratio of hind leg length to body length.

e. Field-caught frogs

Measurements were made on the four field-caught frogs which were used in the mating experiments performed in 1979 (Table 8). The Hiroshima and Ichinoseki frogs evidently differed from each other in two respects, ratio of hind leg length to body length and size of the metatarsal tubercle. The hind legs of the Hiroshima frogs were larger than those of the Ichinoseki frogs, while the metatarsal tubercle of the Hiroshima frogs was smaller than that of the Ichinoseki frogs. When measurements were made on six females and three males of the Ichinoseki population and ten females and five males of the Hiroshima population,

TABLE 8
Measurements of field-caught frogs of the Hiroshima and Ichinoseki populations of
Rana japonica

Kind	Hiroshima pop	oulation	Ichinoseki	population
Individual no.	978 (H 1)	974 (H 1)	982 (I 1)	977 (I 1)
Sex	<u>ڄ</u>	†	.2	\$
Body length (a) (mm)	51.7	44.7	70.3	51.7
Head length (mm)	17.0	14.7	21.0	15.8
Head width (mm)	14.7	13.9	20.2	15.9
Snout length (c) (mm)	6.8	6.0	8.6	7.1
Head width at anterior edge of upper eyelid (d)	9.8	9.3	14.5	11.1
Fore-leg length (mm)	29.0	24.6	37.4	28.6
Hind leg length (b)(mm)	88.2	76.5	109.2	79.2
Diameter of tympanic membrane (mm)	3.4	3.0	4.2	3.6
Metatarsal tubercle (mm)	2.3	2.1	3.5	3.0
b/a	1.71	1.71	1.55	1.53
c/d	0.69	0.65	0.59	0.64

similar findings were obtained. The Hiroshima frogs were 53.06 ± 0.80 mm in body length, 2.44 ± 0.12 mm in size of the metatarsal tubercle and 1.80 ± 0.02 in ratio of hind leg length to body length. On the other hand, the Ichinoseki frogs were 55.43 ± 0.41 mm in body length, 3.23 ± 0.02 mm in size of the metatarsal tubercle and 1.62 ± 0.03 in ratio of hind leg length to body length.

2. External characters

a. Dental formulae of tadpoles

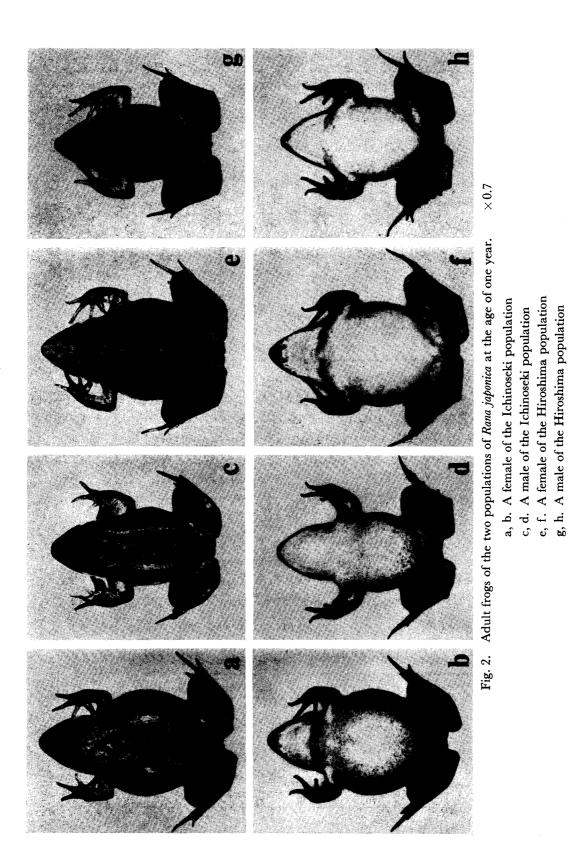

According to the dental formulae of *Rana japonica* tadpoles described by KAWAMURA (1943, 1950), the upper and lower jaw formulae were 1:2+2 and 2:1+1, respectively, although an extra rudimentary upper or lower row was

TABLE 9

Dental formulae of reciprocal hybrids and the controls at TK stage X (1979)

Parer	nts	No. of			K	ind of d	ental for	mula		
F1-	3/-1-	tadpoles	1:2+2	1:2+2	1:2+2	1:2+2	1:3+3	1:2+2	1:2+2	1:2+2
Female	Male		2:1+1	3:1+1	2:2+2	1:2+2	3:1+1	3:0+0	4:0+0	0:3+3
H 1	H 1	50	12	37			1			
H 2	H 2	50	9	37			3		1	
H 1	I 1	50	8	26	6	1	8		1	
I 1	H 1	50	28	19	2	1				
I 1	I 1	50	38			4		7		1
I 2	I 2	50	14	1	3	29				3
1 3	I 3	37	7			24				6

10 M. SUMIDA

found in some tadpoles. As shown in Table 9, the dental formulae of the Hiroshima tadpoles examined by the present author were also 1:2+2 or 1:3+3 in the upper jaw and 2:1+1 or 3:1+1 in the lower jaw. On the other hand, the dental formulae of the Ichinoseki tadpoles were always 1:2+2 in the upper jaw and 1:2+2 or 2:1+1 in the lower jaw in most tadpoles. In other words, the Ichinoseki tadpoles somewhat differed from the Hiroshima tadpoles in the dental formula of the lower jaw. In contrast to the Hiroshima tadpoles, some of the Ichinoseki tadpoles had a dental formula of the lower jaw, where the second low was interrupted in the middle. The dental formulae of reciprocal hybrids were variable, as shown in Table 9. The dental formula of the lower jaw was mostly 2:1+1 and 3:1+1, although there were some tadpoles whose dental formula of the lower jaw was 1:2+2 or 2:2+2.

b. Adult frogs

Hiroshima frogs resembled Ichinoseki frogs so closely in appearance that they could not be definitely distinguished from the latter. However, some vague differences could be recognized in several external characters between the two kinds of frogs. The external characters were mainly observed on 3 males and 6 females from Ichinoseki and 5 males and 10 females from Hiroshima. All these frogs were those which had been collected in the field and used for crossing experiments in 1979.

- (i) Dorsal surface Although the dorsal surfaces changed in color according physiological conditions, they were generally light brown in the Hiroshima frogs, while they were dark brown in the Ichinoseki frogs. Besides a V-shaped spot found in the center of the back, there were no or grey vague spots on the back of the Hiroshima frogs, while there were no or small black spots, fused irregular black spots and grey obscure spots in the Ichinoseki frogs. While the body surfaces of the Hiroshima frogs seemed to be comparatively smooth and firm, those of the Ichinoseki frogs seemed to be coarse and loose. The snout was somewhat slender and pointed in the Hiroshima frogs, while it was thick and not so pointed in the Ichinoseki frogs. In both populations, the dorso-lateral ridges were pale yellowish-brown with parallel lines running nearly straight from the posterior ends of the upper eyelids to the level of the hind legs (Fig. 2).
- (ii) Ventral surface The ventral surfaces of the Hiroshima and Ichinoseki frogs were white, pale yellow or rarely orange, and there were no remarkable differences in ground coloration between the two populations. However, innumerable minute grey spots were sometimes distributed all over the ventral surfaces in the Ichinoseki population, while such spots were scarcely found in the Hiroshima population (Fig. 2).

IV. Biochemical characters

In order to compare the two populations biochemically, ten enzymes, lactate dehydrogenase (LDH), malate dehydrogenase (MDH), α -glycerophosphate

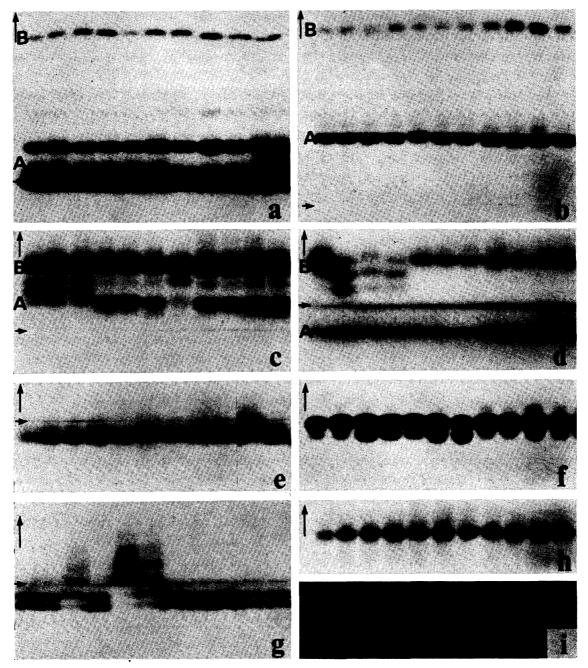


Fig. 3. Electrophoretic patterns of nine enzymes in the Hiroshima and Ichinoseki populations of *Rana japonica*. Left seven samples are from the Hiroshima population. Right four samples are from the Ichinoseki population.

- a. Lactate dehydrogenase (LDH)
- b. Isocitrate dehydrogenase (IDH)
- c. Malate dehydrogenase (MDH)
- d. Aspartate aminotransferase (AAT)
- e. Glucose-phosphate isomerase (GPI)
- f. Phosphoglucomutase (PGM)
- g. α -glycerophosphate dehydrogenase (α -GDH)
- h. Creatine kinase (CK)
- i. Superoxide dismutase (SOD)



Fig. 4. Electrophoretic patterns of one enzyme and two blood proteins in the Hiroshima and Ichinoseki populations of *Rana japonica*. Left three (j, k) or five (l) samples are from the Hiroshima population. Right three (j, k) or six (l) samples are from the Ichinoseki population.

- j. Esterase (Est)
- k. Hemoglobin (Hb)
- l. Serum albumin (Ab)

dehydrogenase (α-GDH), isocitrate dehydrogenase (IDH), aspartate aminotransferase (AAT), phosphoglucomutase (PGM), glucose-phosphate isomerase (GPI), superoxide dismutase (SOD), creatine kinase (CK) and esterase (Est) and two blood proteins, serum albumin (Ab) and hemoglobin (Hb), were analyzed by starch gel electrophoresis, using 15 frogs of the Hiroshima population and 9 frogs of the Ichinoseki population which were collected in the field. The electrophoretic patterns of these proteins are shown in Figs. 3 and 4. The comparison of the two populations in 16 loci which control these proteins is shown in Table 10. In twelve loci controlling LDH-A, B, MDH-A, IDH-A, B, AAT-A, PGM, GPI, SOD, CK, Est-1 and Hb among the 16 loci analyzed, no differences were observed between the two populations; only a single allele common to both populations was expressed and no variant was found in each locus except for GPI locus (Figs. 3

TABLE 10

Comparison in 16 loci of 12 proteins between the Hiroshima and Ichinoseki populations of Rana japonica

Locus	L	DH	М	DH	α- G DH	II	H	Α	ΑT	PGM	GPI	SOD	СК	Est-1	Нb	Ab
Kind	A	В	A	В	u-GDH	A	В	A	В	rGM	Gri	300	CK	F2(-1	110	AU
Hiroshima population	a	ь	a	b, <u>c</u>	a, <u>b</u>	a	а	a	<u>b</u> , d	ъ	a, <u>b</u>	b	a	ь	a	a , <u>b</u>
Ichinoseki population	a	ь	a	c	b	a	a	a	b	Ъ	a, <u>b</u>	b	a	b	a	b, <u>c</u>

Underline shows the major allele.

14 M. SUMIDA

and 4). In three other loci controlling MDH-B, α -GDH and AAT-B, the two populations slightly differed. Although they had a single common major allele, a variant specific to the Hiroshima population was found in each locus with a low frequency. In the remaining one locus of serum albumin, a distinct difference was found between the two populations. The Hiroshima frogs had two albumin alleles, a and b, while the Ichinoseki frogs had two alleles, b and c. The major allele was b in the Hiroshima population, while it was c in the Ichinoseki population.

V. Karyological characters

Chromosomes were examined in metaphase plates of bone marrow cells of six-month-old frogs in the experimental and control series performed in 1979. A total of 284 metaphase plates from 10 frogs of two series in the Hiroshima population, and a total of 197 metaphase plates from 17 frogs of 3 series in the Ichinoseki population were observed (Table 11).

TABLE 11 Number of frogs and mitotic figures examined for chromosome analysis in 1979

Parer	ıts	No. of analyzed	No. of analyzed	No. of measured	
Female	Male	frogs	mitoses	mitoses	
Н 1	H 1	7	239	27	
H 2	H 2	3	45	27	
I 1	I 1	7	93	9	
I 2	I 1	8	99	45	
1 3	I 2	2	5	0	
H 1	I 1	10	63	_	
I 1	H 1	10	63	_	

1. Karyotype of the Hiroshima population

The chromosomes of the Hiroshima population are 26 in diploid number. Its karyotype is shown in Fig. 5, where the 13 pairs of chromosomes are arranged in order of length. The relative length and centromere position of each chromosome are presented in Tables 12 and 13, respectively. The chromosomes were divided into two groups according to their size. Group 1 consisted of five large chromosomes, Nos. 1 to 5, while group 2 consisted of eight small chromosomes Nos. 6 to 13. On the other hand, the 13 pairs of chromosomes were divided into three types, median (m), submedian (sm) and subterminal (st), according to the numerical values of their centromere position, $50.0 \sim 37.5$, $37.5 \sim 25.0$ and $25.0 \sim 12.5$, respectively. The largest chromosome (No. 1) of group 1 was of m type, while chromosome No. 2 was slightly smaller than No. 1 and was of

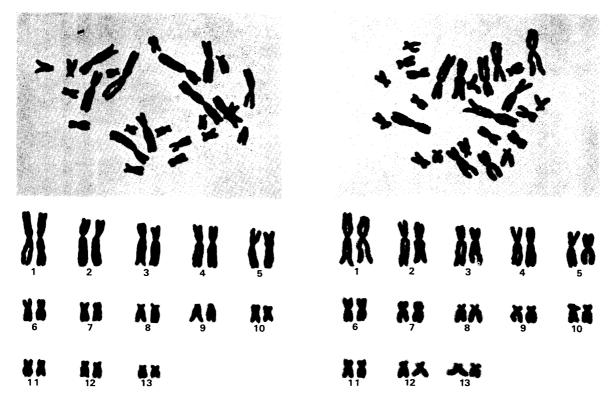


Fig. 5. Metaphase spread and the karyotype of a bone marrow cell from a Hiroshima frog.

Fig. 6. Metaphase spread and the karyotype of a bone marrow cell from an Ichinoseki frog.

 $\times 1200$

 $\times 1200$

TABLE 12
Relative lengths of metaphase chromosomes in the Hiroshima and Ichinoseki populations

	Hiros	hima popula	ition	Ichinoseki population				
Chromo- some no.	ome Milli-		Mean		Mini- mum	Maxi- mum	Mean	
1	13.76	16.76	14.90 ± 0.11	1	12.87	16.10	14.09 ± 0.09	
2	11.91	14.53	12.78 ± 0.09	2	11.26	13.95	12.56 ± 0.08	
3	10.46	12.58	11.54 ± 0.07	3	9.93	11.85	10.92 ± 0.06	
4	10.04	12.51	11.35 ± 0.07	4	10.10	12.29	11.15 ± 0.07	
5	9.23	10.77	9.89 ± 0.05	5	8.83	11.22	9.81 ±0.07	
6	5.59	7.10	6.29 ± 0.04	6	5.75	6.94	6.36 ± 0.03	
7	4.82	6.18	5.60 ± 0.04	7	5.01	6.65	5.83 ± 0.04	
8	4.73	5.88	5.21 ± 0.04	8	4.86	5.84	5.22 ± 0.03	
9	4.63	5.71	5.07 ± 0.04	9	4.45	5.58	5.13 ± 0.03	
10	3.82	5.41	4.79 ± 0.05	10	4.49	5.73	5.14 <u>+</u> 0.04	
11	3.89	5.01	4.60 ± 0.04	11	4.42	5.77	5.09 ± 0.05	
12	3.58	4.89	4.29 ± 0.04	12	3.89	5.31	4.65 <u>+</u> 0.04	
13	3.15	4.25	3.70 ± 0.03	13	3.33	4.81	4.14 <u>+</u> 0.04	

Relative chromosome length:

 $\frac{\text{Each chromosome length}}{\text{Genome length}} \times 100$

 $\pm Standard$ error of the mean

TABLE 13
Centromere positions represented by numerical values and types of metaphase chromosomes in the Hiroshima and Ichinoseki populations

	Hiı	roshima	population		Ichinoseki population					
Chromo- some no.	Mini- mum	Maxi- mum	Mean	Туре	Chromo- some no.	Mini- mum	Maxi- mum	Mean	Туре	
1	43.29	49.65	46.69 ± 0.19	m	1	41.74	48.47	46.01 ± 0.17	m	
2	33.08	41.52	37.43 ± 0.20	sm	2	32.03	41.84	38.05 ± 0.27	m	
3	30.92	37.09	34.35 ± 0.20	sm	3	29.75	39.95	35.29 ± 0.26	sm	
4	37.52	46.04	40.30 ± 0.20	m	4	37.00	45.69	42.01 ± 0.23	m	
5	42.16	48.69	45.16 ± 0.21	m	5	42.18	48.12	45.53 ± 0.16	m	
6	35.26	44.17	39.70 ± 0.29	m	6	40.59	49.60	46.75 ± 0.27	m	
7	36.88	44.86	41.15 ± 0.25	m	7	38.00	49.43	43.20 ± 0.34	m	
8	24.38	32.98	27.92 ± 0.33	sm	8	21.72	31.58	27.13 ± 0.29	sm	
9	15.45	26.18	20.65 ± 0.30	st	9	25.41	35.38	29.79 ± 0.28	sm	
10	33.16	41.98	37.16 ± 0.22	sm	10	32.23	41.05	36.71 ± 0.28	sm	
11	37.28	46.97	43.00 ± 0.29	m	11	38.57	45.13	41.96 ± 0.24	m	
12	30.73	42.31	35.88 ± 0.32	sm	12	32.49	42.58	37.47 ± 0.27	sm	
13	29.52	40.00	35.65 ± 0.30	sm	13	30.66	38.79	35.28 ± 0.25	sm	

Numerical value of the centromere position (NVC):

 $\frac{Short\text{-}arm\ length}{Chromosome\ length}\!\times\!100$

+Standard error of the mean

sm type near m type. Chromosomes Nos. 3 and 4 were similar to each other in relative length, but they differed from each other in the position of centromere; No. 3 was of sm type, while No. 4 was of m type. Chromosome No. 5 was the smallest of group 1 and of m type. Among the chromosomes of group 2, No. 6 was the largest and followed by No. 7, while these two were of m type. Chromosomes Nos. 8 and 9 were similar to each other in relative length but they were distinguishable in shape. While chromosome No. 8 was of sm type, No. 9 was of st type. Chromosomes Nos. 10 and 11 resembled each other in relative length, but No. 10 was of sm type and peculiar in having a distinct secondary constriction in the long arm. Chromosome No. 11 was of m type. Chromosome No. 12 was slightly smaller than No. 11 and of sm type. Chromosome No. 13 was the smallest and of sm type.

2. Karyotype of the Ichinoseki population

The chromosomes of the Ichinoseki population were very similar to those of the Hiroshima population; they were 26 in diploid number and divided into two groups according to their size. The karyotype of this population is shown in Fig. 6 and the relative length and centromere position of each chromosome are presented in Tables 12 and 13. Chromosome No. 1 was the largest among the five chromosomes of group 1 and of m type. Chromosome No. 2 was slightly smaller than No. 1 and of m type near sm type. Although chromosome No. 4 was slightly larger than chromosome No. 3 in relative length, they were arranged as those of the Hiroshima population on the basis of centromere position. Chromosome No. 5 was the smallest in group 1 and of m type. Chromosome No. 6 was the largest among the eight chromosomes of group 2, and No. 7 was slightly smaller than No. 6; both chromosomes were of m type. Chromosomes Nos. 8~11 were very similar to each other in relative length. As Nos. 8 and 9 were of sm type, they were often indistinguishable from each other. Chromosome No. 10 was of sm type and had a secondary constriction in the long arm. Accordingly, it could be easily distinguished from No. 11 which was of m type. Chromosome No. 12 was smaller than No. 11 and of sm type. Chromosome No. 13 was the smallest and of sm type.

3. Comparison of the karyotypes of the two populations Slight differences in relative length and centromere position of chromosomes

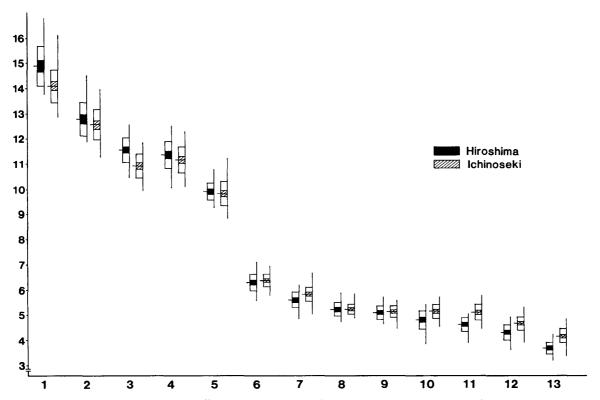


Fig. 7. A graph showing differences in relative chromosome length between the two populations of Rana japonica.

The left and right of each pair in the graph represent a Hiroshima and an Ichinoseki chromosome, respectively. A vertical line shows the range of relative chromosome lengths, a short horizontal line, the mean of the latter; an open rectangle on each side of the horizontal line, the standard deviation of the mean; a black or an oblique rectangle on each side of the horizontal line, two times the standard error of the mean. In general, if a black rectangle does not overlap an oblique rectangle, the difference between the two chromosomes is statistically significant.

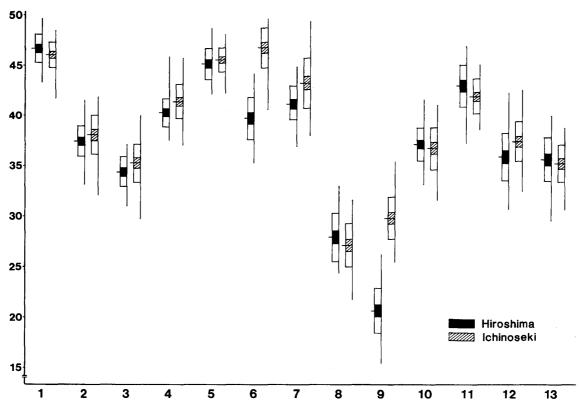


Fig. 8. A graph showing differences in centromere position between the two populations of Rana japonica.

The left and right of each pair in the graph represent a Hiroshima and an Ichinoseki chromosome, respectively. A vertical line shows the range of numerical values of the centromere position; a short horizontal line, the mean of the numerical values; an open rectangle on each side of the horizontal line, the standard deviation of the mean; a black or an oblique rectangle on each side of the horizontal line, two times the standard error of the mean.

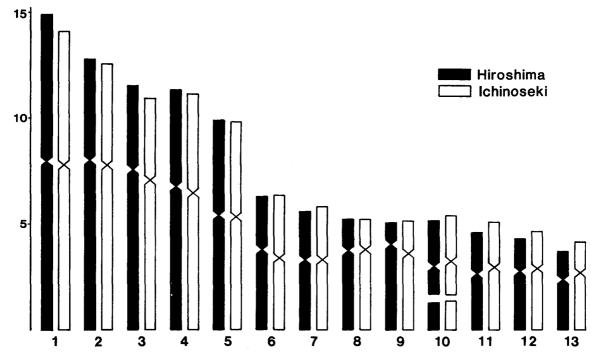


Fig. 9. Composite ideogram showing differences in relative chromosome length and centromere position between the two populations of *Rana japonica*. Constrictions indicate the centromeres. A gap in chromosome No. 10 indicates the secondary constriction.

were found between the karyotypes of the two populations, as shown in Figs. $7 \sim 9$. In relative length, there were statistically significant differences in 7 chromosomes, Nos. 1, 3, 7, 10, 11, 12 and 13 (Fig. 7). While there were no statistically significant differences in centromere positions of the five large chromosomes, Nos. $1 \sim 5$, the two populations were significantly different from each other in chromosomes Nos. 6 and 9 (Fig. 8). While chromosome No. 9 was of st type in the Hiroshima population, it was of sm type in the Ichinoseki population. The numerical values of the centromere positions in the Hiroshima and Ichinoseki populations were 20.65 ± 0.30 and 29.79 ± 0.28 , respectively. Although chromosome No. 6 was of m type in the two populations, the numerical values of the centromeres were also 39.70 ± 0.29 and 46.75 ± 0.27 , respectively. In the other six small chromosomes, Nos. 7, 8, 10, 11, 12 and 13, there were either no or slightly significant differences between the two populations (Fig. 8).

4. Karyotypes of reciprocal hybrids

Chromosomes of reciprocal hybrids were observed in 63 metaphase plates obtained from 10 individuals, as shown in Table 10. The karyotypes of these hybrids are shown in Figs. 10 and 11. The two homologous chromosomes of each of two pairs, Nos. 6 and 9, were usually found to be distinctly different in centromere position.

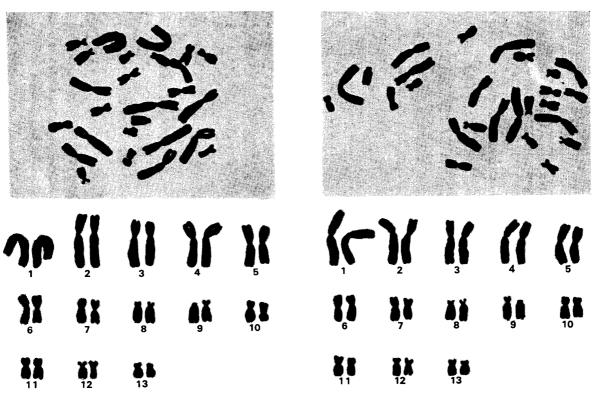


Fig. 10. Metaphase spread and the karyotype of a bone marrow cell from a hybrid frog between a Hiroshima female and an Ichinoseki male.

Fig. 11. Metaphase spread and the karyotype of a bone marrow cell from a hybrid frog between an Ichinoseki female and a Hiroshima male.

VI. Sex and gonads

Sex ratios

The gonads of reciprocal hybrids and their controls were observed in juvenile frogs within one month after metamorphosis and six-month-old frogs with thumb pads. The sex ratios of these frogs are presented in Table 14. While the sex of control Rana japonica was almost differentiated one month after metamorphosis, there were comparatively numerous hermaphrodites in the hybrids at this stage. Thus, the sex of these juvenile frogs was divided into the following five categories on the basis of the inner structure of gonads, according to KAWAMURA and NISHIOKA (1972).

TABLE 14
Sex of reciprocal hybrids between the Hiroshima and Ichinoseki populations of Rana japonica

Pare	nts	No. of metamor-	Sex of month					within 1	Sex of	6-mont frogs		Sex of	all frog	s examined
Female	Male	phosed frogs	No. of frogs	4	1	2	3	Ĉ(%)	No. of frogs	악	3	Total	우	(%)
H 1	H 1	96	41	21				20 (48.8)	53	35	18	94	56	38 (40.4
H 2	H 2	164	106	59				47 (44.3)	49	26	23	155	85	70 (45.2
H 3	H 3	98	38	16				22 (57.9)	51	27	24	89	43	46 (51.7
H 4	H 4	137	19	9			1	9 (47.4)	115	60	55	134	69	65 (48.5
H 5	H 5	128	114	66) 1			48 (42.1)	- 1	-	-	114	66	48 (42.1
H 6	H 6	92	88	43				45 (51.1)	-	_	-	88	43	45 (51.1
H 7	H 7	132	89	38				51 (57.3)	38	23	15	127	61	66 (52.0
T	otal	847	495	252			1	242 (48.9)	306	171	135	801	423	378 (47.2
H 1	I 1	138	27	4		1		22 (81.5)	93	4	89	120	8	112 (93.3
H 2	I 2	71	36	9		1		26 (72.2)	30	5	25	66	14	52 (78.8
Н3	I 3	133	75	4	3	1		67 (89.3)	37	1	36	112	5	107 (95.5
H 4	I 4	252	141	30	4	6	3	98 (69.5)	73	13	60	214	43	171 (79.9
H 5	I 5	157	147	13	4	1		129 (87.8)	_	_	- 1	147	13	134 (91.2
H 6	I 6	124	115	27	1	4	1	82 (71.3)	_ `	–	-	115	27	88 (76.5
H 7	I 7	133	75	3		1		71 (94.7)	36	2	34	111	5	106 (95.5
T	otal	1008	616	90	12	15	4	495 (80.4)	269	25	244	885	115	770 (87.0
I 1	H 1	127	28	3				25 (89.3)	89	13	76	117	16	101 (86.3
I 2	H 2	57	38	3))	1		34 (89.5)	19	3	16	57	6	51 (89.5
I 3	H 3	54	21	0				21 (100)	33	0	33	54	0	54 (100
I 4	H 4	62	39	7				32 (82.1)	16	2	14	55	9	46 (83.6
T	`otal	300	126.	13		1		112 (88.9)	157	18	139	283	31	252 (89.0
I 1	I 1	88	34	21				13 (38.2)	50	22	28	84	43	41 (48.8
I 2	I 2	55	36	17		1		18 (50.0)	18	7	11	54	24	30 (55.6
I 3	I 3	57	21	12				9 (42.9)	30	12	18	51	24	27 (52.9
I 4	I 4	63	17	7				10 (58.8)	38	20	18	55	27	28 (50.9
T	otal	263	108	57		1		50 (46.3)	136	61	75	244	118	126 (51.6

- Normal female (φ). The gonads are ovaries filled with growing auxocytes.
- (2) Hermaphrodite type 1 (\diamondsuit 1), at the beginning of sex-reversal. Multiplication of rete cells is found in the medullary parts of the gonads. In the cortical parts, there are aboundant oogonia and young oocytes.
- (3) Hermaphrodite type 2 (\diamondsuit 2), at the middle stage of sex-reversal. Owing to distinct multiplication of rete cells, the gonads are testicular in structure in

the inner part at least. However, somewhat wide areas of ovarian structure mostly remain in the outer part.

- (4) Hermaphrodite type 3 (\diamondsuit 3), at the last stage of sex-reversal. The gonads are testes as a whole. Nearly all the gonia are surrounded with rete cells and there are no ovarian cavities, although there are small groups of oocytes.
- (5) Normal male (3). The gonads are typical testes. However, some males of this category have a few testis-ova or oocytes in their testes.

a. Juvenile frogs dead or killed within one month after metamorphosis

In the controls, there were 252 females, 1 hermaphrodite of type 3 and 242 males among 495 juveniles obtained from 7 matings in the Hiroshima population, while there were 57 females, 1 hermaphrodite of type 2 and 50 males among 108 juveniles obtained from 4 matings in the Ichinoseki population. On the other hand, in the hybrids between Hiroshima females and Ichinoseki males, there were 90 females, 31 hermaphrodites and 495 males among 616 juveniles obtained from 7 matings. Of these hermaphrodites, 12 were of type 1, 15 of type 2 and 4 of type 3. In the reciprocal hybrids, there were 13 females, 1 hermaphrodite of type 2 and 112 males among 126 juveniles obtained from 4 matings. While the sex ratio of the control frogs was almost 1:1, the overwhelming majority were males in reciprocal hybrids between the two populations and there were comparatively many hermaphrodites in the hybrids between Hiroshima females and Ichinoseki males.

b. Six-month-old frogs

Of the 306 control frogs obtained from 5 matings in the Hiroshima population, 171 were females and 135 were males, while of the 136 control frogs obtained from four matings in the Ichinoseki population, 61 were females and 75 were males. On the other hand, of the 269 hybrids obtained from five matings between Hiroshima females and Ichinoseki males, only 25 were females and 244 were males, while of the 157 hybrids obtained from four matings of the reciprocal combination, only 18 were females and 139 were males.

When the hermaphrodites were counted as males, 47.2% and 51.6% of the control frogs were males in the Hiroshima and Ichinoseki populations, respectively, while 87.0% and 89.0% of the hybrids were males in the crosses between Hiroshima females and Ichinoseki males and the reciprocal ones, respectively.

2. Structure of gonads

- a. Juvenile frogs three months after metamorphosis
- (i) Males The size, shape, color and inner structure of testes were observed in four male frogs belonging to each of four kinds, reciprocal hybrids and Hiroshima and Ichinoseki controls at three months after metamorphosis. The testes of reciprocal hybrids were almost the same in external aspects as those of the controls at this stage. They were oval in shape, whitish, greyish or blackish in color and $1.4 \sim 3.2$ mm in length and $0.7 \sim 2.3$ mm in width (Table 15). The

TABLE 15
Testes of male reciprocal hybrids and the controls 3 months
after metamorphosis

	Individual	Body	Size o	f testes
Kind	no.	length (mm)	Left (mm)	Right (mm)
H1 × H1	1	37.7	2.6 x 1.8	3.1 × 1.8
	2	34.0	2.9 x 1.4	2.8 x 1.8
	3	33.3	1.9 × 1.4	2.1 x 1.2
	4	32.9	1.6 × 0.8	1.4 × 0.7
H1 × I1	1	38.5	3.2 x 2.3	3.2 × 2.1
	2	36.7	2.9 x 2.1	2.9 × 2.3
	3	34.0	2.8 x 1.8	2.8 x 1.9
	4	33.4	2.2 × 1.6	2.0 × 1.8
I1 x H1	1	34.8	2.6 × 1.6	3.1 × 1.6
	2	34.7	2.2 × 1.1	2.4 x 1.0
	3	32.4	1.9 x 1.4	2.0 x 1.3
	4	30.2	1.6 × 1.4	1.7 × 1.3
I1 × I1	1	38.4	3.1 x 2.3	3.1 × 2.1
	2	36.0	2.6 x 1.9	2.5 x 1.9
	3	35.8	2.5 x 1.8	2.6 x 1.7
	4	35.1	2.3 x 1.8	2.6 × 1.8

inner structure of the gonads of these four kinds of juvenile frogs was as follows.

Hiroshima controls. In three of the four males, the seminiferous tubules contained first and second spermatocytes, spermatids and bundles of spermatozoa. Along the inner walls, there were primary and secondary spermatogonia. In the other male, the seminiferous tubules were filled with spermatogonia, but spermatocytes and spermatids were scarce.

Ichinoseki controls. In all the four males, the seminiferous tubules contained primary and secondary spermatogonia, first and second spermatocytes, spermatids and bundles of spermatozoa, as observed in the three males of the Hiroshima population.

Hybrids, Hiroshima $\mathcal{P} \times \text{Ichinoseki} \otimes$. The seminiferous tubules in the four male hybrids were somewhat similar in differentiation to those in the control frogs. There were primary and secondary spermatogonia along the inner walls of the seminiferous tubules. There were also comparatively many first spermatocytes at the metaphase of the first reduction division. In contrast with the control males, normal germ cells such as second spermatocytes, spermatids and spermatozoa were scarce, while a few large abnormal spermatozoa were found in some tubules together with some degenerating germ cells and pycnotic nuclei.

Hybrids, Ichinoseki $\mathcal{P} \times$ Hiroshima \mathcal{P} . The testes of the four male hybrids were different from one another in differentiation of seminiferous tubules. In one male, nearly all the seminiferous tubules were filled with first and second spermatogonia except that there were a few spermatocytes at the prophase of

the first reduction division. In another male, there were a considerably large number of spermatocytes at the prophase of the first reduction division, besides abundant first and second spermatogonia. In still another male, there were some first spermatocytes at the metaphase in many seminiferous tubules. In some seminiferous tubules, there were a few large abnormal spermatozoa and pycnotic nuclei. In the remaining male hybrid, there were many first spermatocytes at the prophase and metaphase and also a small number of second spermatocytes. In some seminiferous tubules, there were a small number of large abnormal spermatozoa and pycnotic nuclei.

(ii) Females The ovaries of juvenile frogs were observed in four females belonging to each of four kinds, reciprocal hybrids and Hiroshima and Ichinoseki controls 3 months after metamorphosis. As shown in Table 16, the size of ovaries was relative to the body length and there seemed to be no significant difference in size of ovaries between the hybrids and the controls. Auxocytes could be observed by the naked eye on the surfaces of these ovaries.

TABLE 16

Ovaries of female reciprocal hybrids and the controls dead or killed within 3 months after metamorphosis

	Individual	Body	Size o	f ovaries
Kind	no.	length (mm)	Left (mm)	Right (mm)
H1 × H1	1	. 33.7	8.8 × 4.1	10.2 × 4.3
	2	33.1	7.6 × 4.2	7.5 x 4.3
	3	32.2	6.6 x 4.3	6.8 × 4.0
	4	29.3	6.6 × 3.0	6.7 × 3.6
H1 × I1	1	33.1	9.2 × 4.8	9.8 × 5.1
	2	32.7	7.3 × 3.6	8.2 × 3.2
	3	30.5	6.8 x 4.1	7.0 × 3.9
	4	25.8	5.7 × 3.8	5.8 × 3.7
I1 × H1	1	32.0	6.3 × 4.1	6.8 × 3.3
	2	24.0	3.7 × 2.4	3.6 x 1.7
	3	23.8	3.2 × 2.2	3.8 × 2.2
I1 × I1	1	36.7	10.1 x 7.1	11.6 × 6.0
	2	33.6	9.4 × 6.3	9.8 × 6.4
	3	30.1	7.2 × 4.0	8.4 × 3.6
	4	28.9	6.8 × 5.2	7.7 × 4.3

b. Mature frogs

(i) Males In the breeding season of 1980, one-year-old males of reciprocal hybrids and the controls attained sexual maturity. After the testes of these males were measured, the left testes were fixed and used for histological observation, while the right testes were used for examining reproductive ability. The testes were classified into the following five types on the basis of abnormality in inner structure according to KAWAMURA and NISHIOKA (1972). The size and type

TABLE 17
Testes of male reciprocal hybrids and the controls at the age of one year

	Individual	Body	Cina of	44	
Kind	no.	length	Size of		Type
		(mm)	Left (mm)	Right (mm)	
H1 × H1	1	43.2	4.7 × 4.2	5.7 × 4.2	1
	2	44.8	4.7 × 4.2	5.0 × 4.2	1
	3	43.2	3.7×3.1	3.8 x 3.1	1
	4	45.8	3.9 x 3.2	4.6 × 3.2	1
	5	43.0	3.8 x 2.8	4.3 x 3.1	1
	6	43.7	4.0 × 3.2	4.2 × 3.3	1
H1 × I1	1	49.2	4.5 × 3.5	4.3 × 3.3	4
	2	46.9	4.1 × 3.2	4.1 × 3.1	4
	3	45.7	3.6 x 3.0	4.7 × 3.0	4
	4	46.2	4.8 x 2.7	5.0 × 2.8	5
	5	49.7	4.0 x 3.0	4.8 × 2.9	4
	6	46.8	5.2 x 3.3	5.6 x 3.8	3
	7	45.1	4.8 × 2.7	5.2 × 2.7	4
	8	43.2	4.0×2.2	3.8 x 2.4	4
	. 9	47.3	3.2 x 2.3	3.4 x 2.8	4
	10	48.1	3.2×2.7	3.8 x 3.3	4
	11	44.0	4.6 x 2.8	4.8 × 3.0	4
	12	44.5	3.9 × 3.0	4.0 × 3.0	3
I1 × H1	1	44.3	4.1 x 3.0	4.0 × 3.0	2
	2	46.8	4.7 × 3.2	4.8 x 3.2	2
	3	46.2	4.6×2.5	4.6 x 2.9	2
	4	41.6	5.2×3.7	5.4 x 3.9	4
	5	43.9	4.7 × 3.5	4.2 × 3.2	2
	6	43.7	5.1 × 4.7	5.7 × 5.0	3
	7	44.8	3.2 x 2.6	3.7 x 2.7	2 2
	8	44.1	3.7×2.4	3.3 x 2.3	2
	9	46.0	4.7×2.8	4.6 × 3.0	3
	10	42.1	4.2×2.6	4.9 × 3.0	4
	11	42.2	3.7×2.3	3.7×2.3	2
	12	40.3	4.0 × 2.2	4.3 × 2.7	3
I1 × I1	1	51.2	6.6 × 4.4	6.4 × 4.4	1
	2	48.0	4.8×4.1	4.7 × 3.8	1
	3	46.2	4.9×3.9	4.8 x 3.9	1
	4	48.6	4.3×3.2	3.8 × 3.2	1
	5	47.0	4.0×3.1	3.5 x 3.0	1
	6	48.8	3.2×2.7	4.2 × 3.0	1

of the testes of each male are shown in Table 17.

Type 1. The testis is quite normal in inner structure. Seminiferous tubules are filled with close bundles of normal spermatozoa. A small number of pycnotic nuclei are found (Fig. 12a).

Type 2. Spermatozoa are far fewer than those of type 1. Each bundle of spermatozoa is small and coarse. Among the bundles, there are considerably numerous abnormal spermatozoa and pycnotic nuclei (Figs. 12b and 13c).

Type 3. Seminiferous tubules are mostly filled with abnormal spermatozoa and pycnotic nuclei. Besides, there are a few small bundles of normal spermatozoa here and there (Fig. 13d).

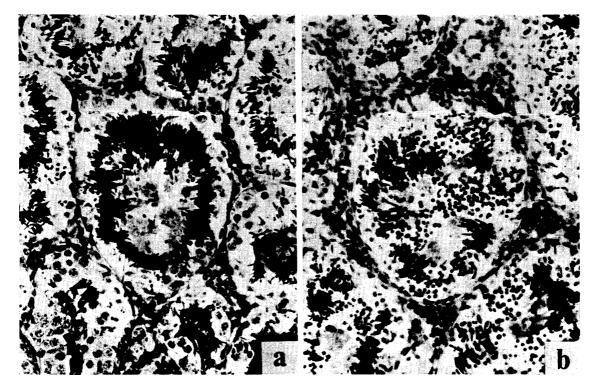


Fig. 12. Cross-sections of seminiferous tubules of the testes of a mature hybrid and the control at the age of one year. $\times 250$

- a. Type 1: Testis of control male No. 5 produced from a mating, Ichinoseki population ♀ × Ichinoseki population ♂
- b. Type 2: Testis of male hybrid No. 2 produced from a mating, Ichinoseki population \times Hiroshima population \otimes

Type 4. Seminiferous tubules are filled with abnormal spermatozoa and pycnotic nuclei. However, there are a few normal spermatozoa distributed sparsely (Fig. 13e).

Type 5. No normal spermatozoa are found in seminiferous tubules, which are filled with numerous abnormal spermatozoa and pycnotic nuclei (Fig. 13f).

Hiroshima controls. Six males were $43.0 \sim 45.8$ mm, 44.0 mm on the average, in body length. Their testes were $3.7 \sim 5.7$ mm, 4.4 mm on the average, in length and $2.8 \sim 4.2$ mm, 3.5 mm on the average, in width. All of them were of type 1 in inner structure; seminiferous tubules were filled with close bundles of normal spermatozoa.

Ichinoseki controls. Six males were $46.2 \sim 51.2$ mm, 48.3 mm on the average, in body length. Their testes were almost same in size as those of the Hiroshima population. They were $3.2 \sim 6.6$ mm, 4.6 mm on the average, in length and $2.7 \sim 4.4$ mm, 3.6 mm on the average, in width. All of them were of type 1 in inner structure. However, there were comparatively numerous pycnotic nuclei in seminiferous tubules of some males.

Hybrids, Hiroshima $9 \times \text{Ichinoseki} = 5$. Twelve males were $43.2 \sim 49.7$ mm, 46.4 mm on the average, in body length. Their testes were $3.2 \sim 5.6$ mm, 4.3 mm on the average, in length and $2.2 \sim 3.8$ mm, 3.0 mm on the average, in width.

26 M. SUMIDA

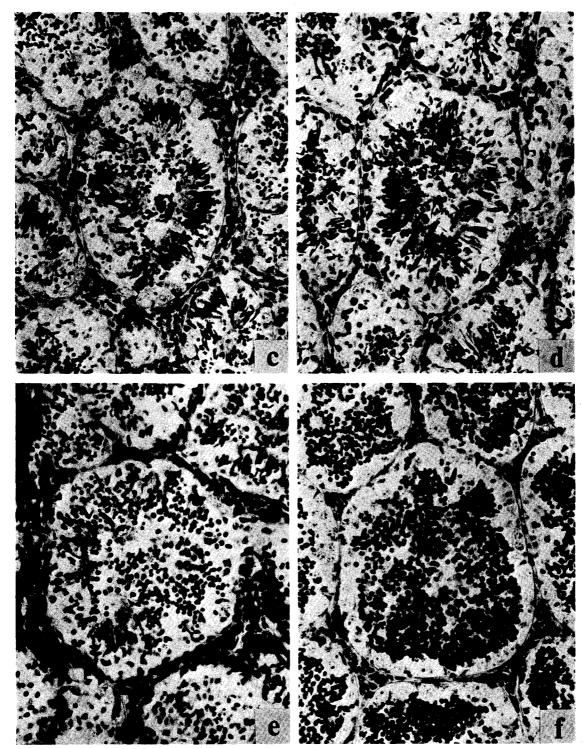


Fig. 13. Cross-sections of seminiferous tubules of the testes of mature hybrids at the age of one year.

- c. Type 2: Testis of male hybrid No. 7 produced from a mating, Ichinoseki population \times Hiroshima population \otimes
- d. Type 3: Testis of male hybrid No. 9 produced from a mating, Ichinoseki population ♀ × Hiroshima population ♂
- e. Type 4: Testis of male hybrid No. 9 produced from a mating, Hiroshima population \times Ichinoseki population \times
- f. Type 5: Testis of male hybrid No. 4 produced from a mating, Hiroshima population $\circ \times$ Ichinoseki population \circ

Their testes were considerably abnormal in inner structure; seminiferous tubules were filled with remarkably numerous pycnotic nuclei. Of the twelve males, two were of type 3, nine of type 4 and the remainder was of type 5 in inner structure of the testis.

Hybrids, Ichinoseki \times Hiroshima \otimes . Twelve males were $40.3 \sim 46.8$ mm, 43.8 mm on the average, in body length. Their testes were almost the same in size as those of the reciprocal hybrids, that is, $3.2 \sim 5.7$ mm, 4.4 mm on the average, in length and $2.2 \sim 5.0$ mm, 3.0 mm on the average, in width. They were not so abnormal in inner structure as those of the reciprocal hybrids. Of the twelve males, seven were of type 2, three of type 3 and remaining two of type 4 in inner structure of the testis.

(ii) Females By pituitary injection, all mature females of reciprocal hybrids and the controls could spawn. The number and size of eggs are shown in Table 18.

TABLE 18
Eggs of female reciprocal hybrids and the controls
at the age of one year

Kind	Individual no.	Body length (mm)	No. of eggs	Mean diameter of 20 eggs (mm)
H1 × H1	1	53.4	971	1.73 ± 0.01
	2	45.2	646	1.80 ± 0.01
	3	41.8	659	1.75 ± 0.01
H1 × I1	1	48.5	968	1.77 ± 0.01
	2	50.5	804	1.93 ± 0.02
	3	48.2	600	1.79 ± 0.02
	4	42.2	604	1.67 ± 0.01
I1 × H1	1	45.8	869	1.85 ± 0.01
	2	43.4	742	1.88 ± 0.02
	3	49.0	1202	1.85 ± 0.01
	4	40.0	609	1.78 ± 0.02
	5	49.4	827	1.83 ± 0.01
	6	52.3	842	1.88 ± 0.02
I1 × I1	1	53.2	971	1.85 ± 0.02
	2	50.7	1063	1.70 ± 0.02

Hiroshima controls. Three females were $41.8 \sim 53.4$ mm, 46.8 mm on the average, in body length. After pituitary injection, all these three females discharged $646 \sim 971$ eggs, 758.7 eggs on the average, which were $1.73 \pm 0.01 \sim 1.80 + 0.01$ mm in diameter.

Ichinoseki controls. Two females were 50.7 mm and 53.2 mm, 52.0 mm on the average, in body length. These two females discharged 971 and 1063 eggs, 1017 eggs on the average, which were 1.70 ± 0.02 , 1.85 ± 0.02 mm in diameter, respectively.

Hybrids, Hiroshima♀×Ichinoseki♂. Four females were 42.2~50.5 mm,

28 M. SUMIDA

47.4 mm on the average, in body length. After pituitary injection, all of them discharged $600 \sim 968$ eggs, 744 eggs on the average, which were $1.67 \pm 0.01 \sim 1.93 \pm 0.02$ mm in diameter.

Hybrids, Ichinoseki $9 \times$ Hiroshima 6. Six females were $40.0 \sim 52.3$ mm, 46.7 mm on the average, in body length. After pituitary injection, all of them discharged $609 \sim 1202$ eggs, 848.5 eggs on the average, which were $1.78 \pm 0.02 \sim 1.88 \pm 0.02$ mm in diameter.

VII. Reproductive capacity

1. Male hybrids and the controls

Males of reciprocal hybrids and the controls obtained in 1979 (Table 17) were mated with field-caught females of the Hiroshima population (Table 19) in the breeding season of 1980. The results are presented in Table 20 and shown in Fig. 14. It was evident that male hybrids were almost sterile or remarkably inferior to the controls in reproductive capacity.

TABLE 19
Eggs of twelve field-caught females of the Hiroshima population used for backcross experiments in 1980

Kind	Individual no.	Body length (mm)	No. of eggs	Mean diameter of 20 eggs (mm)
Hiroshima	1	60.6	1309	2.07 ± 0.02
population	2	55.7	1471	1.78 ± 0.02
	3	51.4	748	2.09 ± 0.02
	4	49.5	973	1.67 ± 0.01
	5	52.0	1013	1.77 ± 0.01
	6	48.8	838	1.72 ± 0.02
	7	54.8	1213	1.66 ± 0.01
	8	50.6	869	1.64 ± 0.01
	9	47.7	626	1.74 ± 0.02
	10	46.0	867	1.63 ± 0.01
	11	45.8	593	1.80 ± 0.01
	12	46.8	759	1.64 ± 0.01

a. Controls

By the artificial insemination method, six males of the Hiroshima population and six males of the Ichinoseki population which were produced from control matings in 1979 were mated with six females of the Hiroshima population collected in the field.

The state of the s

In six matings (Nos. $1 \sim 6$) using the six control males of the Hiroshima population, $83.3 \sim 95.6\%$, 87.6% on the average, of the respective total number of eggs cleaved normally (Table 20; Fig. 14a). Most of the normally cleaved eggs

developed normally, and $81.0 \sim 93.3\%$, 86.5% on the average, hatched normally and became normally feeding tadpoles. Thereafter, all the tadpoles from two matings (Nos. 2 and 3) were preserved. In the other matings, $80.5 \sim 88.9\%$, 84.9% on the average, metamorphosed normally.

In six matings (Nos. $1 \sim 6$), using six males of the Ichinoseki population, $81.6 \sim 95.7\%$, 89.4% on the average, of the respective total number of eggs cleaved normally (Table 20; Fig. 14b). While only a few of the normally cleaved eggs died of various abnormalities, $76.3 \sim 93.6\%$, 86.6% on the average, hatched normally and $76.3 \sim 91.5\%$, 85.4% on the average, became normally feeding tadpoles. Thereafter, all the tadpoles from two matings (Nos. 2 and 3) were preserved. In the other matings, $81.5 \sim 89.4\%$, 85.3% on the average, metamorphosed normally.

TABLE 20
Developmental capacity of the backcrosses of male reciprocal hybrids between the Hiroshima and Ichinoseki populations

Par	ents	No. of eggs	No. of normally cleaved eggs	No. of normal tail-bud embryos	No.of normally hatched tadpoles	No. of normally feeding tadpoles	No. of meta- morphosed
Female	Male	cates	Cicaved eggs	tan-oud emoryos	natched tadpoles	recunig taupoies	frogs
H 1	НІ 1	380	0(0)	0	0	O	0
H 2	HI 2	498	0(0)	0	0	0	0
H 3	HI 3	213	0(0)	0	0	0	0
H 4	HI 4	380	0(0)	0	0	0	0
H 5	HI 5	328	0(0)	0	0	0	0
	НІ 6	253	2 (0.8)	2 (0.8)	2(0.8)	2 (0.8)	2 (0.8)
H 7	НІ 7	243	2 (0.8)	2 (0.8)	2 (0.8)	2 (0.8)	2 (0.8)
H 8	HI 8	185	0(0)	0	0	0	0
Н 9	НІ 9	115	1 (0.9)	1 (0.9)	1 (0.9)	1 (0.9)	1 (0.9)
H 10	НІ 10	174	0(0)	0	0	0	0
H 11	HI 11	110	0(0)	0	0	0	0
H 12	HI 12	131	1 (0.8)	1 (0.8)	1 (0.8)	1 (0.8)	1 (0.8)
Н 1	IH 1	524	230 (43.9)	218 (41.6)	214 (40.8)	214 (40.8)	_
H 2	IH 2	520	182 (35.0)	172 (33.1)	170 (32.7)	165 (31.7)	_
Н 3	IH 3	269	178 (66.2)	173 (64.3)	170 (63.2)	170 (63.2)	157 (58.4)
H 4	IH 4	264	0(0)	0	0	0	0
H 5	IH 5	240	60 (25.0)	60 (25.0)	60 (25.0)	60 (25.0)	56 (23.3)
Н 6	IH 6	220	21 (9.5)	19 (8.6)	18 (8.2)	18 (8.2)	16 (7.3)
H 7	IH 7	198	53 (26.8)	53 (26.8)	53 (26.8)	52 (26.3)	46 (23.2)
H 8	IH 8	191	2 (1.0)	2 (1.0)	2 (1.0)	2 (1.0)	_
H 9	IH 9	136	7 (5.1)	7 (5.1)	7 (5.1)	7 (5.1)	_
H 10	IH 10	161	3 (1.9)	3 (1.9)	3 (1.9)	3 (1.9)	3 (1.9)
H 11	IH 11	112	45 (40.2)	44 (39.3)	44 (39.3)	44 (39.3)	40 (35.7)
H 12	IH 12	152	12 (7.9)	12 (7.9)	12 (7.9)	12 (7.9)	11 (7.2)
H1~6	H*	207	190 (91.8)	190 (91.8)	190 (91.8)	189 (91.3)	_
Н 7	H 1	57	50 (87.7)	50 (87.7)	50 (87.7)	50 (87.7)	48 (84.2)
H 8	H 2	42	35 (83.3)	35 (83.3)	34 (81.0)	34 (81.0)	-
H 9	H 3	54	45 (83.3)	45 (83.3)	45 (83.3)	45 (83.3)	-
H 10	H 4	41	35 (85.4)	35 (85.4)	35 (85.4)	35 (85.4)	33 (80.5)
H 11	H 5	50	45 (90.0)	44 (88.0)	44 (88.0)	44 (88.0)	43 (86.0)
H 12	Н 6	45	43 (95.6)	43 (95.6)	42 (93.3)	42 (93.3)	40 (88.9)
н 7	I 1	54	48 (88.9)	47 (87.0)	47 (87.0)	46 (85.2)	44 (81.5)
Н 8	I 2	79	65 (82.3)	64 (81.0)	63 (79.7)	63 (79.7)	_
Н 9	I 3	76	62 (81.6)	60 (78.9)	58 (76.3)	58 (76.3)	_
H 10	I 4	62	59 (95.2)	57 (91.9)	57 (91.9)	55 (88.7)	52 (83.9)
H 11	I 5	47	45 (95.7)	44 (93.6)	44 (93.6)	43 (91.5)	42 (89.4)
H 12	I 6	66	61 (92.4)	60 (90.9)	60 (90.9)	60 (90.9)	57 (86.4)

H*- Field-caught male of Hiroshima population

b. Reciprocal hybrids

Twelve mature males of reciprocal hybrids produced from crossing experiments in 1979 were backcrossed with twelve females of the Hiroshima population collected in the field.

1

Hybrids, Ichinoseki \circlearrowleft No. $1 \times$ Hiroshima \circlearrowleft No. 1. In only one (No. 4) of twelve matings (Nos. $1 \sim 12$) using twelve male hybrids, no eggs cleaved normally, while only three (1.1%) eggs cleaved abnormally. In the other eleven matings, $1.0 \sim 66.2\%$, 23.9% on the average, of the respective total number of eggs cleaved

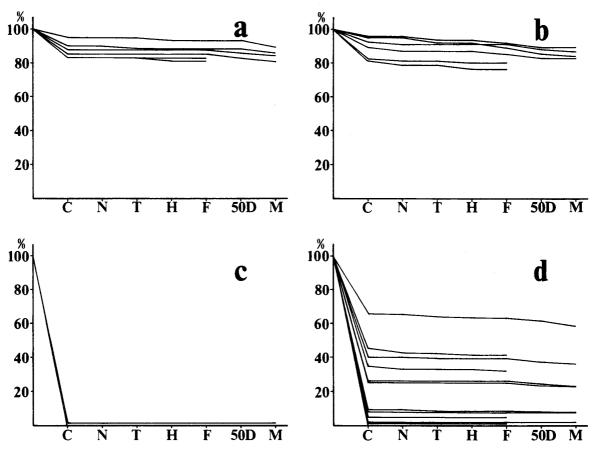


Fig. 14. Survival curves of the backcrosses produced from male reciprocal hybrids between the Hiroshima and Ichinoseki populations and the controls.

- a. $H \circ \times (H \circ \times H \circ) \circ$, Nos. $1 \sim 6$
- b. H♀×(I♀× I♂)♂, Nos. 1~6
- c. $H \circ \times (H \circ \times I \circ) \circ$, Nos. $1 \sim 12$
- d. $H \circ \times (I \circ \times H \circ) \circ$, Nos. $1 \sim 12$

normally. Almost all of the normally cleaved eggs developed normally and became normally feeding tadpoles. While the tadpoles from matings Nos. 1, 2, 8 and 9 were preserved, those from the other seven matings were continuously reared. In these matings, 1.9~58.4%, 22.4% on the average, metamorphosed normally (Table 20; Fig. 14d).

2. Female hybrids and the controls

Females of reciprocal hybrids and the controls obtained in 1979 (Table 18) were mated with males of the Hiroshima population collected in the field and the Ichinoseki population produced in the laboratory (Table 21) by artificial insemination in the breeding season of 1980. The results are presented in Table 22 and shown in Fig. 15. It was evident that the female hybrids were essentially fertile, though some females were slightly inferior to the controls in reproductive capacity.

TABLE 21

Testes of six field-caught males of the Hiroshima population and five one-year-old males of the Ichinoseki population

Kind	Individual	Body	Size of testes					
	no.	length (mm)	Left (mm)	Right (mm)				
Hiroshima	1	50.7	4.1 × 2.9	4.6 × 2.8				
population	2	49.2	3.7 × 2.4	3.4 x 2.5				
	3	51.3	4.0 × 2.4	4.3 × 2.5				
	4	48.7	3.3 x 2.5	3.2×2.2				
	5	44.0	3.4 × 2.2	3.2 × 2.0				
	6	43.3	3.7 x 2.3	4.2 × 2.3				
Ichinoseki	1	53.0	3.8 × 3.2	3.8 × 3.2				
population	2	45.0	3.7×2.1	3.8 × 2.2				
	3	46.7	3.9 x 3.1	4.3 × 3.2				
	4	48.2	4.5 × 3.2	3.7×3.0				
_	5	51.5	4.2 × 3.4	4.2 × 3.2				

a. Controls

Eggs of three females of the Hiroshima population which were produced from control matings in 1979 were inseminated with sperm of three males of the Hiroshima or Ichinoseki population. In three matings (Nos. $1 \sim 3$) with the Hiroshima males, $82.4 \sim 91.9\%$, 86.1% on the average, cleaved normally (Table 22; Fig. 15a). While some of the normally cleaved eggs became abnormal at various embryonic stages, $57.1 \sim 74.3\%$, 66.0% on the average, became normally feeding tadpoles. After some tadpoles died of underdevelopment, $54.6 \sim 69.3\%$, 62.6% on the average, metamorphosed normally. In three matings (Nos. $1 \sim 3$) with the Ichinoseki males, $78.9 \sim 88.2\%$, 84.8% on the average, cleaved normally. While some of the normally cleaved eggs died of various abnormalities at the embryonic stage, $51.2 \sim 70.7\%$, 61.4% on the average, grew into normally feeding

TABLE 22

Developmental capacity of the backcrosses of female reciprocal hybrids between the Hiroshima and Ichinoseki populations

	and reministent populations												
Pa Female	rents Male	No. of eggs	No. of normally cleaved eggs	No. of normal tail-bud embryos	No. of normally hatched tadpoles	No. of normally feeding tadpoles	No. of meta- morphosed frogs						
remaie	Male						110gs						
H 1	н 1	459	422 (91.9)	370 (80.6)	359 (78.2)	341 (74.3)	318 (69.3)						
H 2	H 2	320	269 (84.1)	226 (70.6)	218 (68.1)	213 (66.6)	204 (63.8)						
H 3	H 3	324	267 (82.4)	198 (61.1)	193 (59.6)	185 (57.1)	177 (54.6)						
H 1	I 1	482	425 (88.2)	364 (75.5)	356 (73.9)	341 (70.7)	320 (66.4)						
H 2	I 2	242	191 (78.9)	157 (64.9)	153 (63.2)	151 (62.4)	132 (54.5)						
Н 3	I 3	283	247 (87.3)	165 (58.3)	151 (53.4)	145 (51.2)	138 (48.8)						
I 1	H 1	311	235 (75.6)	176 (56.6)	141 (45.3)	119 (38.3)	104 (33.4)						
I 2	H 2	287	185 (64.5)	152 (53.0)	134 (46.7)	131 (45.6)	115 (40.1)						
I 1	I 1	459	379 (82.6)	264 (57.5)	222 (48.4)	206 (44.9)	160 (34.9)						
I 2	I 2	344	237 (68.9)	193 (56.1)	172 (50.0)	154 (44.8)	149 (43.3)						
HI 1	H 1	387	323 (83.5)	258 (66.7)	248 (64.1)	230 (59.4)	159 (41.1)						
HI 2	H 2	347	35 (10.1)	22 (6.3)	20 (5.8)	19 (5.5)	_						
HI 3	H 3	239	191 (79.9)	173 (72.4)	160 (66.9)	153 (64.0)	140 (58.6)						
HI 4	H 4	295	263 (89.2)	211 (71.5)	208 (70.5)	203 (68.8)	183 (62.0)						
HI 1	I 1	481	401 (83.4)	307 (63.8)	297 (61.7)	277 (57.6)	255 (53.0)						
HI 2	I 2	392	74 (18.9)	46 (11.7)	45 (11.5)	41 (10.5)	_						
HI 3	I 3	312	284 (91.0)	249 (79.8)	240 (76.9)	228 (73.1)	201 (64.4)						
HI 4	I 4	309	267 (86.4)	228 (73.8)	222 (71.5)	214 (69.3)	198 (64.1)						
TH 1	H 1	375	326 (86.9)	231 (61.6)	200 (53.3)	165 (44.0)	143 (38.1)						
IH 2	H 2	312	249 (79.8)	160 (51.3)	111 (35.6)	86 (27.6)	-						
IH 3	H 3	477	406 (85.1)	324 (67.9)	261 (54.7)	176 (36.9)	102 (21.4)						
IH 4	H 4	320	264 (82.6)	183 (57.2)	82 (25.6)	54 (16.9)	(18)						
IH 5	H 5	343	255 (74.3)	103 (30.0)	83 (24.2)	73 (21.3)	-						
IH 6	Н 6	480	410 (85.4)	334 (69.6)	287 (59.8)	248 (51.7)	180 (37.5)						
IH 1	I 1	354	294 (83.1)	190 (53.7)	169 (47.7)	153 (43.2)	141 (39.8)						
IH 2	I 2	350	289 (82.6)	182 (52.0)	131 (37.4)	100 (28.6)	_						
IH 3	I 3	500	445 (89.0)	372 (74.4)	324 (64.8)	265 (53.0)	220 (44.0)						
IH 4	I 4	329	282 (85.7)	201 (61.1)	87 (26.4)	47 (14.3)	(16)						
IH 5	I 5	284	150 (52.8)	65 (22.9)	55 (19.4)	48 (16.9)	_						
IH 6	I 5	222	170 (76.6)	141 (63.5)	130 (58.6)	103 (46.4)	98 (44.1)						

tadpoles. After some tadpoles died of underdevelopment or edema, $48.8 \sim 66.4\%$, 56.6% on the average, metamorphosed normally (Table 22; Fig. 15a).

On the other hand, two females of the Ichinoseki population which were produced from control matings in 1979 were mated with two males of the Hiroshima or Ichinoseki population. In two matings (Nos. 1 and 2) with the Hiroshima males, 64.5% and 75.6% of the respective total number of eggs cleaved normally. While many of the normally cleaved eggs became abnormal at the embryonic stage, 38.3% and 45.6% became normally feeding tadpoles and eventually 33.4% and 40.1% metamorphosed normally (Table 22; Fig. 15b). In two matings (Nos. 1 and 2) with the Ichinoseki males, 68.9% and 82.6% cleaved normally. While some of the normally cleaved eggs died of various abnormalities at the embryonic stage, 44.8% and 44.9% became normally feeding tadpoles. After some tadpoles died of underdevelopment, 34.9% and 43.3% metamorphosed normally (Table 22; Fig. 15b).

b. Reciprocal hybrids

Hybrids, Hiroshima♀No. 1×Ichinoseki♦No. 1. Eggs of four female hybrids

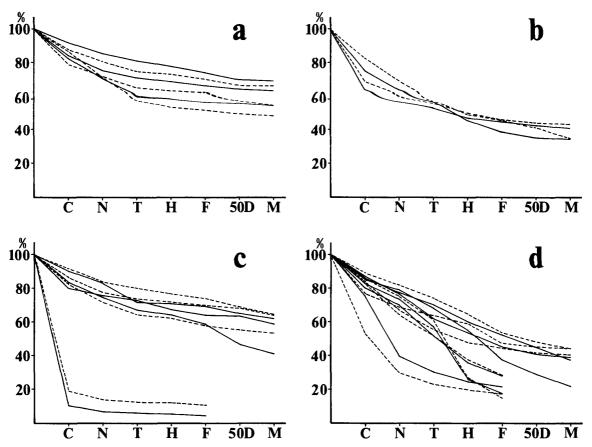


Fig. 15. Survival curves of the backcrosses produced from female reciprocal hybrids between the Hiroshima and Ichinoseki populations and the controls.

- a. $(H \circ \times H \circ) \circ \times H \circ (\text{solid line})$ or $I \circ (\text{dotted line})$, Nos. $1 \sim 3$
- b. $(I \circ \times I \circ) \circ \times H \circ (\text{solid line}) \text{ or } I \circ (\text{dotted line}), \text{ Nos. 1, } 2$
- c. $(H ? \times I ?) ? \times H ? (solid line)$ or I ? (dotted line), Nos. $1 \sim 4$
- d. $(I \circ \times H \circ) \circ \times H \circ (solid line)$ or $I \circ (dotted line)$, Nos. $1 \sim 6$

produced from crossing experiments in 1979 were inseminated with sperm of four males of the Hiroshima or Ichinoseki population. In one (No. 2) of four matings (Nos. $1 \sim 4$) backcrossed with the Hiroshima males, 10.1% of the total eggs cleaved normally, while $79.9 \sim 89.2\%$, 84.4% on the average, in the other three matings did so (Table 22; Fig. 15c). While a small number of normally cleaved eggs died of various abnormalities at the embryonic stage, 5.5% in mating No. 2, and $59.4 \sim 68.8\%$, 63.6% on the average, in matings Nos. 1, 3 and 4 grew into normally feeding tadpoles. Thereafter, all the tadpoles from mating No. 2 were preserved. While some tadpoles died of underdevelopment in the other matings, $41.1 \sim 62.0\%$, 52.3% on the average, metamorphosed normally.

In one (No. 2) of four matings (Nos. $1 \sim 4$) with Ichinoseki males, 18.9% of the total number of eggs cleaved normally, while $83.4 \sim 91.0\%$, 86.4% on the average, did so in the other three matings (Table 22; Fig. 15c). After some of the normally cleaved eggs died of various abnormalities at the embryonic stage, 10.5% in mating No. 2 and $57.6 \sim 73.1\%$, 65.2% on the average, in the other three matings became normally feeding tadpoles. All the tadpoles of mating

No. 2 were preserved. In the other three matings, $53.0 \sim 64.4\%$, 59.3% on the average, completed metamorphosis.

į

1

1

中 と ()

The same of the sa

Hybrids, Ichinoseki♀No. 1×Hiroshima♦No. 1. Six female hybrids produced from crossing experiments in 1979 (Table 18) were mated with six males of the Hiroshima or Ichinoseki population. In six matings (Nos. 1~6) with six Hiroshima males, 74.3~86.9%, 82.4% on the average, cleaved normally (Table 22; Fig. 15d). While many of the normally cleaved eggs died of various abnormalities at the embryonic stage, $16.9 \sim 51.7\%$, 33.1% on the average, grew into normally feeding tadpoles. A part of tadpoles in matings Nos. 2, 4 and 5 was used to examine the chromosomes in the tail-tips after colchicine treatment. In the other matings, some tadpoles died of underdevelopment and 21.4~38.1%, 32.3% on the average, completed metamorphosis. In six matings (Nos. 1~6) with five males of the Ichinoseki population, $52.8 \sim 89.0\%$, 78.3%on the average, cleaved normally (Table 22; Fig. 15d). While many of the normally cleaved eggs died of various abnormalities at the embryonic stage, 14.3~ 53.0%, 33.7% on the average, became normally feeding tadpoles. A part of tadpoles of matings Nos. 2, 4 and 5 were used to examine the chromosomes in the tail-tips after colchicine treatment. In the other three matings (Nos. 1, 3 and 6), some of the tadpoles died of underdevelopment or edema, while 39.8~ 44.1%, 42.6% on the average, metamorphosed normally.

VIII. Chromosome aberrations in backcrosses of reciprocal hybrids

Chromosomes were observed by the squash method in the tail-tips of normally shaped tadpoles, $20 \sim 60$ days old, which had been produced from backcrossing of reciprocal hybrids. The results are presented in Tables 23 and 24 and shown in Figs. 16 and 17.

1. Backcrosses of male hybrids and the controls

a. Controls

Seventy tadpoles produced from four matings using four control males of the Hiroshima population and 65 tadpoles from four matings using four control males of the Ichinoseki population were examined. All of them were normal diploids (Table 23).

b. Backcrosses

Six tadpoles produced from four matings using four male hybrids, Hiroshima $\mathcal{P} \times \text{Ichinoseki} \mathcal{F}$, were all normal diploids. Of 252 tadpoles produced from nine matings using nine male hybrids, Ichinoseki $\mathcal{P} \times \text{Hiroshima} \mathcal{F}$, 251 were diploids, while the remaining one was a triploid (Table 23).

2. Backcrosses of female hybrids and the controls

a. Controls

Of 179 tadpoles produced from six matings using three control females of

the Hiroshima population, 175 were diploids and four were triploids. All 153 tadpoles produced from four matings using two control females of the Ichinoseki population were diploids (Table 24).

b. Backcrosses

In six matings using three female hybrids (Nos. 1, 3 and 4), Hiroshima \times Ichinoseki \times , 177 of 180 tadpoles were diploids and the other three were triploids (Table 24). All the tadpoles produced from the other mating were preserved without observing the chromosomes.

In six matings using three females (Nos. 1, 3 and 6) of the reciprocal hybrids, Ichinoseki $\mathcal{P} \times \text{Hiroshima} \otimes$, 179 of 180 tadpoles were diploids and the remaining one was a triploid. In the other six matings, the chromosomes of some tadpoles were observed by the squash method after colchicine pretreatment. It was found that 41 tadpoles produced from four matings were all normal diploids, while in the other two matings, 26 of 50 tadpoles were normal diploids and the other 24 were all hyperdiploids. Of the latter, 12 had an additional chromosome, ten had two additional chromosomes and the remaining two had

TABLE 23
Chromosome analysis of backcrosses of male reciprocal hybrids between the Hiroshima and Ichinoseki populations and the controls

Pare	nts	No. of	No. o	f tadpoles		
Female	Male	analyzed tadpoles	Diploid (2n=26)	Triploid (3n=39)		
H 7	H 1	20	20	_		
H 10	H 4	15	15			
H 11	H 5	20	20	_		
H 12	Н 6	15	15	<u></u>		
H 7	I 1	23	23			
H 10	I 4	12	12	_		
H 11	I 5	20	20	_		
H 12	I 6	10	10	_		
Н 6	HI 6	2	2	_		
H 7	HI 7	2	2	_		
Н 9	HI 9	1	1			
H 12	HI 12	1	1			
H 1	IH 1	70	69	1		
H 2	IH 2	30	30	_		
H 3	IH 3	30	30	_		
H 5	IH 5	30	30	_		
Н 6	IH 6	18	18			
H 7	IH 7	30	30	_		
H 10	IH 10	3	3			
H 11	IH 11	30	30	_		
H 12	IH 12	12	12			

three additional chromosomes (Table 24). The karyotypes of each of these hyperdiploids were analyzed on $2 \sim 9$ metaphase plates. Some tadpoles having 2n+1 chromosomes contained chromosome No. 5 or chromosome No. 7 in addition. In tadpoles having 2n+2 chromosomes, the additional two chromosomes were Nos. 1 and 12, Nos. 6 and 8 (Fig. 16) or Nos. 7 and 10. The two tadpoles having 2n+3 chromosomes contained three chromosomes, Nos. 6, 11 and 12 or Nos. 6, 8 and 9, in addition (Fig. 17).

TABLE 24
Chromosome analysis of backcrosses of female reciprocal hybrids between the Hiroshima and Ichinoseki populations and the controls

Parents		No. of	No. of tadpoles Normal Hyperdiploid Normal								
		analyzed	Normal	Н	Normal						
Female	Male	tadpoles	diploid (2n=26)	2n=27	2n=28	2n=29	triploid (3n=39)				
H 1	H 1	29	26	_	_	_	3				
H 2	H 2	30	29	_		-	1				
H 3	H 3	30	30	-	-						
H 1	I 1	30	30	_		-					
H 2	I 2	30	30	-	_	_	-				
Н 3	I 3	30	30	_	_	_	_				
I 1	H 1	41	41	_	_	_	_				
I 2	H 2	26	26	_	_	_	_				
I 1	I 1	57	57	-	_		_				
I 2	I 2	29	29								
HI 1	H 1	30	28	_	_	_	2				
HI 2	H 2	_									
HI 3	H 3	30	30		-	_	_				
HI 4	H 4	30	29	_	-	-	1				
HI 1	I 1	30	30	_	-	-	_				
HI 2	I 2	_									
HI 3	I 3	30	30	_	<u> </u>	_	_				
HI 4	I 4	30	30				-				
IH 1	H 1	30	30	_	_		_				
IH 2	H 2	12	12	_	_	-	_				
IH 3	Н3	30	30		_	_	_				
IH 4	H 4	21	9	3	7	2	_				
IH 5	H 5	9	9	_	-	_	_				
IH 6	Н 6	30	30	–	_	-	_				
IH 1	I 1	30	29	-	-	-	1				
IH 2	I 2	11	11	-	-	-	_				
IH 3	I 3	30	30	-	-	-	-				
IH 4	I 4	29	17	9	3	_	_				
IH 5	I 5	9	9	-	-	_	_				
IH 6	I 5	30	30	_	_						

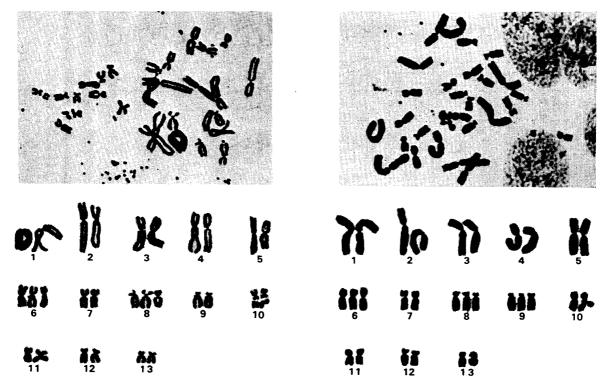


Fig. 16. Chromosome aberration (2n=28) in a normally shaped tadpole produced from a mating, $(I \circ \times H \circ) \circ No. 4 \times I \circ No. 4$.

Fig. 17. Chromosome aberration (2n=29) in a normally shaped tadpole produced from a mating, $(I \Leftrightarrow X \Leftrightarrow 1 \Leftrightarrow No. 4 \times M \Leftrightarrow No. 4$.

IX. Sex ratio in backcrosses of reciprocal hybrids

The sex of the offspring of male and female hybrids and the controls was examined in juveniles within one month after metamorphosis and in 6-month-old frogs. The results are presented in Tables 25 and 26.

1. Backcrosses of male hybrids and the controls

The sex ratio in the backcrosses produced from matings between field-caught females of the Hiroshima population and males of reciprocal hybrids and in the controls is presented in Table 25.

- a. Juveniles within one month after metamorphosis
- (i) Controls Of 160 juveniles produced from four matings between the field-caught females and control males of the Hiroshima population, 84 were females and 76 were males, while there were 27 females, 3 hermaphrodites and 160 males among 190 juveniles produced from four matings between the same female parents and control males of the Ichinoseki population (Table 25). Of these three hermaphrodites, one was of type 1 and the other two were of type 2 in inner structure of the gonads.
- (ii) Backcrosses Of four juveniles produced from two male hybrids, Hiroshima $9 \times \text{Ichinoseki} \$, two were females and two were males (Table 25). Of

TABLE 25
Sex of the backcrosses of male reciprocal hybrids between the Hiroshima and
Ichinoseki populations

Parents No. of metamor-				frogs de nth afte					Sex of 6-month-old frogs			Sex of all frogs examined		
Female	Male	phosed frogs	No. of frogs	?	1	1 2 3		Ĉ (%)	No. of frogs	Ŷ	\$	Total	<u></u>	ੈ (%)
н 7	H 1	48	48	26				22 (45.8)	_	_	_	48	26	22 (45.8)
H 10	H 4	33	31	17	İ			14 (45.2)		_	-	31	17	14 (45.2)
H 11	H 5	43	42	22				20 (47.6)	_	_	l –	42	22	20 (47.6)
H 12	H 6	40	39	19				20 (51.3)		_		39	19	20 (51.3)
T	otal	164	160	84				76 (47.5)	-	_	-	160	84	76 (47.5)
H 7	I 1	44	44	9				35 (79.5)	_		_	44	9	35 (79.5)
H 10	I 4	52	52	5	1			46 (88.5)	_		_	52	5	47 (90.4)
H 11	I 5	42	42	10		1		31 (73.8)	_	_	i	42	10	32 (76.2)
H 12	I 6	57	52	3		1		48 (92.3)	_	-	_	52	3	49 (94.2)
T	otal	195	190	27	1	2		160 (84.2)	-	_	_	190	27	163 (85.8)
H 6	HI 6	2	2	1				1 (50.0)		_		2	1	1 (50.0)
H 7	HI 7	2	2	1]		1 (50.0)	_	_	_	2	1	1 (50.0)
H 9	HI 9	1	-	_	i			`	1	0	1	1	0	1 (100)
H 12	HI 12	1	-	-				_	1	0	1	1	0	1 (100)
T	otal	6	4	2				2 (50.0)	2	0	2	. 6	2	4 (66.7)
H 3	IH 3	157	88	38				50 (56.8)	49	22	27	137	60	77 (56.2)
H 5	IH 5	56	56	14				42 (75.0)			_	56	14	42 (75.0)
H 6	IH 6	16	5	3				2 (40.0)	11	1	10	16	4	12 (75.0)
H 7	IH 7	46	14	7	1		1	6 (42.9)	23	9	14	37	16	21 (56.8)
H 10	IH10	3	3	2				1 (33.3)	_			3	2	1 (33.3)
H 11	IH11	40	34	18	1			16 (47.1)	-	_	_	34	18	16 (47.1)
H 12	IH12	11	6	2				4 (66.6)	4	1	3	10	3	7 (70.0)
T	otal	329	206	84			1	121 (58.7)	87	33	54	293	117	176 (60.1)

\$, Hermaphrodites

206 juveniles produced from seven male hybrids, Ichinoseki $9 \times \text{Hiroshima}$ 84 were females, one was a hermaphrodite of type 3 and 121 were males.

b. Six-month-old frogs

Two frogs produced from two matings (Nos. 9 and 12) using male hybrids, Hiroshima $9 \times \text{Ichinoseki} \Leftrightarrow \text{were males}$. Of 87 frogs produced from four matings (Nos. 3, 6, 7 and 12) using male hybrids, Ichinoseki $9 \times \text{Hiroshima} \Leftrightarrow$, 33 were females and 54 were males (Table 25).

When the hermaphrodites were counted as males, 47.5% and 85.8% of the respective total number of frogs were males in the offspring produced from field-caught females of the Hiroshima population by mating with Hiroshima and Ichinoseki males, respectively, while 66.7% and 60.1% were males in the backcrosses of male hybrids, Hiroshima $\mathcal{P} \times \text{Ichinoseki} \otimes$, and those of the reciprocal crosses, mated with Hiroshima females, respectively. In the backcrosses, the males seemed to be higher in percentage than those of controls but not so large in percentage as those of reciprocal hybrids (Tables 14 and 25).

2. Backcrosses of female hybrids and the controls

The sex ratio in the backcrosses produced from females of reciprocal hybrids and males of the Hiroshima and Ichinoseki populations is presented in Table 26.

TABLE 26
Sex of the backcrosses of female reciprocal hybrids between the Hiroshima and Ichinoseki populations

	Sex of frogs dead or killed within Sex of 6-month-old a succession of the sex of 6-month-old and succession of															
Parent	S	No. of metamor-	one mo								ogs	n-01a	Sex of all frogs examined			
Female	Male	phosed	No. of	2			.		\$ (%)	No. of	4	\$	Total	9	\$ (%)	
		frogs	frogs	N	U	1	2	3	0 (/-)	frogs	ı			T	0 (///	
Н 1	H 1	318	176	93					83 (47.2)	-	_	-	176	93	83 (47.2)	
H 2	H 2	204	198	99					99 (50.0)	-	-	-	198	99	99 (55.0)	
Н 3	Н 3	177	162	81			ĺ		81 (50.0)	-	_	-	162	83	79 (48.8)	
To	otal	699	536	273					263 (49.1)	_	-	-	536	275	261 (48.7)	
H 1	I 1	320	164	35		6	2		121 (73.8)	-	_	-	164	35	129 (78.7)	
H 2	I 2	132	131	9		1	4		117 (89.3)	-	_	_	131	9	122 (93.1)	
H 3	13	138	119	16			1		102 (85.7)	-	_	- 1	119	16	103 (86.6)	
T	otal	590	414	60		7	7		340 (82.1)		_	_	414	60	354 (85.5)	
I 1	H 1	104	36	0					36 (100)	56	1	55	92	1	91 (98.9)	
I 2	H 2	115	53	8		1	3	1	40 (75.5)	62	12	50	115	20	95 (82.6)	
T	otal	219	89	8		1	3	1	76 (85.4)	118	13	105	207	21	186 (89.9)	
I 1	I 1	160	105	40	1		1		63 (60.0)	40	16	24	145	57	88 (60.7)	
I 2	I 2	149	67	27		1	1		38 (56.7)	56	33	23	123	60	63 (51.2)	
T	otal	309	172	67	1	1	2		101 (58.7)	96	49	47	268	117	151 (56.3)	
HI 1	H 1	159	100	43			3		54 (54.0)	36	11	25	136	54	82 (60.3)	
HI 3	H 3	140	69	33			1		35 (50.7)	66	26	40	135	59	76 (56.3)	
HI 4	H 4	183	110	57					53 (48.2)	58	28	30	168	85	83 (49.4)	
T	otal	482	279	133			4		142 (50.9)	160	65	95	439	198	241 (54.9)	
HI 1	I 1	255	186	42		6	4	5	129 (69.4)	35	9	26	221	51	170 (76.9)	
HI 3	I 3	201	63	17		2		ŀ	44 (69.8)	60	28	32	123	45	78 (63.4)	
HI 4	I 4	198	109	2			1	1	105 (96.3)	65	1	64	174	3	171 (98.3)	
T	otal	654	358	61		8	5	6	278 (77.7)	160	38	122	518	99	419 (80.9)	
IH 1	H 1	143	47	16		1			30 (63.8)	60	17	43	107	33	74 (69.2)	
IH 3	H 3	102	59	15					44 (74.6)	35	4	31	94	19	75 (79.8)	
IH 6	H 6	180	89	14				İ	75 (84.3)	16	3	13	105	17	88 (83,8)	
	otal	425	195	45		1			149 (76.4)	111	24	87	306	69	237 (77.5)	
IH 1	I 1	141	70	28			1		41 (58.6)	65	22	43	135	50	85 (63.0)	
IH 3	I 3	220	151	60	1	1	1		88 (58.3)	55	35	20	206	96	110 (53.4)	
IH 6	I 6	98	57	16			L		41 (71.9)	32	12	20	89	28	61 (68.5)	
T	otal	459	278	104	1	1	2		170 (61.2)	152	69	83	430	174	256 (59.5)	

[♀]N, Females with normal ovaries

a. Juveniles within one month after metamorphosis

(i) Controls Of 536 juveniles produced from three matings between control females and field-caught males of the Hiroshima population, 273 were females and 263 were males, while there were 60 females, 14 hermaphrodites and 340 males among 414 juveniles produced from three matings between the same female parents of the Hiroshima population and males of the Ichinoseki population (Table 26). Of the 14 hermaphrodites, seven were of type 1 and the other seven were of type 2 in inner structure of the gonads. Of 172 juveniles produced from two matings between females and males of the Ichinoseki population, 67 were normal females, one was a female with underdeveloped ovaries, three were hermaphrodites and 101 were males. Of the three hermaphrodites, one was of type 1 and the other two were of type 2. Among 89 juveniles produced from two matings between the same females of the Ichinoseki population and field-caught males of the Hiroshima population, there were 8 females, 5 hermaphrodites and 76 males. Of the five hermaphrodites, one was of type 1, three were of type 2 and the remaining one was of type 3.

QU, Females with underdeveloped ovaries

(ii) Backcrosses Among 279 juveniles produced from three matings between female hybrids, Hiroshima $9 \times \text{Ichinoseki} 3$, and field-caught males of the Hiroshima population, there were 133 females, 4 hermaphrodites of type 2 and 142 males, while there were 61 females, 19 hermaphrodites and 278 males among 358 juveniles produced from three matings between the same female hybrids and Ichinoseki males (Table 26). Of the 19 hermaphrodites, eight were of type 1, five of type 2 and the remaining six of type 3.

Of 195 juveniles produced from three matings between female hybrids, Ichinoseki $\mathcal{P} \times \text{Hiroshima} \otimes$, and field-caught males of Hiroshima population, 45 were females, one was a hermaphrodite of type 1 and 149 were males, while there were 104 normal females, one was a female with underdeveloped ovaries, three were hermaphrodites and 170 were males among 278 juveniles produced from three matings using the same female hybrids, Ichinoseki $\mathcal{P} \times \text{Hiroshima} \otimes$ and Ichinoseki males (Table 26). Of the three hermaphrodites, one was of type 1 and the other two were of type 2.

b. Six-month-old frogs

- (i) Controls Among 96 frogs produced from two matings between females and males of the Ichinoseki population, there were 49 females and 47 males, while there were 13 females and 105 males among 118 frogs produced from two matings between the same females of the Ichinoseki population and field-caught males of the Hiroshima population (Table 26).
- (ii) Backcrosses Of 160 frogs produced from three matings between female hybrids, Hiroshima $\mathcal{P} \times \text{Ichinoseki} \mathcal{F}$, and field-caught males of the Hiroshima population, 65 were females and 95 were males, while there were 38 females and 122 males among 160 frogs produced from three matings between the same female hybrids and males of the Ichinoseki population (Table 26). Among 111 frogs produced from three matings between female hybrids, Ichinoseki $\mathcal{P} \times \text{Hiroshima} \mathcal{F}$, and field-caught males of the Hiroshima population, there were 24 females and 87 males, while there were 69 females and 83 males among 152 frogs produced from three matings between the same female hybrids and males of the Ichinoseki population.

When the hermaphrodites were counted as males, 48.7% and 85.5% of the respective total number of frogs were males in the offspring produced from Hiroshima females by mating with Hiroshima and Ichinoseki males, respectively, while 89.9% and 56.3% were males in the offspring produced from Ichinoseki females and the same males of both populations, respectively. On the other hand, 54.9% and 80.9% were males in the offspring produced from female hybrids, Hiroshima $\mathcal{P} \times \text{Ichinoseki} \, \mathcal{P}

In the backcrosses of female hybrids, there were remarkable differences in

percentage of males between those backcrossed with males of the maternal population and those backcrossed with males of the paternal population. While the percentages of males were 54.9% or 59.5% in the backcrosses of female reciprocal hybrids mated with males of the maternal population, those were 80.9% or 77.5% in the backcrosses of female reciprocal hybrids mated with males of the paternal population, being significantly higher than those in the former backcrosses.

DISCUSSION

Hybridization experiments in brown frogs were performed by Pflüger (1882), PFLÜGER and SMITH (1883) and BORN (1883, 1886) for the first time. obtained viable hybrids from crosses between female Rana arvalis and male Rana fusca (=temporaria). This kind of hybrids was thoroughly studied by DÜRKEN (1935, 1938), who reported that they were all males and completely In Japanese brown frogs, KAWAMURA (1942) also reported that mature hybrids between female Rana japonica from Hiroshima and male Rana temporaria (=chensinensis) from Hokkaido were all sterile males. The same findings have been described in hybrids between female Rana japonica and male Rana ornativentris by KAWAMURA (1950), in reciprocal hybrids between Rana ornativentris and Rana temporaria (=chensinensis) from Hokkaido by KAWAMURA and KOBAYASHI (1959) and in hybrids between Japanese brown frog species, Rana japonica and Rana ornativentris, and European brown frog species, Rana arvalis and Rana temporaria (KAWAMURA and KOBAYASHI, 1960). Thereafter, it was confirmed that all the hybrids between female Rana dybowskii and male Rana japonica, ornativentris and chensinensis also became sterile males (KAWAMURA and NISHIOKA, 1977). All the interspecific hybrids stated above were those produced from two species which were either not isolated or incompletely isolated from each other by gametic isolation or hybrid inviability. Besides, there were many combinations of brown frog species which were completely isolated by hybrid inviability (KAWAMURA and Nishioka, 1977). Kawamura, Nishioka and Ueda (1981) have reported in an article of this volume on the results obtained from their crossing experiments performed in 20 years from 1962 to 1981 among 14 brown frog species distributed in Japan, Korea, Formosa, Europe and North America. All these species were completely isolated from one another by gametic isolation, hybrid inviability, hybrid sterility or cooperation of two or three of these reproductive isolating mechanisms. Mature hybrids obtained from these crossing experiments were all sterile males.

In the present study, it was found that the intraspecific hybrids between the Hiroshima population and the Ichinoseki population of *Rana japonica* were not the same in sex ratio as the controls, while there was neither gametic isolation nor hybrid inviability between these two populations. An overwhelming majority of reciprocal hybrids were males, whereas there was nearly an equal number of males and females in the control frogs belonging to each of the two populations.

42 M. SUMIDA

However, these intraspecific hybrids evidently differed from the interspecific hybrids stated above in that females usually appeared in a small percentage, although 54 hybrids were all males in one of eleven reciprocal crosses. other crosses, more than 91% of hybrids were males. All the males of reciprocal hybrids examined were abnormal in a greater or lesser degree in inner structure of testes, while the females were normal in size and number of eggs laid after The male intraspecific hybrids also differed from the pituitary injection. interspecific hybrids in that they were not always completely sterile. respect, the two kinds of reciprocal hybrids differed from each other. While all the 12 Hiroshima $+ \times$ Ichinoseki $+ \times$ hybrids were either completely or nearly completely sterile, only half of the reciprocal hybrids was completely so and the other half was fertile in some degree, although there were no hybrids which were normal in fertility. In contrast with the males of intraspecific hybrids, there were no completely sterile females. While one of four Hiroshima 2 × Ichinoseki& females was extremely low in fertility, the other three were nearly the same as the control Hiroshima females. While three of six female Ichinoseki \circ × Hiroshima \circ hybrids were distinctively low in fertility, the other three were similar to the control Ichinoseki females.

The state of the state of

ļ

C. Sander C. C. Conference

|

The state of the s

13

The backcrosses of male or female intraspecific hybrids were not normal in sex ratios. Of the backcrosses of seven male Ichinoseki $\mathcal{P} \times$ Hiroshima $\mathcal{P} \times$ hybrids mated with Hiroshima females, 60.1% were males, while 47.5% of the Hiroshima controls were males. Although the sex of the backcrosses of male Hiroshima $\mathcal{P} \times$ Ichinoseki hybrids mated with Hiroshima females was examined only in six individuals, four of them were males. Of the backcrosses of female reciprocal hybrids mated with males of the maternal population, 54.9% or 59.5% were males, but 80.9% or 77.5% of the backcrosses of female reciprocal hybrids mated with males of the paternal population were males. It was found that males were remarkably more numerous in the latter backcrosses than those in the former.

Adult Rana japonica collected from Ichinoseki resembled those from Hiroshima so closely in appearance that the two populations could not be definitely distinguished from each other, although slight differences were usually found in color and pattern and shape of the snout. The snout of the Hiroshima frogs appeared to be more slender and more pointed than that of the Ichinoseki frogs. When the individuals of the two populations were reared under the same condition, the Hiroshima tadpoles attained completion of metamorphosis more quickly than the Ichinoseki tadpoles did. When they were compared three months after metamorphosis and at the age of one year, the Ichinoseki frogs were larger in body length than the Hiroshima frogs. The Ichinoseki population was not the same as the Hiroshima population in the dental formula of tadpoles. While Hiroshima tadpoles were mostly 2:1+1 or 3:1+1 in the lower jaw, Ichinoseki tadpoles were mostly 2:1+1 or 1:2+2. While the formula of 1:2+2 was not found in the Hiroshima tadpoles, that of 3:1+1 was exceptional in the Ichinoseki tadpoles.

Ichinoseki frogs were compared with Hiroshima frogs in electrophoretic patterns of twelve proteins including ten enzymes (LDH, MDH, α -GDH, IDH, AAT, PGM, GPI, SOD, CK and Est) and two blood proteins (serum albumin and hemoglobin). It was found that the two populations were nearly the same in the loci of these proteins except for only one locus of serum albumin. The Hiroshima population had alleles a and b, and the Ichinoseki population had alleles b and c; the two populations had allele b in common.

KAWAMURA (1939) has reported that the chromosomes of Rana japonica are 26 in spermatogonia of normal males. This number of chromosomes was also counted by him (1940) in oogonia of diploid parthenogenetic females. Thereafter, KAWAMURA (1943) described that the metaphase plates of spermatogonia contained five pairs of large chromosomes and eight pairs of small chromosomes. After a long time, the karyotype of Rana japonica was observed by Seto (1965), NISHIOKA et al. (1972) and KURAMOTO et al. (1973). These authors clarified that chromosome No. 10 had a conspicuous secondary constriction. The present author compared the karyotypes of the two Rana japonica populations with each other and found that they differed slightly in centromere position of chromosome Nos. 6 and 9. A similar difference in centromere position of chromosome No. 7 was reported by Nishioka (1972) between two Japanese pond frog species, Rana nigromaculata and Rana brevipoda.

As stated above, there is no doubt that the Ichinoseki population slightly differs morphologically, developmentally, biochemically and karyologically from the Hiroshima population. Above all, it is evident that the two populations are isolated from each other by hybrid sterility, although this is not complete. Thus, it seems reasonable to give a position as a sibling species of Rana japonica to the Ichinoseki population. However, there is a problem to be solved between the Ichinoseki population and Rana temporaria martensi Boulenger. was first described by Boulenger (1886) as Rana martensi, then placed as Rana temporaria var. martensi by Okada and Kawano (1923) and lastly changed into Rana temporaria martensi by Okada (1931). According to Okada (1931, 1966), this subspecies closely resembles Rana japonica, except that the snout is not so pointed and that the dorso-lateral glandular folds somewhat flare out to the upper margin of the tympanum. Okada (1966) has described that this frog inhabits the plains near mountains together with Rana japonica in Honshu, Shikoku and Kyushu, that is, all over Japan except Hokkaido. KAWAMURA (1962) and NAKAMURA and UENO (1963) placed Rana temporaria martensi as a synonym of Rana japonica in accordance with Steineger (1907) who identified Rana martensi with Rana japonica. While the Ichinoseki population of Rana japonica somewhat resembles Rana temporaria martensi described by Okada (1966) in shape of the snout and some other characters, it differs distinctively from the latter in the shape of dorso-lateral glandular folds. The question whether the Ichinoseki population is a part of the brown frog species called Rana martensi will be answered hereafter, together with the problem on the spread of this population.

SUMMARY

- 1. The existence of a speciation from Rana japonica was examined between two populations, Ichinoseki and Hiroshima, by hybridization experiments together with morphological and karyological observations and electrophoretic analysis.
- 2. Ichinoseki frogs resembled Hiroshima frogs in appearance so closely that the two kinds of frogs could not be definitely distinguished from each other.
- 3. Hiroshima tadpoles attained completion of metamorphosis more rapidly than Ichinoseki tadpoles did. Ichinoseki frogs were larger in body length than Hiroshima frogs three months after metamorphosis and at the age of one year.

The second second

The second secon

- 4. A part of Hiroshima tadpoles had the same dental formula as that found in a part of Ichinoseki tadpoles. The remaining Hiroshima tadpoles mostly differed from the remaining Ichinoseki tadpoles.
- 5. Hiroshima frogs were nearly the same as Ichinoseki frogs in the electrophoretic patterns of eleven of twelve proteins examined. In the remaining protein, serum albumin, there was a difference between the two populations. While the Hiroshima frogs had two alleles, a and b, the Ichinoseki frogs had b and c. While the major allele was b in the Hiroshima population, it was c in the Ichinoseki population.
- 6. The karyotypes of the two populations were very similar to each other. However, they differed slightly in centromere position of chromosomes Nos. 6 and 9.
- 7. Although there was no hybrid inviability between the two populations, there was remarkable preponderance of males in number in reciprocal hybrids. Male reciprocal hybrids were completely or incompletely sterile. Female reciprocal hybrids were almost completely fertile.
- 8. One of six female hybrids, Ichinoseki $\mathcal{P} \times \text{Hiroshima} \otimes$, produced many hyperdiploids in company with normal diploids by backcrossing with a Hiroshima or Ichinoseki male.
- 9. In the backcrosses of male reciprocal hybrids mated with Hiroshima females, males were slightly more numerous than females. In the backcrosses of female reciprocal hybrids mated with males belonging to the paternal population, males were remarkably more numerous than females.
- 10. It seems reasonable to give a position as a sibling species of Rana japonica to the Ichinoseki population.

ACKNOWLEDGMENTS

The author is especially indebted to Emeritus Professor Toshijiro KAWAMURA and Professor Midori Nishioka for their kind and constant guidance throughout the course of this study and for their critical review of the original manuscript.

This work was supported by Grant-in-Aid for Scientific Research Ministry of

Education, Science and Culture.

LITERATURE

- Born, G. 1883. Beiträge zur Bastardirung zwischen den einheimischen Anurenarten. Arch. f. ges. Physiol. 32: 453-518.
- BOULENGER, G. A. 1886. Note sur les grenouilles rousses d'Asie. Bull. Soc. Zool. France 1886: 595-600.
- Brewer, G. J. 1970. An Introduction to Isozyme Techniques. Academic Press (New York and London).
- DÜRKEN, B. 1935. Über Artbastarde Rana arvalis NILs. ♀×Rana fusca Rös. ♂. Z. f. ind. Abst. u. Vererbgl. 68: 486–516.
- Hubbs, C. L. and C. Hubbs 1953. An improved graphical analysis and comparison of series of samples. Syst. Zool. 2: 49-57.
- KAWAMURA, T. 1939. The occurrence of triploid parthenogenetic frogs. Zool. Mag. (Tokyo) 51: 629-632.
- 1940. Artificial parthenogenesis in the frog. III. The development of the gonads in triploid frogs and tadpoles. J. Sci. Hiroshima Univ., Ser. B, Div. 1, 8: 117-164.

- KAWAMURA, T. and M. KOBAYASHI 1959. Studies on hybridization in amphibians. VI. Reciprocal hybrids between *Rana temporaria temporaria* L. and *Rana temporaria ornativentris* WERNER. Ibid. 18: 1–15.
- KAWAMURA, T. and M. NISHIOKA 1972. Viability and abnormalities of the offspring of nucleo-cytoplasmic hybrids between *Rana japonica* and *Rana ornativentris*. Sci. Rep. Lab. Amphibian Biol., Hiroshima Univ. 1: 95–209.
- KAWAMURA, T., M. NISHIOKA and H. UEDA 1981. Interspecific hybrids among Japanese, Formosan, European and American brown frogs. Sci. Rep. Lab. Amphibian Biol., Hiroshima Univ. 5: 195–323.
- Kuramoto. M., E. Furuya, M. Такедамі and K. Yano 1973. Karyotypes of several species of frogs from Japan and Taiwan. Bull. Fukuoka Univ. Educ., Part III, 23: 67–78.
- MAKINO, S. and I. NISHIMURA 1952. Water-pretreatment squash technic. A new and simple practical method for the chromosome study of animals. Stain Technology 27: 1-7.
- NAKAMURA, K. and S. Ueno 1963. Japanese Reptiles and Amphibians in Color. Hoiku-sha (Osaka, Japan).
- NISHIOKA, M. 1972. The karyotypes of the two sibling species of Japanese pond frogs, with special reference to those of the diploid and triploid hybrids. Sci. Rep. Lab. Amphibian Biol., Hiroshima Univ. 1: 319–337.

1

.

1

- NISHIOKA, M., H. UEDA and M. RYUZAKI 1972. On the chromosomes of 8 brown frog species from Japan, Korea, Europe and America. Japan. J. Genetics 47: 365.
- OKADA, Y. 1931. The Tailless Batrachians of the Japanese Empire. Imp. Agricult. Exp. Station (Nishigahara, Tokyo).
- Okada, Y. and U. Kawano 1923. Notes on the classification and the distribution of brown frogs in Japan. (In Japanese) Zool. Mag. (Tokyo) 35: 361–380.
- OMURA, T. 1967. A method for chromosome preparations from amphibian bone marrow cells. (In Japanese) Ibid. **76**: 239–240.
- Pflüger, E. 1882. Die Bastardzeugung bei den Batrachiern. Arch. f. ges. Physiol. 29: 48-75.
- PFLÜGER, E. und W. J. SMITH 1883. Untersuchungen über Bastardirung der anuren Batrachier und die Principien der Zeugung. I. Theil. Experimente über Bastardirung der anuren Batrachier. Ibid. 32: 519-541.
- Seto, T. 1965. Cytogenetic studies in lower vertebrates. II. Karyological studies of several species of frogs (Ranidae). Cytologia 30: 437-446.
- SHUMWAY, W. 1940. Stages in the normal development of Rana pipiens. I. External form. Anat. Rec. 78: 139-147.
- Stejneger, L. 1907. Herpetology of Japan and adjacent territory. Bull. 58, Smithsonian Inst. Unit. Stat. Nat. Mus. (Washington).
- Sumida, M. 1979. Interspecific hybridization between Rana japonica and R. tsushimensis. (In Japanese) Zool. Mag. (Tokyo) 88: 676.
- 1980. Incipient speciation of the Ichinoseki race in Rana japonica. (In Japanese) Ibid. 89: 621.
- TAHARA, Y. 1959. Table of the normal developmental stages of the frog, *Rana japonica*. I. Early development (stage 1-25). Ann. Rev. Exp. Morph. 13: 49-60.
- TAYLOR, A. C. and J. J. Kollros 1946. Stages in the normal development of *Rana pipiens* larvae. Anat. Rec. 94: 7-24.