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Chapter 1 

Introduction 

The theme of this dissertation is the problem of pattern classification， especially hi-

erarchical classification approach for biological signals. Inspired by combining models 

such as boosting， tree-based models， and conditional mixture models， novel probabilis-

tic neural networks (PNNs) were developed， not only to improve the accuracy of the 

classification， but also for better estimation of the structure of the classification model. 

1.1 Background 

In the field of pattern classification， various methods have been applied for image clas-

S1五cation，speech recognition， and data mining. This dissertation focuses primarily 

on neural networks (NNs)， first proposed by McCulloch [1]. The自eldof NNs has 

its origins in attempts to自ndmathematical representations of processing in biologi-

cal systems [1ト[7]， however， from the perspective of practical applications of pattern 

recognition， it is considered that biological realism can impose unnecessary constraints. 

Therefore， various NNs without biological properties have been proposed. For exam-

ple， the multilayer network， a type of NN， has proven to be of great practical value [8]. 

A1though single perceptrons can only express a linear decision surface， multilayer net-

works trained from given data are capable of expressing a variety of nonlinear decision 

1 



2 CIIAPTER 1. INTRODUCTION 

surfaces. NNs have proven to be a promising classification tool because their learning 

ability allows them to find optimum non-linear relationships between classes， and fea-

ture patterns from training data sets. For example， the back propagation algorithm 

has proven to be surprisingly successful for practical problems [9]， such as learning to 

recognize handwritten characters and spoken words [10]， [11]. Although the apprほ i-

mation properties of feed forward networks have been widely studied and found to be 

applicable， to effectively use NNs as the classifiers for applications， several problems， 

such as the choice of network structure， learning convergence， and local minima， should 

be solved [12]-[14]. 

The PNNs， which estimate the probability density function (pdf) of patter瓜 have

proven to be an e田cientand important method of pattern classification [15]-[21]. For 

realization of the PNNs， the semi parametric estimation approximates the underlying 

distribution with mixture models that consist of a number of component functions， 

usually a Gaussian model， since mixture models have a ftexible structure that can 

represent various distributions， and include a set of parameters to specify particular 

distributions. 

In particular， Tsuji et al. [21] proposed a feed forward PNN， a log-linearized Gaus-

sian mixture network (LLGMN) based on the Gaussian mixture model (GMM) and a 

log-linear model (see Appendix A for details). Although the weights of the LLGMN 

correspond to a nonlinear combination of GMM parameters， such as mixture coeffi-

cients， mean vectors， and covariance matrices， constraints on the parameters in the 

statistical model are relieved in the LLGMN. Therefore， a simple back propagation 

learning algorithm can be derived， and the LLGMN parameters are trained according 

to a criterion of maximum likelihood (ML) [22]. The LLGMN has been successfully ap-

plied to pattern classification of bioelectric signals， eιelectromyograms (EMG) [23] 
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and electrocardiograms (EEG) [21]， [24]， and has been used to develop human-interface 

applications， such as in prosthetic devices and EMG-based pointing devices and so on 

[25]-[32]. Similarly， other classification methods with high cl出 sificationperformance 

(over 95%) were proposed， and various human-interface using these proposed methods 

were developed[33]-[35]. 

Although the LLGMN has higher classification performance than other NNs， LL-

GMN and LLGMN-based classification metl肌 Is[36]-[38] su耳目 fromsome inherent 

limitations when they deal with practical signals， such as bioelectric signals. 

• To estimate LLGMN parameters， a Gaussian model number of each class must 

be fixed beforehand. When the Gaussian model number is fixed at an unsuitable 

value， the LLGMN training cannot avoid convergence at a local minimum for 

some initial weights and training data. Therefore， better classification perfor-

mance requires estimation of an optimum LLG MN structure. 

• 1n a training procedure， it is assumed that all data belong to one of the classes 

corresponding to PNN outputs (see the following equation). 

P(cla) 三 0，
C 

l:P(cla) = 1， 

(1.1 ) 

(1.2) 

where c is a class that categorizes the data. Therefore， to classify data correctly， 

training data must consist of data generated from all classes. However， in clas-

sification for some practical applications it could be impossible to measure the 

complete data used as trainingdata， because the number of predefined classes 

for classification is usually smaller than C and there are some data which belong 

to hidden classes and cannot be prepared beforehand. 
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• In general， performing pattern classification requires an understanding of rela-

tionships between feature vectors (e.g.， biological signals) and corresponding class 

labels (e.g.， motions of a measured subject). However， it is difficult to measure 

signals in the real world without various noises. In addition， in the case of biologi-

cal signals， the difference between classes can be ambiguous， such as in biological 

signals of elderly (or 1則

bels could be questionable. Consequently， classification accuracy may decrease 

significantly. 

1.2 Purpose 

This dissertation aims to improve the performance of the PNNs by combining several 

PNNs， rather than using a PNN in isolation. This dissertation proposes novel PNNs， 

the core of which is based on the idea of combining models， such as the boosting 

approach and tree-based models. Moreover， learning algorithms for some proposed 

PNNs are proposed， in which ambiguous or unlabeled training data can be successfully 

discriminated by unsupervised learning. The proposed algorithms can eliminate unex-

pected input signals， those not belonging to a predefined class corresponding to a PNN 

output， from the classification process. Some methods are also discussed for apply-

ing PNNs to human-machine interfaces， using biological signals for improved system 

performance. 

1.3 Related Works 



1.3. RELATED WORKS δ 

1.3.1 Tree・BasedModels 

There are various simple， but widely used models that work by partitioning the input 

space into cuboid regions， whose edges are aligned with the axes， and then assigning 

a simple model (e.g.， a constant， linear classificatio吋toeach region [39]. These can 

be viewed as a model combination method in which only one model is responsible for 

making predictions at any given point in the input space. The process of selecting a 

specific model， given the input data， can be described by a sequential decision making 

process， corresponding to traversal of a binary tree (one that splits into two branches 

at each node). Classification and regression trees (CART) [39]， ID3 [40] and C4.5 [41] 

are well-developed techniques， which are the major framework of tree-based models. 

However， there are some problems with tree-based methods using a simple model at 

each non-terminal node [42]. One problem is that splits are aligned with the axes or 

linear splits of the feature space. If the dimension of data is large， separating some 

classes requires a large number of splits of feature spaces， compared to other splitting 

methods. Sirat et al. proposed a neural tree (NT) using simple NNs (the perceptron of 

Rosenblatt) as classification models at each non-terminal node of the tree structure [43]. 

Although a NT can consist of a few classifiers compared to a simple model， classification 

performance using perceptrons is not high for the classification of complex data， such 

as biological data. 

1.3.2 Boosting Approach 

There has also been a growing interest in a boosting approach for the construction of 

classification systems with simple classifiers [44]-[47]. The performance of a combined 

classifier is significantly better than that of any of the base classi五ers.Adaptive boost-

ing (AdaBoost) is the most widely used form of boosti時 algorithm.Boosting can yield 
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good results， even if the base classifiers have a performance that is only slightly better 

than random[48]. Such base classifiers are called weak classifiers. In addition， this 

approach eliminates the need for evaluating unnecessary models because the algorithm 

of addition classifiers determines whether to add a classifier or not. 

1.3.3 Unsupervised Learning and Estimating the Number of 

Classes 

Some clustering methods have been proposed to identify groups or clusters of data in 

input space. The K-means algorithm [49] identifies a partition of the input space that 

optimizes (usually locally) a given clustering error， such as the sum of the squared 

distance. The self organizing map (SOM) [50]， which is one of the major cluster-

ing methods， is a high performance clustering method， and can project data from a 

high-dimensional input space down to two or three dimensions for visualization. Var-

ious examples of clustering signals measured in the real world， using an SOM have 

been reported to show the practicality of SOM. Some of the hierarchical clustering is 

also a type of clustering method. There are two types of methods for constructing a 

hierarchical tree: divisive (top down) and agglomerative (bottom up) clustering. How-

ever， a problem accompanying the use of a clustering algorithm is the choice of the 

number of desired output clusters. For clustering data generated from complicated 

distributions， many of the aforementioned methods fail to make an interpretable and 

reasonable partition. These methods either partition data from different classes into 

one class， or classify data from one class into several different classes adversely， even 

if the true number of classes is known beforehand. To avoid such limitations， and to 

perform clustering with a su伍cientnumber of classes for complicated data， a variety of 

clustering algorithms have been proposed. In these methods， in particular， statistical 

models (e.g.， GMM) are assumed to model clusters， and the parameters of the statis-
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tical model for each class are estimated correspondingly [51]， [53]. A method proposed 

in literature [51]， prepares more models than necessary beforehand， and modifies them 

until the number of statistical models is identical with the number of desired classes. 

On the other hand， a method proposed in literature [53] continues increasing the num-

ber of models， and stops when the desired (or suitable) number of classes is reached. 

However， the more complicated the models are， the more parameters are required to be 

estimated during the clustering process. Thus， much more training data is required. In 

addition， other methods using SOM have been proposed by Terashima et al. Balanced 

interactive reducing and clustering using hierarchies (BIRCH) [54]， which is a hierar-

chical clustering method that constructs a hierarchical classification tree using a linear 

classification model at each non-terminal node. The number of terminal nodes of the 

constructed tree corresponds to the number of estimated classes. In these methods， this 

problem is solved by setting some parameters constant， and the learning concentrates 

on the remaining parameters. Although these methods succeed with problems where 

the assumption fits the data characteristics well， clustering results cannot always be 

satisfying for complicated data when a significant difference exists between the true 

and assumed distributions. 

1.3.4 Elimination of U nexpected Data 

When classifying using the posterior probabilities of each class， it is assumed that all 

data belong to predefined classes in order to calculate the posterior probabilities from 

Bayes' theorem. However， the data not in those predefined classes may exist in the data 

from the real world. To deal with this problem， one class classi五cationmethod using 

a Support Vector Machine (SVM) [55] to eliminate outlier data， has been proposed 

[56]. In this method， the radial basis function serves as the SVM kernel. Although this 

method removes outlying data that are different from the given training data， there is 
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no report on multi-class classification using this approach， and it takes a long time to 

determine a model's fixed parameters through trial and error. 

1.4 Outline of Thesis 

This dissertation consists of two parts. The first part focuses on a network archi-

tecture based on the hierarchical neural tree， and an automatic construction algorithm 

for the network structure and the PNN learning algorithm used as a classifier for the 

network. The second part discusses applications of PNNs in the context of a human-

machine interface， using biological signals. 

The first part comprises Chapters 2 to 5. Chapter 2 introduces a novel hierarchical 

classification method， called H-LLGMN， which uses a PNN as a classifier at each non-

terminal network node. The proposed method automatically constructs a hierarchical 

tree by combining PNNs from given data， and can achieve a suitable network struc-

ture for network validation to improve the generalization ability. Experiments with 

biological signals prove the feasibility of the proposed method. 

In Chapter 3， a pattern classification method with a boosting approach is proposed 

to achieve high classification performance using a combined weak classifier based on 

LLGMNs. The network structure and its decision rules are discussed as well. Then， 

the learning algorithm of the hierarchical classifier simplified H-LLGMN is proposed in 

Chapter 3. This method can automatically construct a suitable classification network 

and each hierarchical classi五eris based on a boosting approach from given training 

data. Simulation experiments are performed to compare the proposed method with 

other classification methods. Finally， pattern classification experiments for biological 

signals are conducted. These experiments indicate that the proposed method can 
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successfully construct a suitable network for classification based on artificial data and 

real biological signals. 

Chapter 4 shows an improved learning algorithm for pattern hierarchical classifica-

tion， based on an unsupervised learning algorithm for clustering. First， an unsupervised 

learning law for the LLGMN is proposed. The construction algorithm using the unsu-

pervised learning law can estimate the number of terminal nodes corresponding to the 

number of classes according to statistical information obtained only from the training 

data. Furthermore， unnecessary splits in the classification tree can be avoided with a 

pruning rule based on a threshold of the ambiguity of the LLGMN outputs and the 

amount of training data at each non-terminal node. In this method， the classifica-

tion tree makes binary splits at each non-terminal node. In numerical simulations， 

the proposed method proves superior to conventional methods in its estimation of the 

number of classes. Pattern classification experiments for EMG signals are conducted， 

and indicate that the proposed method is more effective in classifying data with similar 

features， compared to a traditional supervised learning algorithm. 

Chapter 5 proposes a novel pattern classification method using the prior distribution 

of training data and PNNs， such as the LLGMN. Prior distribution based on the 

GMM allows the proposed method to remove unnecessary data， not assumed from 

the training procedure. In addition， the structure of the prior distribution can be 

automatically estimated from the training data. This chapter adopts the LLGMN 

for classification. After elimination， the LLGMN classi五回 inputdata into predefined 

classes. This procedure enables the proposed method to avoid classifying unexpected 

data. The va1idity of the proposed method is shown with the classification results of 

artificial data and EMG signals. 

Chapter 6 constitutes the second part of this dissertation. It mainly focuses on 
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the development of a new human-machine interface for text input. It also focuses on 

improving the selection performance of a control system for electric home appliances 

called a Bio-Remote. 

Finally， Chapter 7 concludes this dissertation and gives some challenges and future 

works. 



Chapter 2 

A Tree-based Hierarchical 
Probabilistic Neural Network 

2.1 Introd uction 

In this chapter， a novel hierarchical probabilistic neural network with a tree structure 

(Hierarchical Log-Linearized Gaussian Mixture Network， H-LLGMN) is proposed. By 

using LLGMNs as PNNs in partitions at each non-terminal node， the H-LLGMN is 

expected to discriminate with consideration to individual user variation and repro-

ducibility uncertainty， signals measured from the human body. The generalization 

ability of the H-LLGMN can be considered for cross-validation when constructing the 

metaclasses of the hierarchical tree. 

This chapter is organized as follows: Section 2.2 introduces the H-LLGMN. Section 

2.3 presents the experiments on shape signals (one of the biological signals) of the 

proposed method. Finally， the last section summarizes the chapter. 

2.2 H-LLGMN 

In this section， details on the construction algorithm of a hierarchical tree for classi-

fication based upon LLGMNs are explained. The structure of the proposed network 

is shown in Fig. 2.1. During the construction procedure of the classification tree， 

11 
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metaclasses are created from predefined classes that cannot be accurately classified 

by single LLGMN. Then， by adding LLGMNs for classification of each metaclasse， 

accurate classification can be performed. 

2.2.1 Construction Hierarchical Tree 

The classi五cationnetwork starts from a single LLGMN i.e.， the root node and a L1-

GMN is added at non-terminal nodes corresponding to metaclasses when not satisfying 

the termination criterion. Finally， the training data is accurately classified by perform-

ing hierarchical classification. At each level of the classification tree， LLGMNs are used 

to achieve classification of metaclasses corresponding to non-terminal nodes. Even for 

data with complicated distributions， a suitable network structure for classification can 

be estimated after this procedure. The construction algorithm for the hierarchical tree 

is summarized as follows. 

1. A LLGMN is trained using all data. 

2. If the classifcation accuracy for the training and validation data is lower than the 

threshold， metaclasses are created to integrate similar classes. 

3. in order to classify data corresponding to metaclasses， LLGMNs are added and 

traind by the corresponding data. 

4. Steps 2 and 3 are repeated until the termination criterion is satisfied for all classes. 

By performing these procedures， a suitable network structure for classification of com-

plicated data can be constructed. Next， the determination algorithm for constructing 

metaclasses based upon the classification results is proposed. 
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Fig. 2.1: Example of tree structure constructed by the proposed method. 

2.2.2 Construction of Metaclass 

In order to merge some classes into a metaclass， two criteria using the classification 

First， a set 9 is defined as 

accuracy of the training and validation data are utilized in the proposed method. 

9 = {C1，C2，・ ..，CK}， (2.1) 

where K is the number of classes and Ci(i = 1，2，... ，K) is the set of data belonging 

to the ith class. A LLGMN is trained using 9 as the training data. To evaluate the 

classification accuracy of the training data， the evaluation function is defined as 

玄 ID(Cj，Ci)1

Ft(i) =竺と1 (2.2) 
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where D(Ci) is the set of data belonging to class Ci and D(Ci， Cj) is the set of data 

that belongs to class Ci and is classified into Cj by the LLGMN. ID(Cj，Ci)1 is the 

number of data points for D(Cj， Ci). If Ft(i) is greater than the threshold Tht， the 

data classified into Ci is set as the metaclass .MCi = UJ~lD(Cj ， Ci). This metaclass is 

added into 9 and Ci is removed from g. By merging some classes， which cannnot be 

accurately classified， into metaclass， a new LLG MN for classifying the metaclass can 

be added into classification tree. 

Although necssary LLGMNs are added to the classification tree based upon inad-

equate classification of the training data， when the hierarchy of tree grouws too large， 

there is possibility of learning convergence and local minima because of the decrease in 

the number of training data at each node. After the classification tree is constructed， 

the addition of LLGMNs for classification accuracy generalization is conducted by US-

ing validation data. An evaluation function that considers the classification accuracy 

of the validation data is defined as 

|D(Ci， Cj)1 
凡(i，j) I ~ :.;{';.， ~ ~ 

ID(Ci)1 
(2.3) 

If凡(i，j)is greater than threshold Thv， Ci and Cj are merged into a metaclass. This 

metaclass is then added to 9 and Ci and Cj are removed from g. If all 凡(i，j) are 

smaller than Thv， this process meets the termination criterion and is stopped. 

Through the above criteria， the model construction is performed based on complex-

ity of data and generalization of classification accuracy. 

2.3 Hand Shape Classification Experiment 

Motion classification experiments using finger-shaped signals were conducted to exam-

ine the performance of the proposed method. Three subjects (A， B and C) participated 

in the experiments. 
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Hand shape 

，f 

Fig. 2.2: The 31 pattern of hand shape. 

The subjects were加 kedto perform 31 types of motions (K = 31) shown in Fig. 

2.2. 

Five shape signal channels (L = 5) were rectified and digitized using an A/D 

converter (sampling frequency: 167 Hz). Five shape sensors (Measurand Corp.) were 

attached to each finger of the right hand. These sensors are 1-DOF measuring devices. 

One ends of each sensors was fixed to the wrist of the subject， and while the other 

ends were fixed to the tips of the five fingers. 1n addition， the sensors were passed 

through tubes fitted to the fingers for measuring the angles of the fingers. 1n order 

to五xthe sensors to easy-to-use positions for each subject the exact positions of the 

sensors were not specified. The measured signals SI (n) were norrr凶 izedas follows to 
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obtain a maximum value of 1: 

SI(n)-Sft 
NI(n)=f  srax 

-sr (2.4) 

where sr is the mean value of Sdl(n) measured when the hand is relaxed， and Srax 

is the mean for the maximum value of each channel. The normalized signals were 

compared with a prefixed threshold .Md to determine whether the subject changed the 

motion of the hand. In addition， the signals N1(n)(l = 1，・・・，5) are norrr叫 izedto 

make the sum of all 5 channels equal to 1 as follows: 

N1(n) 
I(n) =τ一一一 (2.5) 

乞N1(η)
1=1 

The values of the parameters thresholds for the metaclasses were Tht = 1.0 and Thv = 

0.5; each class had 20 training data points and veri五cationdata. For each subject， 

the proposed network is trained by using training data measured from corresponding 

subject. 

The mean values and standard deviations of the classification rates for three inde-

pendent trials are shown in Fig. 2.3. The number of validation data was 300 samples 

per class. The number of constructed metaclasses for Subject A， B and C were 0， 2 

and 7 respectively. 

For the verification of the classification performance of the proposed method， single 

LLG MN， single MLPs and NT using MLPs based on approach of proposed method 

were used for the comparison. MLPs had four layers (two hidden layers)， the units of 

which were set as 5， 10， 10 and 31. Table 2.1 shows the classification results by the 

proposed method and conventional methods. As shown in table， the proposed method 

(H-LLGMN) can successfully estimate the suitable structure of network and achieves 

higher discrimination rates than the conventional methods. 
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Fig. 2.3: Discrimination results for three subjects. 

Table 2.1: Discrimination accuracies of LLGMI¥J， H-LLGMN， and MLPs. 

Subjects A B C 

Single NN 

NT 

LLGM1ぜ 195.6土2.4892.7土4.4678.6土12.0

MLP 182.1:i:2.90 52.1土8.3656.0土9.12

H-LLGMN I 95.6:i:2.48 95.0:i:2.36 86.0土6.69

加lLP 88.9土3.2278.6土8.5373.2土8.17

[%] 
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Fig. 2.4 illustrates an example of the constructed classification tree for Subject C. 

Each non-terminal node is labeled according to classes corresponding to metaclasses. In 

this example， the number of estimated metaclasses is 7 ({C1， C3d， {C4， C5}， {Cs， C9}， 

{C肋 Cll}，{C山 C叶，{C叫 C19} and {C26， C27})， where Ci is the ith motion. Only 

the metaclass {C1> C3d is estimated based on the classification results of the training 

data. The effectiveness of using validation data to construct the classification tree is 

confirmed from the other metaclasses. 
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Fig. 2.4: Constructed tree structure for subject C. 

Fig. 2.5 shows the mean values and standard deviations of the signal patterns for 

Motions 1 and 31. This figure shows that the patterns of Motion 1 are similar to those 

of Motion 31. As a result， a single LLGMN cannot accurately identify the di旺erence

between these patterns. However， the proposed method can estimate the distribution 

of each type of motion accurately. Similarly， the patterns of Motions 8 and 9 overlap 

(see Fig. 2.6); a more suitable structure can be constructed by the proposed method. 

Since the distribution of signals belonging to Motion 9 are included to those belonging 

to Motion 8， a metaclass is constructed due to decreases of classification accuracy 

of validation data. Fig. 2.7 shows the mean values and standard deviations of the 

classification rates of each type of motion for Subject C. From this五gure，it can be 

clarified that the classification rate is improved in particular for Motion 5， 13， 19 and 

27 by the proposed method. 

From these resu1ts， it is clear that by adding LLGMNs to a network to estimate 

the distribution， the proposed method can achieve more accurate classification than a 

single LLG MN. 
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Ch.l Ch.l 

Ch.4 Ch.3 Ch.4 Ch.3 

恥fotion1 恥fotion31 

Fig. 2.5: Rader charts of hand gesture patterns of gesture 1 and gesture 31 for subject C. 
The line indicates the mean value of each channel， and the regions of shade imply + 1 5.D. 

Ch.l Ch.l 

Ch.4 Ch.3 Ch.4 Ch.3 

恥1otion8 恥1otion9 

Fig. 2.6: Rader charts of hand gesture patterns of gesture 8 and gesture 9 for subject C. 
The line indicates the mean value of each channel， and the regions of shade imply + 1 5.D. 
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Fig. 2.7: Oiscrimination results of finger motions for subject C. 

2.4 Concluding Remarks 

In this chapter， a novel hierarchical probabilistic neural network with a tree structure 

(H-LLGMN) was proposed in order to enable the discrimination for multiple classes of 

biological signals. In the proposed method， the structure of the classification network 

is constructed by adding LLGMNs as classifiers to estimate the distribution of training 
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data. The structure is evaluated based on the classification accuracy of the validation 

data. Comparison experiments of the proposed medhot and other methods were carried 

out， and confirmed both the construction of suitable structure and a high classification 

performance by the proposed method. 



Chapter 3 

Pattern Discrimination using 
Probabilistic Neural Networks 
based on Boosting AIgorithms 

3.1 Introd uction 

This chapter proposes a novel hierarchical classification method that can automatically 

construct classification models through a learning network. In this method， the LL-

GMN is utiliszed in order to create a simple and weak classi五er.The proposed method 

can estimate the number of LLGMNs corresponding to the pattern complexity， accord-

ing to statistical information obtained from the training data. 

The next section shows the proposed method for constructing a suitable model using 

the boosting approach. The results of computer simulation and pattern classification 

experiments of biological signals are presented in Section 3.3. Finally， the last section 

concludes this paper. 

23 
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3.2 Proposed Pattern Classificatin with the Boost-

ing Approach 

In the proposed method， the LLGMNs are used in order to create simple classifiers for 

the classification of input vectors to produce binary splits. Structure of each classifier 

is a hierarchical tree using LLGMN as each non-terminal node. By combining classi-

fiers based on a boosting approach， the network can discriminate complex data， and 

calculate a posteriori probability for the training data. The structure of the network 

and the constructing algorithm are explained below. 

3.2.1 Structure of the Network 

Initially， the network consists of C classifiers， corresponding to the number of classified 

classes. C is the number of classes of training data. Each classifier achieves a binary 

cla問自cationto calculate the posteriori probability of the cth class (c = 1，2，'" ，C). 

For binary classi五cation，the parameter of LLGMN J( is set as 2. Uq
) (a) (c = 1，・・・ ，C，q=

1， . .. ，Qc) is the posteriori probability calculated by classifier， where Qc is the num-

ber of classifiers used for the classification of the cth class added based on boosting 

approach. Then， the posteriori probability Oc(a) is given as 

Oc(z)=』九 (L~q)(æ)) (3.1) 

The structure of proposed method is shown in Figure 3.1. The entropy of outputs is 

also calculated to present the risk of misclassification. The entropy is defined剖

C 

H(a) = -L Oc(a) logOc(a) (3.2) 

If the entropy H (a) is less than the discrimination threshold Te， the class with the 

largest probability is determined according to Bayes' decision rule (shown in equation 
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Fig. 3.1: The structure of the proposed method. 

3.3). Otherwise， the determination is suspended. 

Y(x) = argmaxOc(x). (3.3) 

3.2.2 Learning of Hierarchical Classifier 

Structure of classifier is hierarchical tree using LLGMN. When the learning of the cth 

class is performed， the training data is divided into two groups， Gc and Gc， where Gc is 

a set obtained from the training data belonging to class c， and Gc is the complementary 

set of Gc・Anexample of constructed classifier is shown in Fig. 3.2. 

Consider a training set {z(n)，T(n)}(n=l，---，NLwhere T(n)=(Tjn)，zjn)).If 

the input vector X(n) belongs to class c，行n)= 1， and TJn)ニ o.An energy function 

according to the minimum log-likelihood training criterion can be derived as: 

O
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(3.4) 
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Fig. 3.2: The structure of classifier. 

In the training process， modification of the LLG MN's weightムwik，m)is defined as: 

δJ(n) 

θω子m)

ム (k，m) ι幻 (n)

叫 η白石???

五石4品品Z手手手志品;;トトト，rr耳河が咋;百石可が;石訂が;可ポ了戸(

(ω2引)ハ
((2)Ok，m 一 -LEt))X(n)

(3)Ok 占 h

where η> 0 is the learning rate. 

(3.5) 

(3.6) 

LLGMNs are added to avoid the misclassification of training data belonging to 

Ge. To evaluate the misclassi五cationaccuracy of training data belonging to Ge， an 

evaluation function is defined as 

F'=虫色c)1一

IGel 
(3.7) 

If F' is greater than the threshold Th'， more LLGMNs are added hierarchically， and 

are trained using a two class set D(c， c) and D(c， c). Then， the posteriori probability 
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L~q)(x) ， which is calculated by the qth classi五er，is defined as， 

時)(x)= )-t ((社叩)(x))Iめop)サ (3.8) 

where Jq is the number ofLLGMNs added to the qth cla回五er，op'ぺx)is the posteriori 

probability calculated by the jth LLGMN in the qth cla回日erand oiq，川x)is set to 1. 

By combining the LLGMN hierarchically to construct a network， the misclassification 

of data belonging to class c' can be avoided. 

3.2.3 Construction Network 

In the proposed method， the addition and learning of the classifier is repeated for each 

class. A classifier is initially trained to classify the training data into Gc and Gc. If 

01(X) > 02(X)， it is considered tl肌 xis classi五edinto class c. Then， D(c，司isthe data 

set belonging to G c， and is classi五edinto Gc. An evaluation function that considers 

the training accuracy is defined as 

F= IGcl一 ID(c，c) I 
一

IGcl 
(3.9) 

If F is greater than the threshold T h， a classifier is added for accurate discrimination. 

To train newly added classifier， training data D(c， c) and G吉 areused. Repeating the 

addition of classifiers until the evaluation function is less than the threshold Th allows 

model construction and classifier learning to take place simultaneously. 

Through the above training， the model construction and training of the classifier 

are performed based on a boosting approach. 

3.3 Experiments 
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Fig. 3.3: Artificial data used for discrimination experiments. 

Simulation Experiments 3.3.1 

First， pattern classi五cationexperiments on arti五cialdata were conducted for evaluating 

the performance of the proposed method. A two-dimensional input space consisted of 

Examples of the six classes (C = 6) each class consisted of five Gaussian sources. 

data are shown in Fig. 3.3. For each class， we generated 200 samples to train each 

LLGMN (Mk = 1， K = 2)， and then validated the trained network using test data (500 

samplesjclass). The values of the parameters Te， Th and Th' were set as 0.8. 
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For the verification of the classification performance of the proposed method， single 

LLGMN， SVM and BPNN classifiers were used for the comparison. BPNN had four 

layers (two hidden layers)， the units of which were set as 2， 10， 10 and 4. Also， a SVM 

having second-order polynomial kernel was used to perform a two-class classification. 

By combining two-class classifiers， multi-class classification using SVMs was achieved. 

Fig. 3.4 shows the classification results by the proposed method and conventional 

methods for ten independent trials (the initial weights and traini時 datawere chosen at 

random). The results clearly indicate tl凶 theproposed method acl山 vedthe best clas-

sification rate among all the four methods. The mean values and standard deviations 

of the number of added LLGMNs for each class are shown in Fig. 3.5. For estimating a 

simple distribution such as a class six， a single LLGMN was used. On the other hand， 

many LLGMNs were added to the network for the estimation of complex distributions. 

These results indicate that the proposed method can estimate successfully the suitable 

class number of each class， and has the advantage that no unnecessary LLGMNs need 

to be added while evaluating the discrimination accuracy for determining the network 

structure. 
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Fig. 3.5: The number of added LLGMN. 

Pattern Classification of Finger Signal Shapes 3.3.2 

Next， motion classi五cationexperiments using finger-shaped signals were conducted for 

Three subjects (A， B and C) examining the performance of the proposed method. 

participated in the experiments. 

Experimental Conditions 

The subjects were asked to perform 31 types of motions (C = 31). The motions are 

shown in Fig. 3.6. Five shape signal channels (D = 5) were rectified and digitised using 

an A/D converter (sampling frequency: 167 Hz). Five shape sensors (Measurand Corp.) 

These sensors are 1-DOF measuring were attached to each finger of the right hand. 

devices. The attached sensors are shown in Fig. 3.7. One ends of the sensors were五xed

to the wrist of the subject， and the other ends were fixed to the corresponding tips of 

fingers. Also， for measuring the angle of the finger， the sensors were passed through 

the tubes that were自ttedto the五時ers(see Fig. 3.7). In order to fix the sensors to 

easy-to-use positions for each subject the exact positions of sensors were not specified. 
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Hand shape 

30 

Fig. 3.6: The 31 pattern of hand shape. 

Fig. 3.7: Shape sensors attached to fingers. 

The measured signals Sd(n) were normalized as follows for obtaining a maximum value 

of 1: 

ぬい)-s:/ 
Nd(η)=t  Sdαz-Sjt (3.10) 
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where S:/ is the mean value of Sd(n) measured when the hand is relaxed， and S:rax 

The normalized signals were is the mean of the maximum value of each channel. 

compared with a prefixed threshold Md to determine whether the subject changed the 

motion of the hand. In addition， signals Nd(n)(d = 1，・・・，5) are normalized to make 

、、・155'
t
Eム''A 

q
d
 

〆，，‘‘、

the sum of all D channels equal to 1出 follows:

Nd(η) 
d(n) = r-o.n 

2:~=1 Nd(η) 

The values of the parameters Th and Th' were set as 0.8 and Ald was set as 0.5. 

In this experiment， the shape signals measured beforehand were selected using our 

proposed method. For each subject， the proposed network is trained by using training 

data measured from corresponding subject. 

Pattern Classification Resu1ts 

The mean values and standard deviations of the classification rates are shown in Fig. 

3.8. BPNN had four layers (two hidden layers)， the units which were set as 5， 10， 10 
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Fig. 3.9: Discrimination results of finger motion for subject C. 

and 32. Moreover， 32 SVMs were used for the classification. As shown in the figure， 

the classification results of the proposed method are similar to those of SVM and 

single LLGMN for the case of Subjects A and B. In the case of Subject C， however， the 

classification results of other methods degrade more than that of the proposed method. 

Table 3.1 shows an example of the number of added classifiers and LLGMNs in the 

network of Subject C. Here， we infer that a better classification is achieved by adding 

the classifiers and LLGMNs. 

Fig. 3.9 shows the mean values and standard deviations of the classi五cationrates 

of each type of motion for Subject C. From this figure， it can be clarified that the 

For example， Fig. 

3.10 shows the mean values and standard deviations of the signal patterns of Motions 

classification rate has improved overall by the proposed method. 
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Table 3.1: The number of added classifiers and LLGMNs. 

class classifiers LLGMNs 
2 5 

2 1 1 

3 1 1 

4 3 3 
d 戸 2 2 

6 1 1 

7 1 1 

8 4 4 

9 2 6 

10 3 3 

11 2 4 

12 2 2 

13 2 3 

14 1 1 

15 1 1 

16 1 1 

17 1 1 

18 1 

19 2 6 

20 1 

21 1 

22 1 

23 1 1 

24 1 1 

25 1 l 

26 2 4 

27 3 4 

28 1 1 

29 1 1 

30 1 1 

31 2 7 

1 and 31. This figure shows that the patterns of Motion 1 are similar to those of 

Motion 31. As a result， a single LLGMN cannot accurately identify the difference 

between these patterns. However， the proposed method can estimate the distribution 
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Fig. 3.10: Rader charts of hand gesture pattern of gesture 1 and gesture 31 for subject C. 
The line indicates the mean value of each channel. 

Ch.1 Ch.l 

Ch.4 Ch.3 Ch.4 Ch.3 

恥1otion8 Motion 9 

Fig. 3.11: Rader charts of hand gesture pattern of gesture 8 and gesture 9 for subject C. 
The line indicates the mean value of each channel. 

of each type of motion accurately using more than one LLGMN. For example， the 

patterns of Motions 8 and 9 overlap (see Fig. 3.11); a more suitable structure can be 

constructed by the proposed method by combining the LLGMNs. From these results， 

it is clear that by adding LLGMNs to a network for the estimation of the distribution， 

the proposed method can achieve a more accurate classification than a single LLGMN. 
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3.4 Concluding Remarks 

In this chapter， a novel hierarchical probabilistic neural network based on a boosting 

approach is proposed. 

In the proposed method， the structure of the classification network is constructed 

by adding LLGMNs as classifiers to estimate the distribution of training data. By 

evaluating the structure based on classification accuracy， the addition of unnecessary 

LLGMNs can be avoided. 

Experimental results on the artificial dataset and hand shape signals prove the fea-

sibility of the proposed method. Comparison experiments of the proposed method and 

single LLGMN were conducted， and the high classification performance ofthe proposed 

method was confirmed. It has been shown that the proposed method is suitable for 

classification of complex data， since the required classifiers will automatically be added 

in the network in order to perform an accurate classification. 



Chapter 4 

Pattern Discrimination considering 

U nknown Classes 

4.1 Introduction 

This chapter proposes a new pattern classification method using prior probability of 

EMG signals. In this method， estimated prior probability based on GMM is utilized 

for elimination of unexpected data. Moreover， the structure of prior distribution for 

data can be automatically estimated through a training procedure. After elimination， 

LLGMN can classify data into predefined classes. This procedure enables the proposed 

method to avoid the classification of unexpected data. 

The rest of this chapter is organized as follows. Section 4.2 proposed the details 

of the method of elimination of unexpected data and learning algorithm of the pro-

posed structure. In Section 4.3， the EMG pattern classification method using LLGMN 

is provided. The results of computer simulation and phoneme pattern classification 

experiments of EMG signals are presented in Section 4.4. Finally， the last section 

concludes this chapter. 

37 
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4.2 Elimination of U nexpected Data 

In the proposed method， the GMM are used in order to remove unnecessary data not 

belonging to predefined classes. The structure of GMM consists of some Gaussian 

distribution component. By estimating the number of components automatically， suit-

able structure for elimination can be constructed. The structure of the network and 

the constructing algorithm are explained below. 

4.2.1 Structure 

The prior probability F(x) is given as 

F(x) =乞αmg(x，I-tm， ð~E) ， (4.1) 

where x is inputted data and 1¥-1 denotes the number of components，αm is the mixture 

coe血cientfor component m， and g(x，μm' ð~E) is a Gaussian distribution with mean 

vector μmand covariance matrix ð~E. E is the identity matrix. If F(x) is greater than 

the threshold Tp， the data is classi五edinto predefined classes by LLGMN. Otherwise， 

the classification is suspended. 

4.2.2 Learning AIgorithm 

The proposed method can automatically estimate the suitable number of components 

corresponding to the complexity of training data. In the training procedure， a set of 

vectors (X1，.・.，XN) are utilized. The details of the proposed training scheme is as 

follows: 

Step 1 Initialization: 

1. Set the number of components 1¥-1 as 1 and the termination threshold d(p) as any 

given real number. 
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2. Initialize the mean vector μ1 with randomized values， and then set di as the 

maximum value of the ii element of E calculated from the following equation and 

α1 as 1. 

T
 μ
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(4.2) 

Step 2 Update the mean vector: 

1. Set the training iteration t as 1. 

2. Update the mean vectors according to the following equations for all training 

data [50]. 

ム内F(zn)=(l-3)(znーん)

m' = argmaxg(xn ， μm ， ð~E) 

(4.3) 

(4.4) 

where T is the predefined maximum iteration number and m = 1，'" ，1¥11. 

3. Classify training data into A1 groups decided from equation 4.4. 

4. Compute ð~ and the mixture coe伍cientαmaccording to equations 4.5 and 4.6 

[5可.

8:'一 = max8}一
m)

司司 (4.5) 

IIGml1 (4.6) αm 一「

where ð~m) is the ij element of Em (see equation 4.7)， Gm is the set of data 

clasified into group m and IIGml1 is the number of data belonging to group Gm. 

E~ = LXnEGm (Xnー μm)(Xnー μm)T
-mー

IIGml1
(4.7) 

5. This step of training repeats， until t reaches a predefined number T. 
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Step 3 Addition of component: 

1. Stop the training proced ure， ifは> d(p) - f. and 1'.1 > 1， where f. is a small 

positive number. 

2. Otherwi民 acomponent is added. d(pωωpω おS附部 t廿h問ema杭制X泊mu

next validation. Then， the mean vectors of the added component is initialized 

m凶 omlyand ð~ and αm of all components are calculated according to Equations 

(5) and (6). Then， go to Step 2. 

4.3 EMG Pattern Classification Method 

The proposed EMG pattern classi五cationconsists of three parts: (1) EMG feature 

extraction， (2) elimination of unexpected EMG signals and (3) classification network 

(LLGMN). 

L channels of EMG signals are recorded using surface electrodes attached to mus-

cles. The EMG signals are measured with a sampling frequency f = 1000Hz， then 

rectified and filtered by a Butterworth filter (cutoff frequency: 1Hz). Each sampled 

EMG pattern， defined出 EMG(t)w邸時malizedto make the sum of L channels 

equal to 1 using the following equation， 

X~t) = ~MGz(t) -EMGr 
I-27ニl(EMG市)-EJ.1;fGi，t) ， 

(4.8) 

where EMGr is the mean value of EMGz(t) measured while relaxing the muscles. The 

feature vectors a(t) = [Xl (t)， X2 (t)， .. . ，XL(t)J are i叩 uttedinto classification network. 

A power level is estimated from the EMG signals as 

ld人ElvlGz(t)-EMGr 
oωer(t) = .:;. ) : 

L台 EJifGraz-EMGfH
(4.9) 
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where ElvfGitaX is the mean value of ENIGI(t) measured under the maximum voluntary 

contraction. The power level is compared with a pre五xedthreshold Md to determine 

whether the motion actually happened. 

For elimination of unexpected EMG signals， a prior probability calculated from 

GMM described in Section 4.2 is employed. EMG signals corresponding to predefined 

classes are classified by LLGMN. The output of the LLGMN corresponds to the pos-

terior probability P(klx(t)) of class k given the input vector x(t). The entropy of 

outputs is also calculated to prevent risk of misclassi五cation.The entropy is defined as 

K 

H(x(t)) = -乞(3l0k(仰 ( 4.10) 

If the entropy H(x(t)) is less than the classification threshold Te， the specific mo-

tion with the largest probability is determined according to the Bayes' decision rule. 

Otherwise， the determination is suspended. 

Y(z(t))=argmpx(3)OK(t)・ (4.11) 

4.4 Experiments 

4.4.1 N umerical Experiments 

First， pattern classification experiments on artificial data were conducted for evaluating 

the performance of the proposed method. A two-dimensional input space consisted of 

three classes (K = 3) and predefined class， each class and predefined class consisting 

of three components. Examples of the data are shown in Fig. 4.1. For each class， 200 

samples were generated to train， and then the trained network was validated using test 
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Do 0.4 0.8 

(a) All data 

ヘ，
台0.51 

Do 0.4 0.8 
ob 

0.4 0.8 

(b) Data belonging to class 1 ( c) Data belonging to class 2 

.令

0.51 0.5 
4隊

呼守票F • 
。

0.4 0.8 
。。

0.4 0.8 

(d) Data belonging to class 3 (e) Data not belonging to 

predefined classes. 

Fig. 4.1: Artificial data used for classification experiments 
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Fig. 4.2: Classification results 

data (500 samplesjcla判.The values of the parameters were Tp = 0.01， E = 0.01 and 

te = 0.8. 

Fig. 4.2 shows the classification results by the proposed method for 10 independent 

trials (the initial mean vectors and weights of LLGMN were chosen at random). The 

results indicate that the proposed method achieved the elimination of unexpected data 

and high classification performance. 

In order to confirm the e旺'ectivenessof automatic addition of components， GMMs 

that五xedthe number of components were used for comparison. In this experiments， 

test data for va1idation were divided into the data belonging to predefined classes and 

the unexpected data by the proposed method and the traditional GMMs (the number 

of components are 5， 10， 15). Fig. 4.3 shows the e1imination results by the proposed 

method and the other methods using五xedGMMs. The mean value of the number 

of components for GMM was 17.6土 3.0. These resuIts indicate that the proposed 

method can estimate successfully the number of components even for unexpected data 
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Fig. 4.3: Comparison of elimination results 

not belonging to the pre【lefinedclasses. 

4.4.2 EMG pattern classifications 

Phoneme classification based on EMG signals was conducted to examine performance 

of the proposed method. In the experiments， EMG signals measured from mimetic and 

cervical muscle were used to classify six Japanese phonemes (ja/， /i/， /u/， /e/， /0/， 

/n/). In this experiment， classes corresponding to five phonemes (ja/， /i/， /u/， /0/， 

/n/) were used as predefined classes and EMG signals belonging to utterance /e/ were 

set as unexpected EMG signals. Five subjects (A， B， C， D and E) participated in the 

experiments. 

Five pairs of Ag/ AgCl electrodes (NT-511G: NIHON KOHDEN Corp.) were at-

tached to the subject' s face (Depressor A時 uliOris， Zygomaticus Major， Masseter， 

Digastric， Depressor Labii Inferioris; a pair of electrodes on each muscle) with con-

ductive paste. The EMG signals from five muscles were recorded (sampling frequency: 

1kHz). The values of the parameters were Tp = 0.01， E = 0.01， te = 0.8 and Jvfd = 0.25. 

Five sets of randomly chosen initial mean vectors and weights were used to train 
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Fig. 4.4: EMG classification results for five subjects 

each sample data. For each subject， the proposed network is trained by using training 

data measured from corresponding subject. The mean values and standard deviations 

of the classification rates are shown in Fig. 4.4. From this figure， it can be seen that 

the elimination of unexpected EMG signals and the classification accuracy of EMG 

signals belonging to predefined classes are achieved by using the prior probability of 

EMG signals and LLGMN for classification. 

4.5 Concluding Remarks 

In this Chapter， in order to deal with the classification problem with ambiguous teacher 

signals， a hierarchical clustering has been proposed. In this method， a LLGMN which 

a probabilistic NN derived from the GMM， is used as non-terminal node in the classi-

fication tree. 

Entropy of the LLGMN ' s outputs and the data number at each node are used as 

stopping and pruning indices in the proposed method， and unnecessary splits in the 

structure of classification tree can be avoided， so that the proposed method can make 
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a interpretable and reasonable partition of the training data according solely to its 

statistical characteristics. 

In the numerical simulations， the proposed method shows superior to the conven-

tional method in the estimation of the number of classes. And from the results of EMG 

pattern classification experiments， it is considered that the proposed method is more 

e汀.ectivein classification data with the similar features， comparing with a traditional 

method where the LLGMN is trained using a supervised training algorithm. 
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 Pattern Discrimination using 
U nsupervised Hierarchical N eural 
Network 

5.1 Introd uction 

In this chapter， a novel hierarchical clustering method is proposed. In this method， 

the GMM is used to model thestatistical characteristics of feature vectors with no 

restriction assumed on its parameters， and a probabilistic NN derived from the GMM， 

called log-linearized Gaussian mixture network (LLGMN)， is utilized for partition at 

each non-terminal node. In addition， this paper proposes an unsupervised learning law 

for the LLGMN. The proposed method can estimate the number of terminal nodes 

corresponding to the number of classes according to statistical information obtained 

solely from the training data. Furthermore， unnecessary splits in the classification 

tree can be avoided with a pruning rule based on a threshold of the ambiguity of the 

LLGMN ' s outputs and the number of data at each non-terminal node. In this paper， 

the classification tree makes binary splits at each non-terminal node. 

In the following section， we propose an unsupervised learning law for the LLGMN. 

In Section 6.3， the algorithm for constructing the classification tree is introduced. 

47 
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Section 6.4 presents experiments on artificial data and the EMG signals to examine 

the validity of the proposed method. Finally， Section 6.5 gives a summary of the 

chapter. 

5.2 Unsupervised Leaning Algorithm of LLGMN 

Although the LLGMN can be trained with a supervised learning algorithm as men-

tioned， its classi五cationperformance degrades significantly， when the teacher signals 

are not reliable. However， there have been no unsupervised learning algorithms devel-

oped for LLGMN so far. In this chapter， an unsupervised learning algorithm based 

on the entropy criterion is introduced. Given the number of classes C， the entropy is 

defined as: 
n C 

JSO = -~二乞 (3)ojn)log(3)OF) (5.1) 
n=l c=l 

The proposed unsupervised learning algorithm seeks to find proper parameters of LL-

GMN by minimizing Equation (9). The weight ' s modification sωrm)is deaned as: 

ムイ，m)

。J;3
θωr，m) 

ηθJ;3 
θωrw 

N C 

zhT(-2二乞 (3)o~n) log(3)o~n)) 
υ LVh n=l c=l 

N C 

-γγ一三一(3)O~~) loa(3)O~~) 
告白θ(3)OF) C3  d 

×子供)OF)δ(2)ojい(2)1.以
' 一 一 一昨1θ(2)otL，θ(2)以叫，m)

=-(Jso-1090)ojn)(2)OJ1xjn). 

(5.2) 

(5.3) 

After the LLGMN is well trained， a reasonable C-class partition can be performed 

on the training data. However， for some ill-posed initial weights， the LLGMN may be 

trained to cluster all training data into one cl邸 sand the energy function JSO， converge 
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to some local minimum. Some methods， such as the k-means clustering， can avoid this 

problem by setting mean vectors derived from the training data as initial weights. But 

this method can not be applied to the LLGMN， since parameters such as the mean 

vectors and variances of each cluster (Gaussian distribution) are not directly used as 

the weights of LLG MN. Since the proposed learning algorithm needs prior information 

about the number of classes C， the unsupervised learning law based on equation 5.1-5.3 

is not practical. 

To deal with these problems， we propose a hierarchical clustering method using 

LLGMN at each non-terminal node of a classi五cationtree. In this method， the LLGMN 

classifies data into two-subclasses at each non-terminal node; after a sequence of binary 

splits， the training data would be eventually partitioned into classes of any desired 

number， corresponding to the number of terminal nodes. In the next section， a tree 

construction algorithm and an unsupervised learning law to train the LLGMN are 

explained. 

5.3 Hierarchical Clustering 

In this section， details of the construction strategy for a binary classification tree based 

on LLGMNs are explained. During the construction process， split or pruning is deter-

mined according to the statistical properties of the training data. Adopting a LLGMN 

at a non-terminal nodes of the classification tree complements the unsupervised learn-

ing algorithm of the LLGMN introduced in Section 5.2. 

5.3.1 Classification 

The divisive clustering starts from a single cluster i.e.， the root node and terminates 

when satisfying the termination criterion. The training data is then divided into the 

objective number of clusters. At each level of the classification tree， LLGMNs are used 
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to achieve binary splits， and each non-terminal node is divided into two sub-clusters 

if significant statistical differences exist between the two parts. Even for data with 

complicated distributions， interpretable clustering can be perform after a nested series 

of binary splits. 

5.3.2 Division Validation 

By using the proposed method， a classification tree can be constructed. However， 

excessive splitting may occur when the hierarchy of the tree becomes too deep. To 

counteract this issue， cross-validation is adopted and the posterior probabilities of the 

validation data are utilized to determine whether or not to split a node. First， the 

validation data is prepared and the entropy H (a) is defined剖:

C 

H(a) =-乞(3)OT)log(3)OF) (5.4) 

Then， the assembled average value HE of H(a) is utilized as the termination criterion 

of splitting. 

HE =-土~ H(a(n))， 
l九[af:i:.N. 

(5.5) 

where Nc is the set of validation data belo時 ingto the node in consideration， and [札[is 

the number of validation data in Nc• If HE is higher than a threshold HT， the splitting 

of the corresponding node is terminated. As a result， excessive splits can be avoided. 

On the other hand， if all validation data for the node in consideration is clustered into 

one class， out1iers may exist in the training data and the division of this node must be 

terminated. Also， for occasions when there is only one training data in a node， further 

splits of this node must be terminated， as division is impossible. 

With this method， the classification tree can be constructed based on the statistical 

properties of the training data， and can cluster complicated data into an interpretable 

number of classes. 
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5.3.3 Pruning Law 

In the proposed method， 0凶 iersare always classified into some terminal nodes (clus-

ters) separated from other major clusters. In particular， when the hierarchy of the tree 

grows too large， the influence of outliers becomes prominent because of the decrease of 

the number of training data at each node. After the classification tree is constructed， 

pruning is conducted to improve the clustering e田ciency.The number of training data 

left in each terminal node is utilized as a decision index for pruning. If the ratio of the 

number of training data in a terminal node to the total training data number is lower 

than a threshold αT， this node and its counter are merged into their father node. With 

this pruning law， excessive splits may be prevented， and the number of clusters may 

not increase corresponding to the number of outlier data. 

5.3.4 Unsupervised Learning AIgorithm 

As mentioned in Section 5.2， correct clustering is not available if ill-posed initial weights 

of LLGMN are used. Here， we design the unsupervised learning rule used in the 

proposed method， where the number of clusters is restricted to two. In this rule， the 

initialization of the weights is made with two data selected from the total training data 

set， noted as A. During the training process， the rest data is gradually added into 

the data set B used for training to proceed clustering. In this way， clustering starts 

with a data set of simple distribution， with the increment of the data number used for 

training， clustering result turns to be complicated. 

Let us consider that LLGMN clusters data into two classes: C1 and C2・First，X1 

and X2 are chosen for the initialization of weights from the set A according to the 

following equation， 

(X1， X2) = argmaxxω X(j)E (5.6) 
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Assuming that X1 and X2 are labeled with C1 and C2， respectively. The training of 

the LLGMN is performed using the supervised learning algotithm. Here， T(Xt) and 

T(X2) are given as virtual teacher vectors to X1 and X2・ Theinitialization of weights 

is carried out to prevent the LLGMN to convergence to a local minimum. With the 

initialized weights， unsupervised learning of the LLGMN is then performed. The mean 

values of X1 and X2 are calculated using the training data clustered into C1 and C2， 

respectively. One data X E A -B is selected， and it is added into the set B labeled 

with either of C1 and C2， from whose central the Euclid distance of x is minimum. 

Training of the LLGMN according to Equation 5.1 is performed using data in the set 

B. After training with a pre-defined number of times， another training data is selected 

from the set A -B and added into the set B. This training step repeats， until all of 

the training data is added into the B， I.e. B = A. 

5.3.5 Summary of Algorithm 

The construction algorithm for the classification tree is summarized as follows: 

1. The training data is presented to the root node. 

2. Training data in a terminal node is divided into two subclasses using the LLGMN 

until the termination criterion is satisfied. 

3. Whether or not to split a node is determined using the posterior probabilities of 

the validation data. 

4. Steps 2 and 3 are repeated until the termination criterion is satisfied at all ter-

minal nodes. 

5. The terminal nodes corresponding to outliers are merged according to the pruning 

law. 
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Table 5.1: Parameters of each class used in experiments of artificial data 

class 11 ん μy dx dy dxy 

C1 0.4 0.2 0.08 0.04 -0.8 
C2 0.2 0.7 0.05 0.05 o. 
C3 0.7 0.6 0.03 0.03 o. 
C4 0.6 0.8 0.03 0.03 o. 
C5 0.8 0.8 0.03 0.03 o. 

By performing the construction of the classification tree and the training of the LL-

GMN， clustering with the desired number of classes based on the statistical information 

can be attained. 
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Numerical simulations were carried out in order to verify the e旺.ectivenessot the pro-

posed method compared to conventional methods. In addition， pattern clustering and 

classification experiments of the EMG signals were carried out. 

5.4.1 Numerical Simulation 

The feature data is illustrated in Fig. 5.1: There are two features a = (x， y)， and five 

classes， Ci(i = 1，2ヲ3，4，5).Each class consists of one normal distribution， parameters 

of which are shown in Table 5.1. The number of training data for each class is 100 ， 

and the number of validation data for each class is 200. The LLGMN includes seven 

units in the first layer， two units in the second layer corresponding to the total number 

of components， and two units in the third layer. To construct the classification tree， 

the threshold of entropy HT was set as 0.2， the threshold of pruning αt as 0.01， the 

learning rate ηas 0.01， and the training times for each addition of training data as 

100. An example of the constructed classification tree is illustrated in Fig. 5.2， where 

the circles and squares indicate non-terminal and terminal nodes respectively. The 
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Fig. 5.1: Example of artificial data， the parameters of which are shown in Table 5.1 

Fig. 5.2: The constructed tree for five classes data. 

number of terminal nodes corresponds to the number of classes. Each terminal is a 

node labeled according to the class that the data belongs to. The classification tree 
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starts from the root node， where the training data is divided into two nodes: one for C1 

and the other for all other classes. Data clustered into the latter node is then further 

split into node C2 and the rest. Finally， the constructed classification tree partitions 

feature data into five classes. To validate the generalization ability， 300 samples for 

each class not used during the training process were clustered， and the mean value and 

S.D. of classification rate for 20 independent trials is 98.5土 0.64.

Next， comparison experiments were carried out with conventional method proposed 

in [52] (Terashima's method) and BIRCH. 

The numbers of training data for each class was changed from 20 to 100. For each 

condition of training data number， we constructed classification tree 20 times. The 

number of validation data is twice as much as the number of training data. The ratio 

of times that自veclasses were correctly estimated is indicated in Fig. 5.3. As shown 

in this figure， even if the number of training data decreases， the estimation accuracy 
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Table 5.2: The number of classes estimated by the proposed method， the Terashima's 
method and BIRCH 

The number of classes 4 o 6 7 
The proposed method O 9 1 O 

The Terashima's method (Nu = 50) 2 7 1 O 
The Terashima's method (Nu = 40) 。。。O 

The Terashima's method (Nu = 30) 7 3 O O 

BIRCH O O 3 7 

Table 5.3: Parameters of each class used in experiments of artificial data 

class 11μzμy Ox Oy_ Oxy 

C1 0.4 0.2 0.08 0.1 -0.8 
C2 0.2 0.7 0.08 0.08 o. 
C3 0.7 0.6 0.05 0.05 o. 
C4 0.6 0.8 0.05 0.05 o. 
C5 0.8 0.8 0.05 0.05 o. 

rate of the proposed method keeps in a high level compared to the other methods. 

Table 5.2 indicates the number of trials that training data was classified into each 

number of classes. As shown in this table， the proposed method can estimate the 

numver of classes more accurately compared with other methods. When data for several 

c1asses are gathered in the input space， BIRCH classifies the data into one class. Such a 

problem is frequently found in traditional clustering medhods. The proposed methods 

avoids this problem by constructing a hierarchical tree for classification. Consequently， 

the proposed method achieves higher classi五cationperformance than the conventional 

method. 

Next， pattern classification of synthetic data different from those in Table 5.1 was 

conducted. An example of the feature data is indicated in Fig. 5.4， and the parameters 

for each class are shown in Table 5.3. The number of training and validation data 

was 100 and 200 respectively. Ten di百erentsets of initial weights， training data and 

validation data were used to construct the classification tree. Table 5.4 depicts the 



57 

αUM.C5 
，1・-:島正日々 L.・:
平安心沿いし

，~~" ・ t..-.~>.・.
.・.-・.・.

・ .:!'~}.'i~J53t泌c::..・

C2 

• •• 
-

-

-

H

・4

・

・
i

・・
-----z，
b-

i
f
.
-
'
d

・‘.

1

・JhLs.
ー

:

HtT's---

t
'
'
・・1
・.. a' 

・・
4

・・

h
i
 

.

.

.

.

 

，
 

d

・・
4

• 
-

-

av

・-

1.0 

0.8 

0.6 

5.4. EXPERIMENTS 

y 

C3 • ・#.・・・
. ¥‘・2・・...4i . t 

'.~f.I.:" .. '! 
. .，・望号、....... 

，マ・ r・.. 
w・'・・.・

0.4 

0.2 

Cl 

1.0 0.8 0.6 0.4 0.2 。場。

x 

Fig. 5.4: Example of artificial data， the parameters of which are shown in Table 5.3 

Table 5.4: The number of classes estimated by the proposed method， the Terashima's 
method and BIRCH 
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BIRCH 

number of trials that the training data was split with each number of classes. 

The proposed method can cluster data successfully in the overlapped region accord-

ing to its posterior probability. The mean value and S.D. of the classification rate for 

ten trials are 89.5土3.271.Although the classification rate decreases compared to the 

data shown in Fig. 5.1， it is shown that the proposed method can cluster data with 

overlaps between the clusters. 
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Fig. 5.5: Measured muscles of cervical and expression 

As described above， the proposed method can carry out better estimations of the 

number of classes than conventional methods even when the cluster data overlaps. 

5.4.2 EMG Pattern Classifications 

Experiments for the pattern classification of EMG signals were carried out. The EMG 

signals used were五ve-channeldata; they were measured from五vemimetic and cervical 

muscles of a patient with a cervical spine injury (see Fig. 5.5) for six phonemes， I.e. /a/， 

/i/， /u/， /e/， /0/ and /nj. In the experiments， the patient produced the six phor削 les

in the order. However， since no acutual voice was uttered， the patient contrasts the 

muscles relevant to utterance. A reliable label of teacher signals is not available. 

First， the EMG signals are digitized by an A/D converter (sampling frequency: 

l.OkHz) after being ampli五ed，四ctifiedand filtered through a digital second order 

B凶 erworthfilter (cut-o旺frequency:l.OHz). These sampled signals are represented 

as El(t). To recognize the beginning and ending of utterance， the force information 

FEMC(t) is calculated from EMG signals as 

1 ミ~ El(t) -Er 
C(t) =ー〉:t

L合 Efzaz-Eft'
(5.7) 
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Table 5.5: Clustering results 

Node number /a/ /i/ /u/ /e/ /0/ /n/ 
1 34 1 O O O O 
2 。23 4 。。O 
3 2 2 2 。O O 
4 2 12 8 O O O 

O 。。21 。。O 
6 O O O 。O 34 
7 O O 。9 O 。
8 O O 。26 。1 
9 2 2 5 5 4 3 
10 O O O O 36 3 

where Er is the mean value of El(t) measured while relaxing the muscles， and Erax is 

the mean value of El(t) measured under the maximum voluntary contraction. For the 

phoneme classification x(t) is norrr叫 izedto make the sum of five cl削 melsequal 1: 

E'z(t) -Er 
xz(t)二 rt

Lt=l (Ez(t) -Er) 
(5.8) 

Fig. 5.6 shows an example of the raw EMG signals， filtered EMG signals used for 

classification and the force information. Fig. 5.7 depicts the average value and S.D. of 

norrr叫 izedpatterns belonging to /i/ and /uj. The patterns of /i/ and /u/ are quite 

similar to each other. To construct the classification tree， the threshold of entropy HT 

is set as 0.2， the threshold of pruning α T  as 0.01， the learning rate ηas 0.01 and the 

training times for each addition of training data is set as 500. The number of learning 

data for each phoneme was 40， and the number of verification data for each vowel 

soud was 80. The LLGMN includes 21 units in the first layer， six in the second layer 

that corresponds to the total component number， and six in the third layer. Fig. 5.8 

illustrates an example of the constructed classification tree. Table 5.5 indicates the 

distribution of data of each phoneme among the terminal nodes. 

Most data for / a/ were classified into one terminal node， as well出 thedata for /0/ 
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Fig. 5.6: An example of cervical spine injury patient's raw EMG signals， filtered signals used 
for clustering and the force information. 

The data of /e/ were classified These patterns can be correctly classified. and /n/. 

into two terminal nodes. Since the pattern for /e/ varies when uttered， the data can 

be classified into two clusters. Some data belonging to /i/ and /u/ were classified into 

one class because they are similar. 
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Fig. 5.7: Rader chart of EMG patterns of /i/ and /uj. The line indicates the mean values 
of each channel， and the regions of shade imply土 15.D.

Fig. 5.8: The constructed tree for the EMG data 

On the other hand the data classified into node 9 includes all phonemes. The 

shaded parts in Fig. 5.6 indicate data classified into node 9. The data classified into 

class 9 were uttered just before the end of the utterance. Such data is ambiguous 

data and classified into one cluster. As described above， considering the features of 

data the proposed method can classify EMG signals successfully. In order to examine 

the validity of the proposed method， classi五cationexperiments were carried out. The 
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Fig. 5.9: Classification accuracy 

classification ability of the proposed method was compared to a supervised trained 

single LLGMN and a neural tree [58] using the LLGMN as a non-terminal node. To 

evaluate the discrimination accuracy， labeling for the node was performed. It assumes 

that each node was corresponded to utterance that most of data classified into the 

correct node. AlthOlゆ utterancejej corresponds to terminal node 7 and 8， it is 

assumed that all data classi五edinto these terminal nodes are classified into utterance 

jej by constructed tree. After construction of the classification tree， 600 data for each 

class were prepared for classification. Fig. 5.9 shows the classi五cationrate in case of 

considering data classified into class 9 as no utterance and suspending classification. 

The mean values and S.D. of classi五cationrate of all utterance using the proposed 

method for 20 times is 92.6土0.86，using the LLGMN traditional recognition is 85士2.12

and using Neural tree is 61.4土 4.3.The proposed method suspending classification 

achieved high classification rate. As described above， it is considered that this method 
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is more effective in discrimination of data with the ambiguous feature between each 

class than other methods. 

5.5 Concluding Remarks 

In this chapter， in order to deal with the classification problem of ambiguous teacher 

signals， a hierarchical clustering is proposed. In this method， LLGMNs is used as 

classifier at non-terminal nodes in the classification tree. 

Entropy of the LLGMN outputs and the number of uata at each noue are used 

as stopping and pruning indices in the proposed method to avoid unnecessary splits 

in the structure of classification tree; this allows the proposed methou to make inter-

pretable and reasonable partitions of the training data according solely to the statistical 

characteristics. 

In numerical simulations， the proposed method shows superior results to the con-

ventional methods when estimatiing of the number of classes. From the results of the 

EMG pattern classification experiments， it is considered that the proposed method is 

more effective in classification data with the similar features compared to traditional 

methods where the LLGMN is traineu using a superviseu training algorithm and neural 

tree. 



Chapter 6 

Human Interface Applications using 
Biological Signals 

6.1 Introd uction 

In this chapter， two humanmachine interfaces using biological signals are proposed. By 

improving traditional interfaces with the proposed classification methods， it is expected 

that people with disabilities， who cannot utilize traditional systems， can be assisted by 

these systems. 

The chapter is organized as follows: Section 6.2 describes the proposed text input 

system using EMG signals. Section 6.3 introduces human-machine interface to control 

electrical appliances. Finally， the last section summarize the chapter. 

6.2 Text input system using EMG signals 

6.2.1 System Description 

The structure of the Japanese text input system is shown in Fig. 6.1. This system 

can be divided into four pa巾 (1)EMG signal acquisition and feature extraction， (2) 

phoneme classification， (3) character selection and (4) word estimation. 

65 
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II九fMs Chincsc charactt~r 

ziZ窓 wat，お;i

Fig. 6.1: Overview of the text input system 

E乱1GSignal Acquisition and Feature Extraction 

EMG signals from the L channels are recorded using surface electrodes attached to 

muscles. The signals are measured with a sampling frequency of fs Hz and then 

rectified and filtered by a Butterworth filter (cutoff frequency: fcHz). Each sampled 

EMG pattern， defined as Et(t)(l = 1，2，... ，L)， was normalized to make the sum of 

日vechannels equal to 1 using the following equation; 

dt)=~'t(t) -Er 

L，~=1 (E，バ)-El~t)' 
(6.1) 

where Er is the mean vah凹 ofE勾't(t肋tの)measured while r此the児emuscles are relaxed. The 

feature vectors x(t) = [Xl (t)， X2(t)， ... ，XL(t)] are input into the classification network. 

The power level is estimated from the EMG signals as 

l÷EI(t)-Eft 
α(t) = 7 ) : Lムdpαz-Eft? (6.2) 

where Erax is the mean value of El(t) measured under the maximum voluntary con-

traction. The power level is compared with a predetermined threshold to determine 

whether motion actually occurred. 
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Pattern Classification 

Although LLGMN is generally employed for pattern classification， other methods such 

as classification methods described in Chapters 2， 3 and 4 can be used. Using sam-

ples labeled with their corresponding motions， the network structure is built， and the 

network learns the non-linear mapping between the EMG patterns and motions simul-

taneously. 

The entropy of the output is also calculated to prevent the risk of misclassification. 

The entropy is de五nedas Equation 15. 

C 

H(x(t)) = 乞Oc(x(t))logOc(x(t))， (6.3) 
c=l 

where Oc(x(t)) corresponds to the posterior probability of motion number c. If the 

entropy H(x(t)) is less than the discrimination threshold Te， the specific motion with 

the largest probability is determined according to Bayes' decision rule. Otherwise， 

determination is suspended. 

y(x) = argmaxOc(x) (6.4) 

Character Selection 

In this part， character selection is performed continuously to produce a sequence of 

characters using cl出 sifiedmotions. 

Fig. 6.2 shows an example of the character selection screen. The shaded area 

indicates a cursor， which can translate automatically; the character at the cursor is 

selected by a classified specific motion corresponding to the determination command. 

In this system， not only Japanese characters but also other keys (delete key， space key 

and so on) are arranged on the screen (as shown in Fig. 6.2). 

In this system， three control modes are available because the number of motions 

that can be classified correctly is different for different people. In the first control 
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Fig. 6.2: An example of the character selection screen 

mode， the cursor moves from the left grid to the right grid in the first column. If 

the cursor moves to the far right side of the grids， it moves to the far left in the next 

movement. By classified motion corresponding to the determination command， the 

cursor movement is shifted to the vertical direction， and cursor moves along the grid 

continuously. When the corresponding motion is classified again， the character at the 

cursor is selected. 

If the phoneme classification part can classify the corresponding EMG signals into 

two motions， using the second control mode， motion can be matched to the command 

for movement between column. Another motion also corresponds to the determination 

command. Using more than three classified motions， various commands (e.g， delete， 

enter and so on) can be added arbitraily for the user ' s co町 enie町 e.

Furthermore， an input algorithm using six phonemes (ja/， /i/ヲ /u/，/e/， /0/ and 

/n/) for classification is as follows: Calculate the duration of the classified speci五c

motion t' (see Fig. 6.3). If t'とT'，classified character is selected. If not， the cursor 

moves to the column， corresponding to the classified phoneme， from the left edge to the 

right edge. By the classified phoneme same as one previously classi五ed，the character 
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Fig. 6.3: Definition of the motion time t' 

at the cursor is selected. If other phonemes are classified， the columnfor movement is 

changed to the corresponding column. Thus， the system's method of operation can be 

changed according to the user's ability. 

Also， using the force information estimated from the EMG signals， the transition 

time of the cursor is changed arbitrarily. Table 1 shows the relationships between force 

information and transition time. To coordinate the cursor's transition time， user can 

arbitrarily set the threshold of the force classifying phoneme. 

Word Estimation 

In this part， the sequence of characters generated by the character selection part is 

converted into the corresponding kanji， and the complete word is predicted by matching 

the input character sequence with possible words. For kanji translation， this system 

uses a database of relationships between kanji and different character sequences. 

HMM， which has been developed successfully， especially in the field of speech recog-

nition， is applied for word recognition. One HMM is prepared for each word. The 

" 
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posterior probabilities of each word are normalized as 

0・ P(iIS1S2・・・ SN)-

I-L:乙P(iIS1S2・・・ SN)
(6.5) 

where S1S2・・・ SNis the input character sequence， P(iIS1S2・・・ SN) is the posterior 

probabilities estimated by the ith HMM， and M is the number of HMMs. 

For HMM training， data consisting of words and corresponding character strings， 

is prepared. In this system， character strings consisting of vowels are included in the 

training data because users can input vowels directly. Since HMMs approximate the 

probabilistic characteristics of time series through learning， robust recognition can be 

achieved for words with varying temporal characteristics. Candidate words estimated 

in this part are displayed in the grid on the screen (see Fig. 6.2). Since the user can 

also select these words from the screen， words based on the same character string can 

be entered easily. 

Finally， the generated text is input into various application on the PC. 

6.2.2 Experiments 

To examine the performance of the proposed system， control experiments were per-

formed. The EMG signals were measured from five electrodes attached to the opera-

tor ' s face (L = 5: Depressor Anguli Oris， Zygomaticus M吋or，Masseter， Digastric， 

Depressor Labii Inferioris; a pair of electrodes was placed on each muscle). 

EMG Pattern Classification 

Five sets of randomly chosen initial weights were used to train each set of sample data. 

Experiments of the EMG classification using LLGMN and the classification method 

proposed in Chapter 3 were performed. To verify the performance of the proposed 

method， a single LLGMN， a support vector machine (SVM) and back-propagation 
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Fig. 6.4: Discrimination results for four subjects. 

71 

neural network (BPNN) classifiers were used for the comparison. BPNN had four 

layers (including two hidden layers)， the units of which were set出 2，10， 10 arid 4. 

Also， an SVM having a second-order polynomial kernel was used to perform a two-class 

classification. By combining two-class classifiers， multiclass classi五cationwas achieved 

using SVMs. The experiments were performed for four subjects (A， B， C: healthy; D: a 

patient with a cervical spine injury). For each subject， the proposed network is trained 

by using training data measured from corresponding subject. The mean values and 

standard deviations of the classification rates using the LLG MN， the method proposed 

in Chapter 3 and other methods are shown in Fig. 6.4. The classification results of 

the proposed method are similar to those of a single LLG MN and SVM in the case 

of subjects A and B. Comparing the classification rates of subject C， it can be seen 

that the method using the proposed EMG pattern classification method outperformed 

the use of a single LLGMN and BPNN. In addition， in the case of subject D， the 
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Fig. 6.5: Discrimination results for Subject D. 

classification results of other methods degraded significantly more than that using the 

method proposed in Chapter 3. 

Fig. 6.5 shows the mean values and standard deviations of the classification rates 

of each type of utterance for subject D. 

From this figure， it can be seen that the classification accuracies of凶 era町 e/0/ and 

/n/ were improv吋 bythe proposed method. On the other hand， in the classi五cation

of utterance / a/， similar misclassifications occurred when using the proposed method 

and other methods. It considered that these results were caused by the ambiguous 

EMG pattern found with the utterance /aj. 

Table 6.1 shows an example of the number of added cl出 sifiersand LLGMNs in the 

network of subject D. In contrast， the number of c1assifiers and LLGMNs for subjects 

A and B were set as 1. Here， we infer that classification is improved by adding the 

classifiers and LLGMNs for the estimating the distribution of EMG patterns. It is 
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Table 6.1: The number of added classifiers and LLGMNs for subject D. 

phoneme classifiers LLGMNs 

/a/ 13 33 

/i/ 4 7 

/u/ 2 3 

/e/ 4 9 

/0/ 16 24 

/n/ 5 11 

clear that by adding LLGMNs to a network for the estimating the distribution of 

EMG signals， the proposed method can achieve the most accurate classification of all 

the methods considered. 

6.2.3 System Control Experiments 

The experiments were performed for four subjects (A， B， C: healthy; D: a patient with 

a cervical spine injury). For each subject， the proposed network is trained by using 

training data measured from corresponding subject. The results in Fig. 6.4 show that 

single LLGMN can be used as a classifier， and when subjects A， B or C use this system， 

six phonemes can be utilized for input signals. On the other hand， in the case of subject 

D， only three phonemes (/i/， /u/ and /e/) can be used as input signals， because the 

classification rates of /0/ and /n/ were too low for use as input signals. 

In this system， the number of selected character strings is set as 22， corresponding 

to the number of HMMs. In these experiments， the Baum-Welth algorithm was used 

for HMM learning. 

The experimental view and display of the proposed system are shown in Fig. 6.6 

and 6.7， respectively. Figure 6.7， shows that the number symbols are arranged in the 

column corresponding to /n/. By selecting these number symbols， the user can chose 

the kanji and the recognized word estimated by HMMs (see Fig. 6.7 (A) and (B)). 
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Fig. 6.6: Experimental view of the text input system. 

(A) (B) 

Fig. 6.7: Display of the text input system. 

Also， categories (A) and (B) are changed by selecting the corresponding character on 

the screen. 
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Fig. 6.8: An example of the operation with subject A. 

The detailed time history of subject A is shown in Fig. 6.8. In this experiment， 

In this五gure，the the character string "Kantan de Tanosii" is input in Japanese. 

EMG signals， force level， horizontal position， longitudinal position and recognition 

results are plotted. Gray areas indicate the threshold T ' . It can be seen that with 

character selection using classified phonemes and word recognition， subject A can input 

text successfully. Furthermore， misguided selection (corresponding to jzaj) is modified 

(from jka回 ajto jkantanj) by word recognition using HMMs (see Fig. 6.8 (1)). In time 

(11)， the input sequence jaoiij is changed to jtanosiiij by HMM recognition. Finally， 

the character string is input to a text editor (see Fig. 6.8 (111)). 

Part of the time history corresponding to Fig. 6.8 is shown in Fig. 6.9. In this 

figure， each gray area indicates the length of transition time， which is determined by 

It is confirmed that the transition time is adjusted based on the the power level. 

power level of the EMG signals. These results shows that the user can select a suitable 
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Fig. 6.9: An example of the operation with subject A (from 0 sec to 20 sec). 

transition time successfully. 

Next， a detailed time history (from 90s to 115s) of subject D is shown in Fig. 6.10. 

Subject D input jtanosiij using three utterances (/ij， juj and jej). To input arbitrary 

characters using only three utterances， the utterances correspond to "determination 

command"， "movement of column" and "invert the direction of cursor movement" 

This figure shows that subject D used word recognition to estimate the respecti vely. 

character string "tanosii"from the input string "tano". Using word recognition， input 

took 136.46 s. To input the same string， subjects A， B and C took 70.37， 79.70 and 

In these experiments， since only subject D had no experience 96.13s respectively. 

The operating the proposed system， it took longer for that subject than for others. 

operating time is expected decrease gradually with training in using the system. 

To validate the effectiveness of word estimation， input times were compared. In 

these experiments， subjects A， B and C used six utterances to control this system. 

The input words are "watasi"， "tanosii"， "ohayou門 and"hijouni" and these wordS are 
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Fig. 6.10: An example of the operation with subject D. 

transferred into Chinese kanji. The transition time of the cursor is set as 0.67 s. 

The comparison results for five independent trials are shown in Fig. 5.11. In these 

experiments， three transfer methods were used: (1) kanji conversion from all characters， 

(2) kanji conversion from parts of characters (e.g， "wata"， "tanoぺ"oha"and "hijo門)
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Fig. 6.11: Input time of words. 

and (3) kanji conversion from characters consisting of only vowels. These results show 

that text input using method (3) is the fastest of all methods tested. However， in 

the case of inputting a word not expected by the HMMs， it is impossible to perform 

input using methods (2) and (3). AIso increasing the words for recognition interrupts 

effective recognition of words using HMMs. In such cases， input using method (1) is 

needed. 
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(a) Experimental devices. (b) A hand with Shape sensors 

(c) An operation scene for home electric appliances 

Fig. 6.12: Opetation of home electrical appliances using discrimination results of hand 
shape. 

6.3 Application of Hand Shape Classification for 

Human Interface 

In this section， improved Bio-Remote system to control electrical appliances using 

classification method proposed in Chapter 2 and 3 is dveloped. This system was ma-

nipulated according to the user's intention determined from the biological signals. 

In general， it is di伍cultto discriminate user's intentions from biological signals. 

Therefore， if necessary， the user can manipulate various applications with residual 

functions that combine input channels using this system. The method proposed in 

Chapter 2 and 3 can discriminate various hand shapes from biological signals. The 

function of the control system for electrical home appliances using hand shapes is 

shown in Fig. 6.12. [61]. In this system， the discrimination results are sent to the 
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main unit and the infrared signals corresponding to the electric home appliances are 

transmitted directly from the infrared LED of the main unit to the appliances. 

Examples of the operations corresponding to discriminated motion are shown in 

Table 6.2. [61]. In a typical Bio-Remote， various operations can be performed by 

Table 6.2: Example of command allocation for home electric appliances. 

Motionn o~リect Command 

1 
Light 

On 

2 Off 

3 Switch 

4 TV CHup 

5 CHdown 

6 Power onloff 

7 Play 

8 CD playcr Stop 

9 Volumeup 

10 Volumcdown 

repeating a command selection. Howeverヲ fromthis figure， it can be inferred that each 

operation corresponds to a single hand shape motion. 

An experiment was conducted， using a healthy person as the subject， to verify the 

validity of the proposed method. In this experiment， operations corresponding to the 

user's motions were executed until the same discrimination occured 150 times. An 

example of the subjectヲsoperation is shown in Fig. 6.13. In this figure， five channels of 

the normalised signals， discrimination results and control commands are plotted. Gray 

areas indicate that the Bio-Remote is not operated. 

From these experimental results， it can be inferred that the subject could operate 

electrical home appliances by changing the position of his/her fingers. It should be 

noted that there was no malfunction， and that the appliances could be operated ac-

cording to the subjectヲsintent， which con五rmsthat by the use of the proposed system， 



81 6.4. CONCLUDING REMARKS 

ふ1

2

3

4

 

h

h

h

h

 

c

c

c

c

 

ヱ
何
回
同

-ZωN--eE
。z

0

5

0

5

0

5

0

 

3

2

2

1

1

 

』

ω
A
Eロ
Z
E
E
-
E同

E
己
詰
『
白

E
 

n
 

o
 

D
 -

v
g
E
E
O
U
 

g
o
z
z一
E
己
詰
一
口 .4.加 Play Power 

20 

On 

Time [sJ 

Fig. 6.13: An example of the experimental results during the hand shapes of the electric 

appliances by the subject. 

the subject can control various electric appliances simply by moving his or her fingers. 

Concluding Remarks 6.4 

In this chapter， two devices using biological signals are proposed. First， a novel text 

In this system， motions estimated input system using EMG signals are descrived. 

Based on the number from EMG signals with PNNs are used as control commands. 

of estimated motions corresponding to commands， the proposed system can apply 

In addition， using the control method that is suitable for the number of motions. 

HMMs corresponding to words， pre-defined words (character strings) are recognized 

This recognition method enables users to perform 

To validate the availability of EMG signals as control 

from a partial character string. 

effective input in less time. 
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commands， EMG classification experiments were performed. These results show that 

EMG classification was achieved witrl a high success rate using a single LLGMN or the 

classification method proposed in Chapter 3. To further examine the realization of the 

proposed system， text input experiments were performed. These experiments showed 

that the proposed system can help not only healthy peple but also handicapped people 

to perform text input using only their utterances. 

The second device is a human interface for controlling electrical home appliances 

using hand shapes. From experimental results， it can be inferred that the operator 

could control the home electric appliances using hand shapes according to his or her 

intentions. Furthermore， assignment of the hand shapes directly to the operation 

command of a electrical home appliances confirmed the feasibility of direct operation 

of electrical home appliances using the I3io-Remote. 



Chapter 7 

Conclusion 

7.1 Results and Contributions 

Chapters 2 and 3 discussed the hierarchical pattern classification method. In Chapter 

2， a construction algorithm for a hierarchical classification network based on validation 

was proposed. Using validation data to evaluate the constructed network， it is expected 

that the network can achieve generalization accuracy higher than other classification 

methods trained only training data. On the other hand， in Chapter 3， a hierarchical 

probabilistic neural network based on a boosting approach was proposed. By connect-

ing weak classifiers consisting of LLGMNs with a boosting approach， proposed method 

can outperform any of the classifiers. In the learning procedure proposed in Chapters 

2 and 3， since network construction and learning of the LLGMNs (network classifiers) 

are performed simultaneously， there is no need to set the network structure beforehand. 

In Chapter 4， a classification method was proposed using the prior probability 

of data estimated from GMM to eliminate data not belonging to predefined classes. 

Although the case dealt with in Chapter 4 was not emphasized in previous research 

in probabilistic pattern classification， this case is a potential problem in classifying 
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patterns in real-world data. 

On the other hand， with the unsupervised learning algorithm for the LLGMNs， 

a hierarchical pattern classification method that can estimate the suitable number of 

classes was proposed in Chapter 5. In general， there is a possibility that the network 

cannot be trained to classify data into specified classes because of overlapping data or 

complex distributions of data. In this case， using the method proposed in Chapter 5う

the trained network presents the appropriate splits of training data and the number 

of classes estimated through learning. Based on numerical simulation and EMG pat-

tern classification experiments， the proposed method is more effective than traditional 

methods in classifying data that overlap each other. It is expected that the presented 

information， such as the number of estimated classes and the differeces between prede-

fined classes and estimated classes， can be used not only for pattern classification but 

also to improve signals measurement and class definition. 

Although the proposed methods in Chapters 2， 3， 4 and 5 were developed in order 

to overcome problems that are actually confronted in pattern classification of data 

measured from the real world， such as biological signals， it is expected that they can 

also be used as classifiers for other types of complicated data. Using these methods， 

users need not decide the parameters and the structure of a network by trial and error. 

Also， this advantage helps researchers develop effective human-machine interfaces with 

better classification accuracy and automatic learning function. 

In Chapter 6， two human-machine interfaces using biological signals were proposed. 

Our research group previously proposed the EMG-based Japanese speech synthesizer 

system using LLGMN and HMMs [60]. This system can recognize words and text based 

on six Japanese phonemes classi五edfrom the user's EMG signals. Although a user who 

cannot speak， performs vocalization using this system， the user's EMG signals must be 
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correctly classified into six Japanese phonemes in order to use the system. However， in 

the proposed text input system， the number of control commands corresponding to the 

given classes can be changed in accordance with user's classification ability. Therefore， 

many users， including those with greater disability， can input text into a text editor on 

PC and express their intentions whenever using this system. Also， the Bio-Remote [61]， 

an environmental control system for handicapped persons using biological signals， was 

proposed by our research group. In this system， a user can select various operations 

by repeating a command selection. The feasibility of convenient direct operation by 

the mildly handicapped using hand shapes to directly indicate operation commands 

to the Bio-Remote is confirmed. As stated above， by developing the various operating 

methods， it is expected that all persons with disabilities can be assisted by these 

systems in their daily activities. 

7.2 Future Works 

In this dissertation， the problems of pattern classification methods， in particular PNNs， 

are introduced. However each proposed method can overcome only one problem. For 

practical application， these proposed networks should be integrated into isolated pat-

tern classification methods having PNNs as classifiers. 

In future research on the proposed methods， many more theoretical aspects should 

be studied. The proposed methods should also be used for pattern classification of other 

data， such as image recognition. In this dissertation， although the LLGMN was used 

as the classifier， some of the proposed methods (such as those proposed in Chapters 2， 

3 and 4) can apply other PNNs as network cla問自er.To confirm the generalization of 

the proposed methods， other PNNs should be applied using these methods. 

Finally， some problems for future researches are discussed. The pattern classifica-
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tion methods proposed in this dissertation extended the traditional PNNs by construct-

ing the hierarchical tree for classification. The proposed methods have been shown to 

have high performance for classification of complex data. However， the pattern classi-

fication using PNNs should be further improved with studies which are not included 

in the present researches of this dissertation. Here， two of important issues related to 

this dissertation will be discussed. 

In Chapter 2， 3 and 5， the pattern classification methods using hierarchical tree 

have been .proposed. Although these methods can construct hierarchical tree for pat-

tern classification and adjust parameters of LLGMNs at each non-terminal node， it is 

impossible to reconstruct structure of hierarchical tree through online learning. The 

structure of classi五cationnetworks need to be update regularly. In general it is di田cult

to train parameters or structure of a network using new data without destroying the old 

patterns and forgetting previously learned information. In recent y戸ea町rs陀， incremental 

lea訂rn凶山i時 algori比th凹ms

algorithms are applied for s叩pe町ci凶ficnetworks such as SOM and k-means which are based 

on linear cla出ss討i白fica抗tiぬon民1，比tis d品i伍C叩ul比tto use the児es問ealgorithms as learning algorithms for 

other NNs based on nonlinear classification. On the other hand， in proposed meth-

ods， it is expected that change of subtree doesn't influence classification by other tree 

structure. Therefore， there is possibility that by performing reconstruction of subtree 

during long-term daily use， the network can adapt to the changes in patterns. 

Pattern classification is frequently confronted with high-dimensional feature data 

in practical applications [64J. In order to realize the generalization ability， suitable 1-

dimensional feature should be selected from original features (dベlimension).Altho時 h

such feature extraction methods based on principal component analysis (PCA) and 

linear discriminant analysis (LDA) were proposed [22J， there is possibility that suitable 
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subspaces for classification of each class are different. Also in proposed methods， suit-

able projected compact features for classi五cationat root node may be different that 

for classi五cationof subclasses at non-terminal nodes. In order to deal with these prob-

lems， we would like to improve the construction method for network structure which 

can estimate not only the structure but also suitable dimension of feature data. 

Publications concerning this dissertation are listed in the bibliography [65J-[70J. 



Appendix A 

Log-Linearized Gaussian Mixture 
Network [21] 

LLGMN is based on a log-linear model and a Gaussian mixture model (GMM). It 

calculates posteriori probability for the training data. In this dissertation， LLGMN is 

utilized for partition at the non-terminal node of the hierarchical tree in Chapter 2， 3 

and 5. 

The structure of LLGMN is shown in Fig. A.1. In order to represent a normalized 

distribution corresponding to each component of GMM as weight coe伍cientsof NN， 

the input vector a(ε 況D)is converted into the modified input vector X as follows: 

X = {l，aT，xi，x山，・・・，zL---ヲX2XD，.・・，d}T (A.l) 

The first layer ofLLGMN consists H = 1+D(D+3)j2 units， which correspond to the 

dimension of the input vector X， and the identity function is used for the activation 

function of蹴 hunit. The outputs of the first layer multiplied by weight wik，m) are 

transmitted to the second layer. ¥Vl附 ωFA)=o，k and Ah denote the number 

of classes (patterns) and components belonging to class Jvf， respectively. In this layer， 

LLGMN calculates the posteriori probability of each Gaussian component {k， m}. The 
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(A.2) 

unit k in the third layer integrates the outputs of Mk units in the second layer. 

(2)h，m = 乞 (1)OhW~k ，m)

(A.3) (2)Olo~ = -..ex.~((2)ι，m) 
l:~=12二;;三 1 exp((2)h'，m/) 

The relationship between the input (3) h and the output Ok in the third layer is 

芝町k，m

(3)h 
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ri 
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令
d(

 

(A.5) (3)Ok 

The output of the third layer (3)Ok corresponds to the posterior probability P(klx) of 

class k given the input vector x， and the former can be used to evaluate the ambiguity 

of a classification result. 

This network has the ability of adaptive learning for statistical properties of data. 

It can discriminate data with complex distributed structure， and in comparison to the 

conventional method [59] using normal distribution restricted the parameter. 
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