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4.2. o step

Suppose that a sample x in class w; is transformed to
x®) by G*) at the kth step as z(*) = GFz. Let
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Now D = PA are known, and the scatter matrices g{,&k),
ggk) are given as follows:

S — pTG®) (Sy, — Ry ) G D
k

1 T
= DTa® O p
+ T l§_0 GYRy G 3)
S8 — pTa®) g™ p (4)

Now the criterion F(A, P, a(®)) can be rewritten as the
ratio of
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Since this is not a usual form of the Rayleigh quotient,
we prove the following proposition.

Proposition 3 Lert ﬁ(k) be a J + 1 dimensional vector
Bk = (a(k)T, 1)T. Then, the solution that maximizes the

ratio of the equations above is given by the solution to the
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eigenvalue problem for ny,) QSB}C), which maximize
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Proof Let e be the eigenvector of the largest eigenvalue
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of ng,) g;), and e, its last element. Then 1_ e =

’ elast
B® = (@™’ 1)T and a® is obtained.



