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We calculate the transverse and time-time components of the instantaneous gluon propagator in

Coulomb gauge QCD by using an SU(3) quenched lattice simulation on isotropic and anisotropic lattices.

We find that the gluon propagators suffer from strong discretization effects on the isotropic lattice; on the

other hand, those on the anisotropic lattices give a better scaling. Moreover, on these two type of lattices

the transverse parts are significantly suppressed in the infrared region and have a turnover at about

500 [MeV]. The high resolution to the temporal direction due to the anisotropy yields small discretization

errors for the time-time gluon propagators, which also show an infrared enhancement as expected in the

Gribov-Zwanziger confinement scenario.
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I. INTRODUCTION

The Coulomb gauge with no negative metric provides a
very clear physical picture in the sense that the color-
Gauss’s law can be formally solved, only transverse de-
grees of freedom appear as dynamical degrees of freedom,
and Fock space is well defined. The prominent feature
taking the Coulomb gauge is that an instantaneous inter-
action, which is requisite for color confinement, shows up
in the Hamiltonian. In the Gribov-Zwanziger scenario, the
path integral is dominated by the configurations near
the Gribov horizon where the lowest eigenvalue of the
Faddeev-Popov (FP) ghost operator vanishes [1]. The lat-
tice simulations show the enhancement of near-zero modes
of the FP eigenvalues [2,3]. Accordingly, the color-
Coulomb instantaneous interaction bears a confining force.
It has been also confirmed by the lattice simulations that
the color-Coulomb potential rises linearly at large dis-
tances and its string tension is larger than the string tension
of the static Wilson potential [4–7], which is expected from
the Zwanziger’s inequality [8]. In addition, the color-
Coulomb potential can be reevaluated by inverting the FP
ghost matrix and this analysis has shown that its string
tension almost saturates the Wilson string tension [9].

Exploring the gluon propagator is a central issue for
studying the confinement mechanism in QCD. The trans-
verse would-be physical gluon propagator is expected to be
suppressed in the infrared (IR) region due to the proximity
of the Gribov region in the IR direction in the Gribov-
Zwanziger scenario [10]. There have been a lot of lattice
studies and functional analyses in the Landau gauge (see,
for instance, Ref. [11,12] and references therein).
Contrastingly, there are few lattice studies on the instanta-
neous gluon propagator in the Coulomb gauge [13–16].

In the continuum theory, on the other hand, there are many
works on the variational approach in the Coulomb gauge,
which are very useful to study the spectrum of the hadronic
bound states and the Green’s functions [17–22], in addition
to the functional analysis [23–25].
The Coulomb gauge fixing condition is imposed on each

time slice and it does not introduce correlations between
neighboring time slices. Accordingly, the equal-time cor-
relation between gauge fields at different points

hAa
�ð ~x; tÞAb

�ð ~y; tÞi (1)

is well defined in the Coulomb gauge. Recent lattice stud-
ies of the instantaneous gluon propagator revealed that it
shows scaling violation [15,16]; namely, the gluon propa-
gator calculated at different lattice couplings do not fall on
top of one curve after multiplicative renormalization.
In order to circumvent the problem of scaling violation,

the authors of Ref. [15] have extracted the instantaneous
gluon propagator by eliminating the p4 dependence of the
unequal-time propagator. It has been concluded that the
instantaneous transverse gluon propagator Dtrð ~pÞ is multi-
plicatively renormalizable in the Hamiltonian limit and the
numerical data of it are well fitted with the Gribov-type
form of the propagator1

Dtrð ~pÞ ¼ 1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j ~pj2 þ M2

j ~pj2
q ; (2)

where M is a fitting parameter at which the propagator
shows a turnover. The method was applied to the transverse
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1In this paper, we use the same symbol for the instantaneous
propagator and the unequal-time propagator, but the reader may
distinguish them by their argument: the instantaneous propagator
does not depend on x4 (or p4 in momentum space) but the
unequal-time one does.
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gluon propagator successfully both in 2þ 1 and 3þ 1
dimensional SU(2) Yang-Mills theory [15,26] while it
does not improve the scaling violation of the temporal
gluon propagator since the time-time component of the
unequal-time gluon propagator is energy independent even
after the residual gauge fixing [27].

As another approach, a new momentum cut is intro-
duced in Ref. [16] in addition to the cone cut and the
cylinder cut. High momentum data that suffer from dis-
cretization errors are excluded from the analysis of the
instantaneous propagators by this new cut. Combined
with the matching analysis given in Ref. [28], it has been
shown that this procedure successfully reduces the scaling
violation for the transverse gluon propagator, but it fails for
the time-time component of the gluon propagator.

In this study, we take a different route to show that the
instantaneous gluon propagator is multiplicatively renor-
malizable. The problem of scaling violation of the instan-
taneous propagator can be seen even at the tree level with a
finite temporal lattice spacing as was discussed in Ref. [15]
(we shall briefly review the point in Appendix B). The
reason is that the energy integral does not run from �1 to
1 but from ��=a� to �=a� on a finite lattice, and this
introduces the spurious j ~pj dependence on the free instan-
taneous propagator. Therefore, we expect that the instan-
taneous propagator is multiplicatively renormalizable in
the Hamiltonian limit a� ! 0. To make this point clear,
we calculate the transverse and the time-time components
of the instantaneous gluon propagator on anisotropic latti-
ces and show how the scaling violation becomes milder
as the anisotropy increases, i.e., as we get close to the
Hamiltonian limit.

The organization of this paper is as follows. In the
subsequent sections, we describe the lattice observables,
the space and time components of the instantaneous gluon
propagator, and the lattice setup of our numerical simula-
tions. In Secs. IV and V, the numerical results of the
transverse and the temporal components of the instanta-
neous propagators on the isotropic lattice are reported.
Section VI is devoted to show the results for the transverse
propagator on the anisotropic lattices. In the subsequent
Sec. VII, we discuss the IR and the ultraviolet (UV)
behavior of the propagator by making the power law
fitting. The anisotropic lattice results for the temporal
gluon propagator are given in Sec. VIII, and the IR and
the UV fittings are examined in Sec. IX. We attempt to
extract the color-Coulomb string tension from the instan-
taneous temporal gluon propagator in position space in
Sec. X. The conclusions are drawn in Sec. XI.

II. INSTANTANEOUS GLUON PROPAGATOR

We calculate the transverse and the time-time compo-
nents of the instantaneous gluon propagator,

Dab
��ð ~x� ~yÞ ¼ hAa

�ð ~x; tÞAb
�ð ~y; tÞi; (3)

in the momentum space,

Dab
ij ð ~pÞ ¼ �ab

�
�ij �

pipj

j ~pj2
�
Dtrð ~pÞ; (4)

Dab
44 ð ~pÞ ¼ �ab Z44ð ~pÞ

j ~pj2 ; (5)

where the gauge fields are related to the link variables
through

Alat
� ð ~x; tÞ ¼ U�ð ~x; tÞ �Uy

�ð ~x; tÞ
2ig0a�

��������traceless
: (6)

The instantaneous gluon propagator is evaluated on each
time slice and we average over all time slices. The lattice
momenta k� are discretized and take integer values in the

range ð�L�=2; L�=2�. The lattice momenta and the

continuum ones are related via

p� ¼ 2

a�
sin

�
�k�
L�

�
; (7)

where a�ðL�Þ are a�ðL�Þ for � ¼ 1 to 3 and a�ðL�Þ for
� ¼ 4, respectively.
We note that the unequal-time propagator D�� has mass

dimension 2 in momentum space, while the instantaneous
one has mass dimension 1. This is because the instanta-
neous propagator is obtained by integrating the unequal-
time propagator over the time component of the four
momentum;

D��ð ~pÞ ¼
Z dp4

2�
D��ð ~p; p4Þ: (8)

The unrenormalized transverse gluon propagator Dtr
lat,

which is measured by lattice simulations, is related to the
renormalized propagator Dtr

R via the multiplicative renor-
malization,

Dtr
Rð ~p;�Þ ¼ a�Z

trða�;�ÞDtr
latð ~pa�Þ; (9)

where � is the renormalization point. We expect that the
renormalized propagator is independent of the lattice spac-
ing in the scaling regime. As we shall see later, the multi-
plicative renormalizability does not hold for finite temporal
lattice spacing and we have to take the Hamiltonian limit,
a� ! 0.
The color-Coulomb potential plays a crucial role in the

Coulomb gauge QCD. It was shown that the time-time
component of the gluon propagator can be decomposed
into the instantaneous part and the noninstantaneous
part [29],

D44ð ~x; tÞ ¼ Vcð ~xÞ�ðtÞ þ Pð ~x; tÞ: (10)

The first term in the right-hand side represents the color-
Coulomb potential, which is defined as the vacuum expec-
tation value of the kernel of the instantaneous interaction,
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Vcð ~x� ~yÞ�ab ¼ hðM�1½A�ð�@2i ÞM�1½A�Þab~x; ~yi: (11)

Here M�1 is the Green’s function of the Faddeev-Popov
ghost operator. In Eq. (10), Pð ~x; tÞ is assumed to be non-
singular at t ¼ 0 as opposed to the first term. It has been
shown that both Vc and P are renormalization-group in-
variant [30]; namely, the renormalization constant for the
color-Coulomb potential can be set to be 1 in the contin-
uum limit. We expect that the color-Coulomb potential Vc

can be extracted from the instantaneous temporal gluon
propagator as

Vcð ~xÞ ¼ a�D44ð ~xÞ; (12)

when we are in the scaling region and the lattice spacing is
small enough, where a� comes from the � function.

III. LATTICE SETUP

The lattice configurations are generated by the heat-bath
Monte Carlo technique with the standard Wilson plaquette
action,

S ¼ �

�B

X
n;i<j�3

ReTrð1�UijðnÞÞ

þ ��B

X
n;i�3

ReTrð1�Ui4ðnÞÞ: (13)

Here U��ðnÞ indicates the plaquette operator, and � ¼
2Nc=g

2
0 is the lattice coupling. On the isotropic lattice,

the bare anisotropy �B is 1 and the action can be written
in a familiar form

S ¼ �
X

n;�<�

ReTrð1�U��ðnÞÞ: (14)

The renormalized anisotropy � is defined as the ratio of the
spatial lattice spacing to the temporal lattice spacing, � ¼
a�=a�. The ratio of �B and � can be determined non-
perturbatively by matching the spatial and the temporal
Wilson loops on anisotropic lattices. We use the relation
obtained by Klassen for the range 1 � �B � 6 and 5:5 �
� � 1 [31]. We adopt the values of the lattice spacing
given in Ref. [32] for � ¼ 2 and in Ref. [33] for � ¼ 4,
where the static quark potential was measured to set the
scale. For the isotropic lattice, the scale is set by using
the scaling relation obtained by Necco and Sommer, with
the Sommer scale parameter r0 ¼ 0:5 ½fm�, which is ap-
plicable in the range 5:7 � � � 6:92 [34].
In our simulations, the first 5000 sweeps are discarded

for thermalization, and we measured the instantaneous
gluon propagator for 50–100 configurations, each of which
is separated by 100 sweeps. All the lattice parameters are
given in Table I.
In the Coulomb gauge the transversality condition

@iAið ~x; tÞ ¼ 0 (15)

is imposed on the gauge fields at each time slice, where i
runs from 1 to 3. On a lattice, gauge configurations

TABLE I. The lattice couplings, the spatial and the temporal lattice extents, the lattice spacings, the lattice volumes in physical units,
and the number of configurations used to evaluate the instantaneous propagators.

� ¼ a�=a� L� L� � �B a�1
� [GeV] a� [fm] V ½fm4� Number of configurations

1 24 24 5.70 1 1.160 0.1702 4:094 100

48 48 : : : : 8:174 100

56 56 : : : : 9:534 100

64 64 : : : : 10:94 100

24 24 5.80 : 1.446 0.1364 3:274 100

24 24 6.00 : 2.118 0.0932 2:244 100

32 32 : : : : 2:984 100

48 48 : : : : 4:474 100

56 56 : : : : 5:224 100

64 64 : : : : 5:974 100

2 24 48 5.80 1.674 1.104 0.1787 4:294 80

24 48 6.00 1.705 1.609 0.1227 2:944 80

24 48 6.10 1.718 1.889 0.1045 2:514 80

4 16 64 5.75 3.072 1.100 0.1794 2:874 100

24 96 : : : : 4:314 50

32 128 : : : : 5:744 50

48 192 : : : : 8:614 100

24 96 5.95 3.159 1.623 0.1216 2:924 50

48 192 : : : : 5:844 100

24 96 6.10 3.211 2.030 0.0972 2:334 50

32 128 : : : : 3:114 50

48 192 : : : : 4:674 100
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satisfying the Coulomb gauge condition can be obtained by
minimizing the functional

FU½g�¼ 1

L3
�

X
~x;i

ReTr

�
1�1

3
gyð ~x;tÞUið ~x;tÞgð ~xþ ~i;tÞ

�
(16)

with respect to the gauge transformation gð ~x; tÞ 2 SUð3Þ
on each time slice. The functional derivative of Eq. (16)
with respect to g yields the transversality condition
riA

lat
i ð ~x; tÞ ¼ 0, where r is the lattice backward differ-

ence, and it reproduces the Coulomb gauge condition in the
continuum limit. The Coulomb gauge fixing has been done
using an iterative method with the Fourier acceleration
[35], and we stop the iterative gauge fixing if the violation
of the transversality becomes less than 10�14;

	 ¼ 1

ðN2
c � 1ÞL3

�

X
~x;a;i

ðriA
lat
i ð ~x; tÞÞ2 < 10�14: (17)

This stopping criterion is applied for each time slice. We
note that the accuracy of the gauge fixing is crucial for the
transverse propagator to see the IR suppression, which is
discussed in Appendix A.

In order to reduce lattice artifacts, we apply the cone and
cylinder cuts to the momenta [28]. The cone cut is neces-
sary to address finite volume effects that are seen in small
momentum data. On the other hand, the cylinder cut re-
duces artifacts due to the broken rotational symmetry on
lattice. The statistical errors are estimated by the jackknife
method.

IV. INSTANTANEOUS TRANSVERSE GLUON
PROPAGATOR ON THE ISOTROPIC LATTICE

Although the problem of the scaling violation for the
instantaneous gluon propagator has already been discussed
in Refs. [15,16], we here show the lattice result for the
instantaneous transverse gluon propagator on the isotropic
lattice to clarify the issues. The instantaneous transverse
gluon propagator on the isotropic lattice at� ¼ 5:7 and 6.0
is drawn in Fig. 1. The propagator is normalized such that
Dtrðj ~pj ¼ 2 ½GeV�Þ ¼ 1.

We observe that Dtr has a maximum at p ¼
0:4–0:5 ½GeV� irrespective of the lattice coupling and it
decreases with the momentum in the IR region. This is a
striking feature of the transverse gluon propagator. The
instantaneous propagator is defined as the energy integral
of the unequal-time propagator,

Dðj ~pjÞ ¼
Z dp4

2�
Dð ~p; p4Þ: (18)

For a massless particle and a massive particle, Dðj ~pjÞ ¼
1=ð2j ~pjÞ and Dðj ~pjÞ ¼ 1=ð2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffij ~pj2 þm2

p Þ, respectively.
Thus, the instantaneous transverse propagator can be in-
terpreted as the inverse of the energy dispersion relation of
the would-be physical gluons. It implies that the propaga-
tor at vanishing momentum corresponds to the inverse of

the effective mass of the gluon. The IR suppression of the
instantaneous transverse gluon propagator means that the
gluons have momentum dependent effective mass Mð ~pÞ
and it diverges in the IR limit, lim ~p!0Mð ~pÞ ¼ 1, indicat-

ing the confinement of gluons.
In addition to the bump structure of the transverse

propagator, the two curves corresponding to different lat-
tice couplings cross at the renormalization point and de-
viate from each other in the small and the large momentum
regions. This is not seen in the Landau gauge gluon propa-
gator (see e.g. Ref. [28]). Such a behavior of the propagator
casts doubt the validity of the multiplicative renor-
malizability for the instantaneous gluon propagator.
Taking a closer look at the raw results of the numerical

simulations gives us a clue to cure scaling violation.
Assuming multiplicative renormalization for the propaga-
tor, the renormalized dressing function Ztr

R of the transverse
gluon propagator, Ztr

R ¼ j ~pjDtr
R, is related to the bare

unrenormalized dressing function Ztr
lat via

Ztr
Rð ~p;�Þ ¼ Zða�;�ÞZtr

latðj ~pja�Þ (19)

in the scaling regime. Here Zða�;�Þ is a renormalization
constant. It is easily read off from this relation that in the
log-log plot of the dressing function of the propagator,
converting from lattice units to physical units corresponds
to the parallel displacement in the horizontal direction and
the renormalization of Ztr corresponds to that in the vertical
direction. If the propagator is multiplicatively renormaliz-
able, the different curves associated with the different
lattice couplings can fall on top of each other by a parallel
shift of the curves in the horizontal and the vertical direc-
tions in a double-log plot.

0 1 2 3 4 5 6 7 8
p [GeV]

0

1

2

3

4

5

D
tr
(p

) 
[G

eV
-1
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48
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56
4
, β=5.7

64
4
, β=5.7

48
4
, β=6.0

56
4
, β=6.0

64
4
, β=6.0

FIG. 1 (color online). The instantaneous transverse gluon
propagator in physical units at � ¼ 5:7 and � ¼ 6:0. The
propagator is renormalized at j ~pj ¼ 2 ½GeV�.
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The top panel of Fig. 2 shows the dressing function of
the unrenormalized transverse gluon propagator in lattice
units. It is apparent that the two curves cannot coincide by
adopting any scaling relation or by imposing any renor-
malization condition since such manipulations correspond
to the horizontal and the vertical shifts in the log-log plot of
the dressing function but not the rotation or deformation of
the curves. Therefore, the scaling violation of the trans-
verse gluon propagator is purely due to discretization
errors.

Furthermore, we observe that the IR behavior of the
dressing function at different couplings shows the same
behavior, while in the UV region the slope of the curves
differs. The bottom panel of Fig. 2, in which the dressing
function renormalized at jpj ¼ 1 ½GeV� is plotted as a
function of the physical momentum, illuminates such a
tendency; the two curves almost fall on top of each other

in the IR region while the deviation between them is
pronounced in the UV region. This indicates that the
scaling problem of Dtr resides in the lattice data in the
UV region.
This kind of behavior can be found for the instantaneous

free propagator; namely, the instantaneous propagator
shows the scaling violation even at the tree level (see
Appendix B). It is the crucial point of the scaling violation
that the instantaneous propagator is defined as the energy
integral of the unequal-time propagator. For a finite tem-
poral lattice spacing, the energy integral is limited in the
interval ½��=a�; �=a��, and it induces a spurious j ~pj
dependence on the instantaneous propagator. It leads the
discretization errors especially at large momenta, as dem-
onstrated in Appendix B, while it disappears only in the
Hamiltonian limit a� ! 0. Accordingly, the lattice data in
the UV region for the instantaneous transverse gluon
propagator suffer from the discretization errors that cannot
be eliminated with the cylinder cut or the cone cut we
applied.
One way to circumvent this problem is to exclude the

high momentum data from the analysis of the propagator.
This has been studied in Ref. [16] combined with the
matching procedure proposed in Ref. [28] in order to find
a reasonable value for the available momentum range. It
has been shown that the instantaneous transverse gluon
propagator shows scaling behavior by restricting the avail-
able momentum range. The data on large lattices shown in
Fig. 2 illustrate that the discretization errors are relatively
small in the IR region, and this supports the validity of the
prescription in Ref. [16]. The another way is to calculate
the unequal-time propagator Dð ~p; p4Þ and eliminates the
p4 dependence of Dð ~p; p4Þ as was discussed in Ref. [15],
and the instantaneous transverse gluon propagator has been
shown to be multiplicatively renormalizable.

V. INSTANTANEOUS TEMPORAL GLUON
PROPAGATOR ON THE ISOTROPIC LATTICE

In this section, we discuss the isotropic lattice result for
the temporal gluon propagator. The dressing function of
the instantaneous temporal gluon propagator on the iso-
tropic lattice at � ¼ 5:7 and 6.0 is drawn in Fig. 3. The
dressing function is normalized such that Z44ðj ~pj ¼
2 ½GeV�Þ ¼ 1 in the top panel and Z44ðj ~pj¼1½GeV�Þ¼1
in the bottom panel. The dressing function Z44 is constant
for j ~pj at the tree level. In the Gribov-Zwanziger scenario,
this is expected to diverge in the IR limit resulting in the
confining behavior of the color-Coulomb potential, which
is necessary condition for color confinement in Coulomb
gauge QCD.
Although the scaling violation is clearly visible in Z44 as

in the transverse gluon propagator, the scaling issue is
worse for the temporal gluon propagator than the trans-
verse one. In the case ofDtr, the IR data do not much suffer
from the discretization errors and they almost fall on top of
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Z
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, β=6.0

64
4
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Z
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56
4
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64
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FIG. 2 (color online). The dressing function of the unrenor-
malized instantaneous transverse gluon propagator, Ztr

latð ~pÞ ¼
j ~pjDtr

latð ~pÞ, at different lattice couplings in lattice units (top).

The dressing function renormalized at j ~pj ¼ 1 ½GeV� in physical
units (bottom).
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each other by setting the renormalization point to a small
momentum. Contrastingly, the discrepancy between two
data sets of Z44 corresponding to different lattice spacings
remains both in the IR and the UV regions by changing the
renormalization point (compare the top and the bottom
panels of Fig. 3). Indeed, the scaling violation of D44 is
not settled by the 
-cut method employed in Ref. [16],
indicating that the data at small momenta may also be
affected by the discretization errors.

Besides the scaling violation, we observe that the dress-
ing function is suppressed in the IR region. For the tem-
poral gluon propagator, we expect that its instantaneous
part behaves as 1=j ~pj4 in the IR region since it corresponds
to the color-Coulomb potential, which rises linearly
with distance between a quark and an antiquark [4,5].
As opposed to our expectation, the numerical results on

the isotropic lattice show that the dressing function Z44

decreases with momentum in the IR region for the coarser
lattice.
The unexpected IR suppression of Z44 may stem from

an incomplete isolation of the instantaneous part in D44.
The unequal-time temporal gluon propagator can be
decomposed into the instantaneous part and the vacuum
polarization part as Eq. (10) in the continuum theory,
and it gives

Z �

��
dtD44ð ~x; tÞ ¼ Vð ~xÞ þOð�Þ: (20)

On a lattice with finite a�, � is of the order of a� and we
would have a Oða�Þ contribution from the polarization
term in the instantaneous D44 on the lattice. The un-
wanted suppression at small momenta may originate
from such a contribution of the polarization term, and
furthermore, the energy integral of the polarization term
would produce a spurious j ~pj dependence as for the
transverse gluon propagator, which leads the scaling
violation.
Before closing the section, we summarize the points so

far: (1) The transverse gluon propagator on the isotropic
lattice suffers from the discretization errors at large mo-
menta and it can be ascribed to the spurious j ~pj depen-
dence coming from the temporal lattice cutoff in the energy
integral defining the instantaneous propagator. (2) The
temporal gluon propagator is affected both in the IR and
the UV regions by the discretization errors, and it may stem
from the Oða�Þ contribution of the polarization term in
the instantaneous propagator besides the limited energy
integral.

VI. INSTANTANEOUS TRANSVERSE GLUON
PROPAGATOR ON ANISOTROPIC LATTICES

The instantaneous transverse gluon propagators for sev-
eral anisotropies are drawn in Fig. 4. Compared to the
isotropic case, the deviations of three curves corresponding
to different lattice couplings become moderate on the
anisotropic lattice with � ¼ 2. Further increase of � leads
to a nice scaling behavior and the data points for � ¼ 4
almost fall on top of one curve. Accordingly, our results on
the anisotropic lattices support our expectation that scaling
violation observed in the instantaneous transverse gluon
propagator disappears in the limit � ! 1 (a� ! 0).
In order to investigate how scaling violation is cured by

getting close to the Hamiltonian limit, we quantify the
difference of two curves by the following function,

�2 ¼ Xnf
i¼1

�
DfðpiÞ �Dint

c ðpiÞ
�f;i

�
2 þXnc

i¼1

�
DcðpiÞ �Dint

f ðpiÞ
�c;i

�
2
:

(21)

DfðpiÞ represents the measured value of the propagator at
the momentum pi and �f;i the corresponding statistical
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FIG. 3 (color online). The dressing function of the instanta-
neous temporal gluon propagator in physical units at � ¼ 5:7
and � ¼ 6:0. The renormalization point is set to be 2 [GeV] in
the top panel and 1 [GeV] in the bottom panel.
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error. Dint
c ðpiÞ is the estimated value obtained by a cubic

spline interpolation of the other lattice data set Dc. The
subscripts f and c label two different data sets, meaning
‘‘finer’’ and ‘‘coarser.’’ The summations extend over the
data points at which the two lattice data sets overlap in the
momentum.

We compute �2 defined above for the following data
sets:

(1) ð243�48;�¼5:80;�¼2Þ and ð243�48;�¼6:00;
�¼2Þ,

(2) ð243�96;�¼5:75;�¼4Þ and ð243�96;�¼5:95;
�¼4Þ.

We note that the physical volumes are very similar;
(1) V � 4:294 ½fm4� and V � 2:944 ½fm4�, and
(2) V � 4:314 ½fm4� and V � 2:924 ½fm4�, respectively.
For each case, we found

(1) �2=NDF ¼ 867,
(2) �2=NDF ¼ 309,

where NDF is the number of degrees of freedom of the �2

analysis.
Decreasing the temporal lattice spacing by a factor of 2,

�2=NDF reduces by about a factor 3. We note that the
absolute value of �2 is unimportant since it depends on
the absolute value of the propagator, which can take an
arbitrarily large (or small) value by multiplicative renor-
malization. �2 defined above make sense only when we
compare the �2 values under the same renormalization
condition and the fixed ratio of the physical volumes of
the lattice data sets to be analyzed.
In the right bottom panel of Fig. 4, the instantaneous

transverse gluon propagator on the spatial lattice extent
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FIG. 4 (color online). The instantaneous transverse gluon propagator on the isotropic lattice (top left), on the anisotropic lattices with
� ¼ 2 (bottom left), and with � ¼ 4 (top right). The results for the isotropic lattice and the anisotropic lattice with � ¼ 4 on the large
lattice volume are drawn together in one figure for direct comparison (bottom right). The propagator is renormalized to unity at
j ~pj ¼ 2 ½GeV�.
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L� ¼ 48 is plotted both for the isotropic lattice and the
� ¼ 4 anisotropic lattice. We observe that the propagator
has a maximum at about 500 [MeV] irrespective of
the lattice coupling and the anisotropy, and it decreases
with the momentum in the IR region. Accordingly, the
turnover of the transverse gluon propagator survives in
the Hamiltonian limit.

The confined behavior of the gluon propagator can be
seen more directly in position space. The unrenormalized
correlation function of the transverse gauge fields on the
anisotropic lattice � ¼ 4 is depicted in Fig. 5. On small
lattices (crosses and left triangles in the figure), the corre-
lation function is positive and a decreasing function of the
distance. As the physical volume increases,DtrðrÞ develops
a dip at about r ¼ 1 ½fm� and becomes negative around the
dip. On the largest volume, the correlation function quickly
decreases with distance at small r and becomes negative in
the range r� 1–2 ½fm� and then vanishes at large dis-
tances. It means that the gauge fields have no correlation
over the hadronic scale in sharp contrast to the massless
particles for which the correlation function behaves as
1=r2. We notice that the results at the approximately fixed
physical volume nicely agree with each other; namely,
lattice discretization errors do not seriously affect the
correlation function on the anisotropic lattice.

VII. POWER LAW FITTING OF Dtr

AT SMALL AND LARGE MOMENTA

We note that the momentum dependence of the instan-
taneous transverse gluon propagator on the anisotropic

lattices in the UV region significantly differs from that
on the isotropic lattice (see the bottom right panel in
Fig. 4). On the isotropic lattice, the slope at high momenta
gets smaller as the lattice couplings increase. On the an-
isotropic lattices, the slope decreases further. In order to
investigate the UV behavior of the transverse gluon propa-
gator, we make the power law ansatz,

Dtrð ~pÞ ¼ d1

j ~pj1þ
UV
gl

; (22)

and fit this ansatz to the data on 243 � L� lattices in the
momentum range j ~pj � 6 ½GeV�. The fitted parameters
are given in Table II. We see that 
UV

gl gets small values

as the anisotropy increases, and that for � ¼ 4 takes about
one third of that on the isotropic lattice.
As we have discussed in Sec. IV, the inverse of the

instantaneous propagator can be interpreted as the energy
dispersion relation. Since gluons are expected to behave as
free massless particles at sufficiently large momentum due
to asymptotic freedom, this interpretation can be allowed if
the instantaneous transverse gluon propagator behaves as
1=j ~pj in the UV region, which corresponds to the null UV
exponent. Therefore, the decrease of 
UV

gl with increasing �

is consistent with the asymptotic free field behavior of the
gluon fields in the continuum limit.2

In order to explore the IR behavior of the instantaneous
transverse gluon propagator, wemake the power law ansatz,

Dtrð ~pÞ ¼ d2j ~pj

IR
gl ; (23)

in the IR region. The fitted parameters are listed in Table III.

TABLE II. The result of the UV power law fitting of Dtr in the
momentum range j ~pj � 6 ½GeV�.
ðL�; L�; �; �Þ d1 
UV

gl �2=NDF

(24, 24, 1, 6.0) 4.89(14) 0.920(15) 1.34

(24, 48, 2, 6.1) 3.83(25) 0.617(35) 0.86

(24, 96, 4, 6.1) 2.49(7) 0.282(15) 0.68
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FIG. 5 (color online). The unrenormalized instantaneous
gluon propagator in position space (the correlation function of
the gauge fields) on � ¼ 4 anisotropic lattice. The physical
volumes are 2:874 ½fm4� (crosses), 2:924 ½fm4� (left triangles),
4:314 ½fm4� (down triangles), 5:744 ½fm4� (up triangles), and
8:614 ½fm4� (circles).

TABLE III. The result of the IR power law fitting ofDtr. j ~pmaxj
represents the maximum momentum of the fitting range.

ðL�; �; �Þ j ~pmaxj d2 
IR
gl �2=NDF

0.27 6.64(17) 0.311(17) 0.274

(48� 64; 1; 5:7) 0.30 6.24(9) 0.271(10) 4.48

0.33 5.98(6) 0.241(8) 7.82

(48, 4, 5.75) 0.45 4.09(2) 0.174(4) 94.3

2At least, the linear extrapolation of 
UV
gl to the Hamiltonian

limit gives 
UV
gl ð� ! 1Þ ¼ 0:0852ð201Þ and �2=NDF ¼ 11:1,

that is, the value of 
UV
gl decreases but remains finite in this

analysis with three anisotropies, although the linear extrapola-
tion may be too naive and inadequate, and a careful study of
taking the Hamiltonian limit is needed.
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Although the fitting becomes worse and the IR exponent

IR
gl becomes small as the maximum momentum of the

fitting range increases, 
IR
gl takes a positive value in all

the cases. For the anisotropic lattice, we need much larger
lattices to extract the IR exponent with an acceptable �2

value. In both the isotropic and the anisotropic cases, our
result of the IR fitting predicts the vanishing transverse
gluon propagator at zero momentum. Given the fact that
the fitted values of 
IR

gl increases with decreasing the

maximum momentum of the fitting range, the 
IR
gl values

listed in Table III would give a lower bound for the IR
exponent of the transverse gluon propagator in the
Coulomb gauge.

We note that fitting the transverse gluon propagator with
the Gribov-type ansatz, Eq. (2), which successfully repro-
duced the lattice data in Ref. [15], did not work in our
lattice data for both the isotropic and the anisotropic cases.
At the same time, the peak position of the transverse gluon
propagator differs between our results and the results in
Ref. [15]; it is about 500 [MeV] in our case and the fitting
analysis in Ref. [15] gives 880(10) [MeV], which is rather
close to the peak position of the dressing function Ztr in our
results (see the bottom panel of Fig. 2). It deserves further
study to clarify whether this discrepancy comes from the
gauge group [SU(3) in this study and SU(2) in Ref. [15] ]
or the adopted prescriptions to circumvent scaling
violation.
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VIII. INSTANTANEOUS TEMPORAL GLUON
PROPAGATOR ON ANISOTROPIC LATTICES

We next discuss the instantaneous temporal gluon
propagator, which is related to the color-Coulomb poten-
tial. The dressing function of the time-time component of
the gluon propagator is shown in Fig. 6 for the isotropic
lattice and the anisotropic lattices. On the anisotropic
lattices, the dressing function shows much better scaling
behavior than that on the isotropic lattice. Although the
small deviation can be seen both in the IR and UV region,
one can expect that the scaling behavior is completely
recovered in the Hamiltonian limit.

Moreover, we find that the IR behavior of Z44 on the
anisotropic lattice is different from that on the isotropic
lattice (see bottom right panel). For the isotropic case, we
see that the dressing function increases slowly with de-
creasing the momentum, and bends down on coarse lattice.
By contrast, Z44 continues to rise on the anisotropic lattice
even for the coarsest lattice data (� ¼ 5:75), and Z44 at
available smallest momentum for the anisotropic case is
about 10 times larger than that for the isotropic case. We
note that the spatial lattice spacing for ð�;�Þ ¼ ð4; 5:75Þ is
larger than that for ð�;�Þ ¼ ð1; 5:70Þ. This implies that Z44

is very sensitive to the discretization effects, and taking the
Hamiltonian limit is crucial to cure scaling violation for the
temporal gluon propagator and to explore the genuine IR
divergent behavior in the Coulomb gauge QCD.

IX. POWER LAW FITTING OF Z44

AT SMALL AND LARGE MOMENTA

The asymptotic form of the color-Coulomb potential,
the instantaneous part of the temporal gluon propagator, is
given by

j ~pj2V44ðj ~pjÞ � x0
2b0 lnðj ~pj=�CoulÞ ; (24)

where x0 ¼ 12=11 and b0 ¼ 11=16�2 for SU(3) pure
Yang-Mills theory, and �Coul is a finite QCD mass scale
[29]. We here fit the data for Z44 with

Z44ðj ~pjÞ ¼ Z
x0

2b0 lnðj ~pj=�CoulÞ (25)

in the momentum range j ~pj> 6 ½GeV�. The fitted parame-
ters Z and �Coul are given in Table IV with �2=NDF. We
find that the fitted parameter �Coul takes an unacceptably
small value as a QCD mass scale, although the �2 value is

reasonable for the isotropic lattice.�Coul increases with the
anisotropy and the fitted value �Coul ¼ 0:8345ð85Þ ½GeV�
for � ¼ 4 is the order of �QCD. However, the numerical

data for the �QCD parameter are still unstable under the

increase of the anisotropy and �QCD could change by

further varying �. It can be stated that the anisotropy
should be greater than 4 otherwise we have physically
inadequate results, although it is difficult to estimate the
Hamiltonian limit of �QCD.

In the IR region, the color-Coulomb potential is ex-
pected to behave as 1=j ~pj2, which gives a linearly rising
potential in position space. Indeed, the lattice simulations
of the color-Coulomb potential obtained from the correla-
tor of the partial Polyakov line revealed such a linearity of
the color-Coulomb potential at large distances [4,5].
Therefore, we fit the dressing function Z44 with the power
law form,

Z44ðj ~pjÞ ¼ z

j ~pj
44
: (26)

Assuming that the contribution of the vacuum polarization
term to the instantaneous temporal gluon propagator is
negligible, we expect 
44 ¼ 2 giving a linearly rising
color-Coulomb potential.
The fitted results are given in Table V. We observe that

�2 is extraordinary large and the fitting does not work.
Even though the scaling violation becomes moderate as the
anisotropy increases, we still have discretization effects
which are visible in Fig. 6; the curves associated with
different lattice couplings deviate from each other in the
IR region and the slope gets steeper as the lattice spacing
decreases. Therefore, we are still not close to the
Hamiltonian limit where the scaling behavior is observed,
and we cannot extract the color-Coulomb string tension
from Z44ðj ~pjÞ and compare it with that obtained from the
link-link correlator.

X. INSTANTANEOUSD44 IN POSITION SPACEAND
THE COLOR-COULOMB POTENTIAL

Since the instantaneous part of the temporal gluon
propagator corresponds to the color-Coulomb potential,

D44ð ~x; tÞ ¼ Vcð ~xÞ�ðtÞ þ Pð ~x; tÞ; (27)

the color-Coulomb potential in the color-singlet channel is
given by measuring the instantaneous D44 in position
space,

TABLE IV. The result of the UV logarithmic law fitting of Z44

in the momentum range j ~pj � 6 ½GeV�.
(L3

� � L�; �; �) Z �Coul [GeV] �2=NDF

ð244; 1; 6:0Þ 0.648(97) 0.000 968(1282) 0.406

(243 � 48; 2; 6:1) 0.310(80) 0.0385(507) 1.20

(243 � 96; 4; 6:1) 0.0842(41) 0.845(85) 2.22

TABLE V. The result of the IR power law fitting of Z44. j ~pmaxj
represents the maximum momentum of the fitting range.

ðL�; L�; �; �Þ j ~pmaxj z 
44 �2=NDF

(48, 48, 1, 6.0) 0.90 3.08(1) 1.22(1) 265

(48, 192, 4, 6.1) 0.90 5.42(2) 1.84(1) 248
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V
singlet
c ð ~xÞ ¼ �4

3a�D44ð ~xÞ: (28)

Here the factor �4=3 is the Casimir invariant in the fun-
damental representation in the SU(3) gauge group. The
instantaneous temporal gluon propagator in position space
is drawn in Fig. 7 for the isotropic and the � ¼ 4 aniso-
tropic lattices. We observe that the behavior ofD44 notably
changes by increasing the anisotropy.D44 decreases almost
linearly with distance in the range 3 � r � 7 ½fm� for the
anisotropic lattice while it does not on the isotropic lattice.
The linear decrease ofD44 means that Vc is a linearly rising
potential with distance, which is consistent with the lattice
calculations of Vc from the correlator of the partial
Polyakov line. On the isotropic lattice, there are unavoid-
able contributions from the polarization term in the instan-
taneous propagator on the lattice, and it is indispensable to

carry out the lattice simulations with small temporal spac-
ing to extract Vc from the instantaneous D44.
We fit the data with the function

Vsinglet
c ðrÞ ¼ Cþ �cr; (29)

in the range 0:4 � r � 0:7 ½fm� and extract the color-
Coulomb string tension �c. The fitted result is given in
Table VI. We see that the fitting is extremely worse for the
isotropic lattice, and �2=NDF approaches Oð1Þ on the
anisotropic lattice. Besides a large �2 value, the color-
Coulomb string tension on the isotropic lattice is smaller
than the Wilson string tension violating the Zwanziger’s
inequality [8]. The extracted �c increases with decreasing
the temporal lattice spacing and satisfies the Zwanziger’s
inequality on the finer lattices. Although �c from the
instantaneous D44 is still smaller than that from the corre-
lator of the partial Polyakov loop, there is little doubt
that �c does not saturate the Zwanziger’s inequality and
�c is larger than the string tension of the Wilson static
potential.
It may be surprising that we can extract �c with reason-

able �2 values on finer anisotropic lattices. We have seen in
the last section that the power law fitting of Z44 does not
work, even though the extracted value of 
44 is close to 2,
which gives a linearly rising color-Coulomb potential. On
the anisotropic lattice, the largest lattice volume is
4:674 ½fm4� (circles in the bottom panel of Fig. 7) and we
naively expect that the finite volume effects on the instan-
taneous D44 are not so serious in the range r � 2 ½fm�.
However, Fig. 7 shows that D44 does not show a linearly
decreasing behavior at r � 1 ½fm�. This indicates that we
still need to approach the Hamiltonian limit to extract the
color-Coulomb potential from the instantaneous temporal
gluon propagator and to compare the color-Coulomb string
tension with that from the correlator of the partial Polyakov
loop.

XI. CONCLUSIONS

It is a central interest to explore the IR behavior of the
gluon propagator to reveal the confinement mechanism in
QCD. In the Coulomb gauge, the instantaneous gluon
propagator suffers from significant discretization errors
on isotropic lattices. In this paper, we calculated the trans-
verse and the temporal components of the instantaneous
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FIG. 7 (color online). The instantaneous temporal gluon
propagator in position space on the isotropic lattice (top) and
the � ¼ 4 anisotropic lattice (bottom).

TABLE VI. The result of the fitting of Vc in the range 0:4 �
r � 0:7 ½fm�.
ðL�; L�; �; �Þ C [GeV]

ffiffiffiffi
�

p
[MeV] �2=NDF

(48, 48, 1, 6.00) �0:4971ð4Þ 289.9(3) 39.1

(48, 192, 4, 5.75) �1:262ð2Þ 423.2(9) 11.3

(48, 192, 4, 5.95) �1:995ð5Þ 515.7(18) 1.26

(48, 192, 4, 6.10) �2:634ð5Þ 580.0(16) 0.828
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gluon propagator on isotropic and anisotropic lattices and
studied the scaling behavior.

We find that the transverse gluon propagator shows a
nice scaling behavior on the anisotropic lattices, and scal-
ing violation observed on the isotropic lattice almost dis-
appear on � ¼ 4 anisotropic lattice. It is natural to expect
that the perfect scaling behavior can be seen and the multi-
plicative renormalizability holds in the Hamiltonian limit
a� ! 0. In the IR region, the transverse gluon propagator is
strongly suppressed on both the isotropic and the aniso-
tropic lattices and shows the turnover at about 500 [MeV]
in both cases.

We also calculated the transverse gluon propagator in
position space, and it shows that the correlation function
quickly decreases at small distances and becomes negative
in the range r� 1–2 ½fm�, and vanishes at large distances.
This means that the gluon fields have no correlation beyond
the hadronic scale, and it is consistent with the fact that the
gluons are confined in the hadrons (glueballs).

The power law fitting of the transverse gluon propagator
exhibits that the UVexponent 
UV

gl decreases with increas-

ing the anisotropy. This supports the expectation that the
gluons behave as free massless particles at sufficiently
large momentum in the continuum due to asymptotic
freedom.

In order to explore the IR behavior of the transverse
gluon propagator, we fitted the data with the power law and
found that the extracted value of the IR exponent is positive
on the isotropic and anisotropic lattices. However, our
lattice is still small to extract a reliable value of the IR
exponent on the anisotropic lattices. Fitting the transverse
gluon propagator with the Gribov-type ansatz did not work
in our lattice data, which successfully describe the SU(2)
lattice data employing different method to cure scaling
violation [15], and it deserves further study whether this
is due to the difference of the gauge group or the adopted
prescriptions to remedy scaling violation.

For the temporal gluon propagator, scaling violation was
observed both in the IR and UV regions on the isotropic
lattice in contrast to the transverse propagator, for which
lattice data do not suffer from discretization errors in the IR
region. Our results show that the lattice data on the aniso-
tropic lattices show much better scaling behavior than that
on the isotropic lattice, although the discretization errors
are still seen in the IR and the UV regions.

We observed that the time-time gluon propagator on the
anisotropic lattice is much more enhanced in the IR region
compared to that on the isotropic lattice. The turnover
observed on the coarsest lattice data on isotropic lattice
disappears on the finer lattices, and Z44 monotonically
increases with decreasing the momentum on � ¼ 4 aniso-
tropic lattice. However, the IR power law fitting did not
work for the dressing function, although the fitted value

44 ¼ 1:84ð1Þ on the finest lattice is close to the expected
value for the linearly rising behavior of the color-Coulomb

potential. We again need larger lattices as the transverse
gluon propagator.
The logarithmic law fitting of the dressing function of

the temporal propagator in the UV region indicates that the
extracted �Coul is unacceptably small on the isotropic
lattice and it takes 0.845(85) [GeV] on the finest aniso-
tropic lattice, which is the order of �QCD.

In position space, the linearly decreasing behavior can
be seen on the anisotropic lattice, and the color-Coulomb
string tension obeys the Zwanziger’s inequality on finer
anisotropic lattices. However, the extracted value is still
smaller than that obtained from the correlator of the partial
Polyakov line. Thus, we can say that although the scaling
violation is softened by decreasing the temporal lattice
spacing, the instantaneous temporal gluon propagator re-
ceives a contribution from the polarization term and it is
difficult to extract the color-Coulomb potential from the
instantaneous D44 for finite a�.
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APPENDIX A: TOLERANCE OF THE GAUGE
FIXING AND THE IR SUPPRESSION OF Dtr

The tolerance of the gauge fixing is crucial for the IR
suppression of the instantaneous transverse gluon propa-
gator. In the iterative gauge fixing on the lattice, we stop
the gauge transformation if the violation of the transver-
sality becomes less than some small number �;

	 ¼ 1

ðN2
c � 1ÞL3

�

X
~x;a;i

ðriA
lat
i ð ~x; tÞÞ2 < �: (A1)

We set � ¼ 10�14 in our calculations. In this appendix, we
examine the behavior of the instantaneous transverse gluon
propagator by varying � on the isotropic lattice.
Figure 8 shows Dtrð ~pÞ in lattice units on 564 lattice at

� ¼ 5:7 for various �. For all the cases, the measurements
are done for 20 configurations and the cylinder cut is
applied. We observe that the propagator does not exhibit
a turnover for � ¼ 10�2 and the curve deviates from that
for � ¼ 10�14 in the region pa � 1:5. Decreasing � by the
factor 100 diminishes the propagator at small momenta and
Dtr coincides within the statistical errors in the range
1 � pa. A further decrease of � suppresses Dtr in the IR
region and the transverse propagator shows a clear turn-
over. Although the data for � ¼ 10�8 are not depicted in
Fig. 8, they fall on top of the data for � ¼ 10�14 within the
error bars. Therefore, � should be sufficiently small to
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explore the IR behavior of the gluon propagator and 10�14

is small enough.

APPENDIX B: SCALING VIOLATION
IN THE FREE FIELD CASE

In this appendix, we discuss scaling violation of the
instantaneous propagator in the free field case. A more
general case was discussed in Ref. [15].

The instantaneous transverse propagator in the contin-
uum is given by integrating the unequal-time propagator
over p4,

Dð ~pÞ ¼
Z 1

�1
dp4

2�
Dð ~p; p4Þ: (B1)

In the free field case (i.e., at the zeroth order in the
coupling), the four-dimensional propagator is
Dfreeð ~p; p4Þ ¼ 1=ðj ~pj2 þ p2

4Þ and the instantaneous propa-
gator is

Dfreeð ~pÞ ¼
Z 1

�1
dp4

2�

1

j ~pj2 þ p2
4

¼ 1

2�j ~pj arctan
�
p4

j ~pj
���������

p4¼1

p4¼�1
¼ 1

2j ~pj : (B2)

On a lattice with a finite temporal spacing a�, the p4

integral is limited within the range ��=a� � p4 � �=a�.
Thus, the instantaneous propagator is given by

Dfreeð ~p; a�Þ ¼
Z �=a�

��=a�

dp4

2�

1

j ~pj2 þ p2
4

¼ 1

2�j ~pj arctan
�
p4

j ~pj
���������

p4¼�=a�

p4¼��=a�

¼ 1

2j ~pj
2

�
arctan

�
�

a�j ~pj
�
: (B3)

For a finite temporal lattice spacing, we have an extra
factor

2

�
arctan

�
��

p̂

�
; (B4)

where p̂ ¼ j ~pja� is the spatial momentum in lattice units,
and � is the anisotropy, � ¼ a�=a�. This extra factor
approaches unity in the Hamiltonian limit a� ! 0.
The free instantaneous propagator for various temporal

lattice spacings is illustrated in Fig. 9. We observe that the
propagator starts to deviate from that in the Hamiltonian
limit at larger momenta as a� decreases. Accordingly,
scaling violation is observed even in the free field case
and it goes away in the Hamiltonian limit. If we impose
some renormalization condition, Dfreeðj ~pj ¼ 1 ½GeV�Þ ¼
1 ½GeV�1� for instance, the curves in Fig. 9 cross at the
renormalization point and deviate from each other in both
the small and the large momentum regions, which is the
situation we encountered in the lattice simulations. From
this simple exercise, we expect that scaling violation for
the instantaneous gluon propagator would be moderate for
small temporal lattice spacing.
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FIG. 9 (color online). Dfreeðj ~pj; a�Þ is plotted as a function of p
for various temporal lattice spacings.
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FIG. 8 (color online). The instantaneous transverse gluon
propagator in lattice units on 564 lattice at � ¼ 5:7 for various
�. The cylinder cut is applied, but the cone cut is not.
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