Supplementary Material for "Linear Discriminative Image Processing Operator Analysis"

Toru Tamaki, Bingzhi Yuan, Kengo Harada, Bisser Raytchev, Kazufumi Kaneda Hiroshima University, Japan
tamaki@hiroshima-u.ac.jp, yuan@eml.hiroshima-u.ac.jp

4.2. α step

Suppose that a sample \boldsymbol{x} in class ω_{i} is transformed to $\boldsymbol{x}^{(k)}$ by $G^{(k)}$ at the k th step as $\boldsymbol{x}^{(k)}=G^{(k)} \boldsymbol{x}$. Let

$$
\begin{equation*}
F^{(k)}=\sum_{l=0}^{k-1} G^{(l)} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\bar{G}^{(k)}=\frac{1}{k+1} \sum_{l=0}^{k} G^{(l)} \tag{2}
\end{equation*}
$$

Now $D=P A$ are known, and the scatter matrices $\widetilde{S}_{W}^{\prime(k)}$, $\widetilde{S}_{B}^{\prime(k)}$ are given as follows:

$$
\begin{align*}
\widetilde{S}_{W}^{\prime(k)}= & D^{T} \bar{G}^{(k)}\left(S_{W}-R_{W}\right) \bar{G}^{(k)^{T}} D \\
& +\frac{1}{k+1} \sum_{l=0}^{k} D^{T} G^{(l)} R_{W} G^{(l)^{T}} D \tag{3}\\
\widetilde{S}_{B}^{\prime(k)}= & D^{T} \bar{G}^{(k)} S_{B} \bar{G}^{(k)^{T}} D \tag{4}
\end{align*}
$$

Now the criterion $E\left(A, P, \boldsymbol{\alpha}^{(k)}\right)$ can be rewritten as the ratio of
$\operatorname{tr}\left(\widetilde{S}_{W}^{\prime(k)}\right)=\boldsymbol{\alpha}^{(k)^{T}} H_{W}^{(k)} \boldsymbol{\alpha}^{(k)}+2 \boldsymbol{q}_{W}^{(k)^{T}} \boldsymbol{\alpha}^{(k)}+\pi_{W}^{(k)}$,
$\operatorname{tr}\left(\widetilde{S}_{B}^{\prime(k)}\right)=\boldsymbol{\alpha}^{(k)^{T}} H_{B}^{(k)} \boldsymbol{\alpha}^{(k)}+2 \boldsymbol{q}_{B}^{(k)}{ }^{T} \boldsymbol{\alpha}^{(k)}+\pi_{B}^{(k)}$,
where

$$
\begin{align*}
H_{W}^{(k)} & =\left\{h_{W j l}^{(k)}\right\} \tag{7}\\
h_{W j l}^{(k)} & =\frac{\operatorname{tr}\left\{D^{T} G_{j}\left(S_{W}+k R_{W}\right) G_{l}^{T} D\right\}}{(k+1)^{2}} \tag{8}\\
\boldsymbol{q}_{W}^{(k)} & =\frac{\left(q_{W 1}^{(k)}, q_{W 2}^{(k)}, \ldots, q_{W J}^{(k)}\right)^{T}}{(k+1)^{2}} \tag{9}\\
q_{W j}^{(k)} & =\operatorname{tr}\left\{D^{T} G_{j}\left(S_{W}-R_{W}\right) F^{(k)^{T}} D\right\}, \tag{10}
\end{align*}
$$

$$
\begin{align*}
\pi_{W}^{(k)}= & \frac{\operatorname{tr}\left\{D^{T} F^{(k)}\left(S_{W}-R_{W}\right) F^{(k)^{T}} D\right\}}{(k+1)^{2}} \\
& +\frac{\sum_{l=0}^{k-1} \operatorname{tr}\left\{D^{T} G^{(l)} R_{W} G^{(l)^{T}} D\right\}}{k+1}, \tag{11}\\
H_{B}^{(k)}= & \left\{h_{B j l}^{(k)}\right\}, \tag{12}\\
h_{B j l}^{(k)}= & \frac{\operatorname{tr}\left\{D^{T} G_{j} S_{B} G_{l}^{T} D\right\}}{(k+1)^{2}}, \tag{13}\\
\boldsymbol{q}_{B}^{(k)}= & \frac{\left(q_{B}^{(k)}{ }_{1}, q_{B}^{(k)}, \ldots, q_{B}^{(k)}{ }_{J}\right)^{T}}{(k+1)^{2}}, \tag{14}\\
q_{B}^{(k)}= & \operatorname{tr}\left\{D^{T} G_{j} S_{B} F^{\left.(k)^{T} D\right\}},\right. \tag{15}\\
\pi_{B}^{(k)}= & \frac{1}{(k+1)^{2}} \operatorname{tr}\left\{D^{T} F^{(k)} S_{B} F^{\left.(k)^{T} D\right\} .}\right. \tag{16}
\end{align*}
$$

Since this is not a usual form of the Rayleigh quotient, we prove the following proposition.

Proposition 3 Let $\boldsymbol{\beta}^{(k)}$ be a $J+1$ dimensional vector $\boldsymbol{\beta}^{(k)}=\left(\boldsymbol{\alpha}^{(k)^{T}}, 1\right)^{T}$. Then, the solution that maximizes the ratio of the equations above is given by the solution to the eigenvalue problem for $Q_{W}^{(k)-1} Q_{B}^{(k)}$, which maximize

$$
\begin{equation*}
\frac{\boldsymbol{\beta}^{(k)^{T}} Q_{B}^{(k)} \boldsymbol{\beta}^{(k)}}{\boldsymbol{\beta}^{(k)^{T}} Q_{W}^{(k)} \boldsymbol{\beta}^{(k)}} \tag{17}
\end{equation*}
$$

where

$$
Q_{B}^{(k)}=\left[\begin{array}{cc}
H_{B}^{(k)} & \boldsymbol{q}_{B}^{(k)} \tag{18}\\
\boldsymbol{q}_{B}^{(k)^{T}} & \pi_{B}^{(k)}
\end{array}\right], \quad Q_{W}^{(k)}=\left[\begin{array}{cc}
H_{W}^{(k)} & \boldsymbol{q}_{W}^{(k)} \\
\boldsymbol{q}_{W}^{(k)^{T}} & \pi_{W}^{(k)}
\end{array}\right]
$$

Proof Let \boldsymbol{e} be the eigenvector of the largest eigenvalue of $Q_{W}^{(k)^{-1}} Q_{B}^{(k)}$, and $e_{\text {last }}$ its last element. Then, $\frac{1}{e_{\text {last }}} e=$ $\boldsymbol{\beta}^{(k)}=\left(\boldsymbol{\alpha}^{(k)^{T}}, 1\right)^{T}$ and $\boldsymbol{\alpha}^{(k)}$ is obtained.

