広島大学学位請求論文

Sharp coefficient and distortion estimates for p-Bloch functions (p-Bloch 函数に対する係数および歪曲度の最良評価)

2009年
広島大学大学院理学研究科
数学専攻

寺田 貴雄

主論文

Sharp coefficient and distortion estimates for $p ext{-Bloch functions}$

(p-Bloch 函数に対する係数および歪曲度の 最良評価)

寺田 貴雄

Contents

1	Introduction	2
2	Preliminaries	5
3	Extremal functions and main results	9
4	Proofs of Theorem 3.1 and Corollary 3.1	17
5	Proofs of Proposition 3.1 and Theorem 3.2	25

Chapter 1

Introduction

For $a \in \mathbb{C}$ and r > 0, set $\mathbb{D}(a,r) = \{z \in \mathbb{C} : |z-a| < r\}$ and $\mathbb{D} = \mathbb{D}(0,1)$. For $c \in \mathbb{D}$ and $0 < \rho < 1$ we also set $\Delta(c,\rho) = \{z \in \mathbb{D} : |z-c|/|1 - \overline{c}z| < \rho\}$. Let $\mathcal{H}(\mathbb{D})$ be the class of analytic functions in the unit disk \mathbb{D} endowed with the topology of uniform convergence on compact subsets of \mathbb{D} . Let $p \in (0,\infty)$. For a function $f \in \mathcal{H}(\mathbb{D})$, we put

$$\mu_p(f,z) = (1-|z|^2)^p |f'(z)|, \quad z \in \mathbb{D}.$$

A function f is called a p-Bloch function provided

$$||f||_{\mathfrak{B}^p} = \sup_{z \in \mathbb{D}} \mu_p(f, z) = \sup_{z \in \mathbb{D}} (1 - |z|^2)^p |f'(z)|$$

is finite. We denote by \mathfrak{B}^p the complex Banach space consisting of p-Bloch functions f on \mathbb{D} normalized by f(0) = 0: $\mathfrak{B}^p = \{f \in \mathcal{H}(\mathbb{D}) : f(0) = 0, \|f\|_{\mathfrak{B}^p} < \infty\}$. We also denote by \mathfrak{B}_1^p the closed unit ball of \mathfrak{B}^p , i.e.,

$$\mathfrak{B}_{1}^{p} = \{ f \in \mathfrak{B}^{p} : ||f||_{\mathfrak{B}^{p}} \le 1 \}.$$

In [9] K-J.Wirths proved the following

Theorem A If $f \in \mathfrak{B}_1^p$, then $(f' - f'(0))/\beta \in \mathfrak{B}_1^{p+1}$, where

$$\beta = 2(\alpha + 1) \frac{(2\alpha + 1)^{\alpha + 3/2}}{(2\alpha)^{\alpha + 1}} y_{\alpha} (1 - y_{\alpha}^{2})^{\alpha + 1},$$
$$y_{\alpha} = \frac{1}{2\alpha + 2} \left(\left(\frac{4\alpha^{2} + 6\alpha + 1}{2\alpha + 1} \right)^{1/2} - 1 \right).$$

As an application of Bonk's result, Sugawa and the author obtained the following Fekete-Szegö type inequality.

Theorem B. Let $\mu \in \mathbb{C}$. Then $|b_2 + \mu b_1^2| \leq C(\mu)$ is valid for every function $F(z) = b_1 + b_2 z^2 + \cdots$ in \mathfrak{B}_1^1 , where

$$C(\mu) = \begin{cases} \frac{1 + 3\sqrt{3}|\mu|^3 + (1 + 3|\mu|^2)^{3/2}}{6\sqrt{3}|\mu|^2} & \left(|\mu| > \frac{4}{3\sqrt{3}}\right) \\ \frac{3\sqrt{3}}{4} & \left(|\mu| \le \frac{4}{3\sqrt{3}}\right). \end{cases}$$

Furthermore we derived a sharp inequality for the third coefficient of a uniformly locally univalent function $f(z) = z + a_2 z^2 + a_3 z^3 + \cdots$ on the unit disk with pre-Schwarzian norm $||T_f||_{\mathbb{D}} = \sup_{z \in \mathbb{D}} (1 - |z|^2) |T_f(z)| \leq \lambda$ for a given $\lambda > 0$, where $T_f = f''/f'$ is the pre-Schwarzian derivative of f. In the present article we shall determine the variability region for $f'(z_0)$ when f ranges over the class \mathfrak{B}_1^p with $f'(z_1) = w_1$, i.e., $V^p(z_0; z_1, w_1) := \{f'(z_0) : f \in \mathfrak{B}_1^p, f'(z_1) = w_1\}$, where $z_0, z_1 \in \mathbb{D}$, $w_1 \in \mathbb{C}$ with $z_0 \neq z_1$ and $|w_1| \leq 1/(1 - |z_1|^2)^p$. We shall also give sharp distortion estimates as its corollary. When p = 1, for related results see [4], [5], [10] and [11].

Acknowledgement

The author would like to express his sincere gratitude to Professor Y. Mizuta, Professor T. Sugawa, Professor H. Yanagihara and Professor M. Yoshino for their helpful comments and suggestions.

Chapter 2

Preliminaries

For $a \in \mathbb{D}$, set

$$\tau_a(z) = \frac{z-a}{1-\overline{a}z}, \quad z \in \mathbb{D}.$$

Then τ_a is a conformal automorphism of \mathbb{D} and $\tau_a^{-1} = \tau_{-a}$. For $a \in \mathbb{D}$ and $f \in \mathcal{H}(\mathbb{D})$ put

$$T_a f(z) = \int_0^z f'(\tau_a(\zeta)) \tau_a'(\zeta)^p \, d\zeta = \int_0^z f'\left(\frac{\zeta - a}{1 - \overline{a}\zeta}\right) \frac{(1 - |a|^2)^p}{(1 - \overline{a}\zeta)^{2p}} \, d\zeta, \quad z \in \mathbb{D}.$$

It is easy to see that $T_a^{-1} = T_{-a}$. From the identity $|\tau'_a(z)|/(1-|\tau_a(z)|^2) = 1/(1-|z|^2)$ we have

$$\mu_{p}(T_{a}f,z) = (1 - |z|^{2})^{p} |(T_{a}f)'(z)|$$

$$= \frac{(1 - |a|^{2})^{p} (1 - |z|^{2})^{p}}{|1 - \overline{a}z|^{2p}} |f'(\frac{z + a}{1 - \overline{a}z})|$$

$$= \left(1 - \left|\frac{z - a}{1 - \overline{a}z}\right|^{2}\right)^{p} |f'(\frac{z - a}{1 - \overline{a}z})|$$

$$= (1 - |\tau_{a}(z)|^{2})^{p} |f'(\tau_{a})|$$

$$= (1 - |z|^{2})^{p} |f'(\tau_{a}(z))| |\tau'_{a}(z)|^{p}$$

$$= \mu_{p}(f, \tau_{a}(z)).$$
(2.1)

Therefore T_a acts on \mathfrak{B}^p as an isometry.

It is not difficult to see that for any $\theta, \varphi \in \mathbb{R}$

$$V^{p}(e^{i\varphi}z_{0}; e^{i\varphi}z_{1}, e^{i\theta}w_{1}) = e^{i\theta}V^{p}(z_{0}; z_{1}, w_{1}). \tag{2.2}$$

Actually if $w_0 \in V^p(z_0; z_1, w_1)$, then there exists $f \in \mathfrak{B}_1^p$ such that $f(z_j) = w_j$ for j = 0, 1. Put $\tilde{f}(z) = e^{i(\varphi + \theta)} f(e^{-i\varphi}z)$. Then $\tilde{f} \in \mathfrak{B}_1^p$ and $\tilde{f}'(e^{i\varphi}z_j) = e^{i\theta} f(z_j) = e^{i\theta} w_j$ for j = 0, 1. Thus $e^{i\theta} w_0 \in V^p(e^{i\varphi}z_0; e^{i\varphi}z_1, e^{i\theta}w_1)$ and hence we have

$$e^{i\theta}V^p(z_0; z_1, w_1) \subset V^p(e^{i\varphi}z_0; e^{i\varphi}z_1, e^{i\theta}w_1).$$

By replacing z_0 , z_1 and w_1 with $e^{-i\varphi}z_0$, $e^{-i\varphi}z_1$ and $e^{-i\theta}w_1$, we have

$$e^{i\theta}V^{p}(e^{-i\varphi}z_{0};e^{-i\varphi}z_{1},e^{-i\theta}w_{1})\subset V^{p}(z_{0};z_{1},w_{1}).$$

By replacing θ and φ with $-\theta$ and $-\varphi$, we have

$$V^p(e^{i\varphi}z_0;e^{i\varphi}z_1,e^{i\theta}w_1)\subset e^{i\theta}V^p(z_0;z_1,w_1).$$

For any $a \in \mathbb{D}$ we also have

$$V^{p}(\tau_{a}(z_{0}); \tau_{a}(z_{1}), w_{1}/\tau_{a}'(z_{1})^{p}) = \frac{1}{\tau_{a}'(z_{0})^{p}} V^{p}(z_{0}; z_{1}, w_{1}).$$
 (2.3)

For $f \in \mathfrak{B}_1^p$ with $f'(z_j) = w_j$ for j = 1, 2 and $a \in \mathbb{D}$ we have $T_{-a}f \in \mathfrak{B}_1^p$ and $f'(\tau_{-a}(\tau_a(z_j)))\tau'_{-a}(\tau_a(z_j))^p = w_j/\tau'_a(z_j)^p$. Thus

$$\frac{w_0}{\tau_a'(z_0)^p} \in V^p\left(\tau_a(z_0); \tau_a(z_1), \frac{w_1}{\tau_a'(z_1)^p}\right)$$

and hence

$$\frac{1}{\tau_a'(z_0)^p}V^p(z_0;z_1,w_1)\subset V^p\left(\tau_a(z_0);\tau_a(z_1),\frac{w_1}{\tau_a'(z_1)^p}\right).$$

By replacing a with -a and then z_j with $\tau_a(z_j)$ for j=0,1, the reverse inclusion relation follows.

By virtue of (2.2) and (2.3), without loss of generality we may assume $z_1 = 0$, $w_1 = \alpha \in [0,1]$ and $z_0 = r \in (0,1)$. Indeed for any z_0 , z_1 , w_1 , we put $a = z_1$. Then

$$V^{p}(z_{0}; z_{1}, w_{1}) = \tau'_{z_{1}}(z_{0})^{p} V^{p} \left(\tau_{z_{1}}(z_{0}); \tau_{z_{1}}(z_{1}), \frac{w_{1}}{\tau'_{z_{1}}(z_{1})^{p}}\right)$$

$$= \frac{(1 - |z_{1}|^{2})^{p}}{(1 - \overline{z_{1}}z_{0})^{2p}} V^{p} \left(\frac{z_{0} - z_{1}}{1 - \overline{z_{1}}z_{0}}; 0, (1 - |z_{1}|^{2})^{p} w_{1}\right).$$

Put $re^{i\varphi} = \frac{z_0 - z_1}{1 - z_1 z_0}$ and $\alpha e^{i\theta} = (1 - |z_1|^2)^p w_1$, where $r, \alpha \ge 0$ and $\varphi, \theta \in \mathbb{R}$. Then

$$V^p(z_0; z_1, w_1) = \frac{(1 - |z_1|^2)^p}{(1 - \overline{z_1} z_0)^{2p}} e^{i\theta} V^p(r; 0, \alpha)$$

where $r = \left|\frac{z_0 - z_1}{1 - \overline{z_1} z_0}\right| \in (0, 1), \ \alpha = (1 - |z_1|^2)^p |w_1| \in [0, 1], \ \theta = \arg w_1$. We put for $z_0 \in \mathbb{D}$ and $0 \le \alpha \le 1$

$$V_{\alpha}^{p}(z_{0}) = V^{p}(z_{0}; 0, \alpha) = \{f'(z_{0}) : f \in \mathfrak{B}_{1}^{p}(\alpha)\}, \tag{2.4}$$

where $\mathfrak{B}_{1}^{p}(\alpha) = \{ f \in \mathfrak{B}^{p} : f'(0) = \alpha, \|f\|_{\mathfrak{B}^{p}} \leq 1 \}$. Note that $V_{\alpha}^{p}(z_{0}) = V_{\alpha}^{p}(|z_{0}|)$.

For any fixed $\alpha \in [0,1]$ and $r \in (0,1)$ it is easy to see that the set $V_{\alpha}^{p}(r)$ is a compact convex subset of \mathbb{C} . This is a consequence of the fact that $\mathfrak{B}_{1}^{p}(\alpha)$ is also compact and convex in $\mathcal{H}(\mathbb{D})$. We next see that α is an interior point of $V_{\alpha}^{p}(r)$. It is proved by using

$$G(z) = \alpha z + \frac{w - \alpha}{3r^2} z^3$$

for w which belongs to $\mathbb{D}(\alpha, pr^2)$. Then we have $G \in \mathfrak{B}_1^p(\alpha)$, because G(0) =

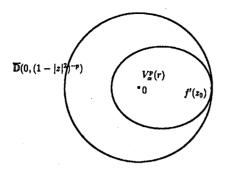


Figure 2.1:

 $0, G'(0) = \alpha$ and

$$|G'(z)|(1-|z|^2)^p = \left|\alpha + \frac{w-\alpha}{r^2}z^2\right|(1-|z|^2)^p$$

$$\leq (\alpha+p|z|^2)(1-|z|^2)^p \leq (1+p|z|^2)(1-|z|^2)^p \leq 1.$$

Furthermore it follows from

$$G'(r) = \alpha + \frac{w - \alpha}{r^2} r^2 = w$$

that $w \in V_{\alpha}^{p}(r)$. As a result, since $\mathbb{D}(\alpha, pr^{2}) \subset V_{\alpha}^{p}(r)$, α is an interior point of $V_{\alpha}^{p}(r)$.

Thus $V^p_{\alpha}(r)$ is a closed Jordan domain, i.e., $\partial V^p_{\alpha}(r)$ is a simple closed curve and $V^p_{\alpha}(r)$ is the union of $\partial V^p_{\alpha}(r)$ and its inner domain. Since we have the trivial relation

$$V_{\alpha}^{p}(z_{0}) \subset \overline{\mathbb{D}}(0, (1-|z_{0}|^{2})^{-p}),$$

the following simple but useful fact holds.

Lemma 2.1. If $|f'(z_0)| = \frac{1}{(1-|z_0|^2)^p}$ for some $f \in \mathfrak{B}_1^p(\alpha)$, then $f'(z_0) \in \partial V_{\alpha}^p(z_0)$ (see Figure 2.1).

Chapter 3

Extremal functions and main results

To state our theorem explicitly we need to introduce some functions which are extremal for the results in this article.

Let $M(t) = \sqrt{2p+1} \left(\frac{2p+1}{2p}\right)^p t(1-t^2)^p$, $0 \le t \le 1$. Then M(t) is strictly increasing on $[0,1/\sqrt{2p+1}]$, strictly decreasing on $[1/\sqrt{2p+1},1]$ and $M(1/\sqrt{2p+1}) = 1$. The function

$$B(z) = -\frac{\sqrt{2p+1}}{2} \left(\frac{2p+1}{2p}\right)^p z^2, \quad z \in \mathbb{D}$$

satisfies

$$\mu_p(B,z) = \sqrt{2p+1} \left(\frac{2p+1}{2p}\right)^p |z| (1-|z|^2)^p = M(|z|) \le 1, \quad z \in \mathbb{D}$$

with equality if and only if $|z| = 1/\sqrt{2p+1}$. Let $m: [0,1] \to [0,1/\sqrt{2p+1}]$ be the inverse function of the restriction $M|_{[0,1/\sqrt{2p+1}]}$. The function m is strictly increasing with m(0) = 0, $m(1) = 1/\sqrt{2p+1}$.

A half class of extremal functions is obtained by putting for $\alpha \in [0,1]$

$$B_{\alpha}(z) = T_{m(\alpha)}B(z)$$

$$= \int_{0}^{z} B'(\tau_{m(\alpha)}(\zeta))\tau'_{m(\alpha)}(\zeta)^{p}d\zeta$$

$$= \sqrt{2p+1} \left(\frac{2p+1}{2p}\right)^{p} \int_{0}^{z} \frac{(1-m(\alpha)^{2})^{p}(m(\alpha)-\zeta)}{(1-m(\alpha)\zeta)^{2p+1}} d\zeta.$$
(3.1)

Precisely by integration and $M(m(\alpha)) = \alpha$ we have

$$B_{\alpha}(z) = \frac{\alpha}{2p(2p-1)m(\alpha)^{3}} \times \left\{ \frac{1 + (2p-1)m(\alpha)^{2} - 2pm(\alpha)z}{(1 - m(\alpha)z)^{2p}} - 1 - (2p-1)m(\alpha)^{2} \right\},\,$$

when $p \neq \frac{1}{2}$, and

$$B_{\alpha}(z) = \frac{\alpha}{m(\alpha)^3} \left\{ \log \frac{1}{1 - m(\alpha)z} - \frac{m(\alpha)(1 - m(\alpha)^2)z}{1 - m(\alpha)z} \right\},\,$$

when $p = \frac{1}{2}$. By (2.1) we have $\mu_p(B_\alpha, z) \leq 1$ with equality if and only if $|\tau_{m(\alpha)}(z)| = 1/\sqrt{2p+1}$. From

$$B'_{\alpha}(z) = \sqrt{2p+1} \left(\frac{2p+1}{2p}\right)^p \frac{(1-m(\alpha)^2)^p (m(\alpha)-z)}{(1-m(\alpha)z)^{2p+1}}$$

we obtain

$$B'_{\alpha}(0) = \sqrt{2p+1} \left(\frac{2p+1}{2p}\right)^p m(\alpha) (1 - m(\alpha)^2)^p = M(m(\alpha)) = \alpha.$$
 (3.2)

Thus for each $\alpha \in [0,1]$ the function B_{α} satisfies $B_{\alpha}(0) = 0$, $B'_{\alpha}(0) = \alpha$ and $\mu_p(B_{\alpha},z) \leq 1$ on \mathbb{D} with equality if and only if $|\tau_{m(\alpha)}(z)| = 1/\sqrt{2p+1}$. In particular $B_{\alpha} \in \mathfrak{B}_1^p(\alpha)$.

Theorem 3.1. For $z_0 \in \Delta(m(\alpha), 1/\sqrt{2p+1})$ the relation $B'_{\alpha}(z_0) \in \partial V^p_{\alpha}(z_0)$ holds. Furthermore for $f \in \mathfrak{B}^p_1(\alpha)$, $f'(z_0) = B'_{\alpha}(z_0)$ holds if and only if $f = B_{\alpha}$.

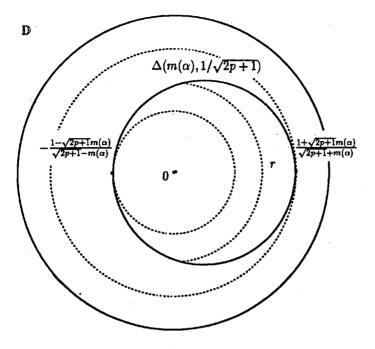


Figure 3.1:

We shall prove Theorem 3.1 in chapter 4. By Theorem 3.1 and $V_{\alpha}^{p}(z_{0}) = V_{\alpha}^{p}(|z_{0}|)$ we have for fixed $r \in (0,1)$ the mapping $\theta \mapsto B'_{\alpha}(re^{i\theta})$ gives an arc contained in $\partial V_{\alpha}(r)$, whenever $re^{i\theta} \in \Delta(m(\alpha), 1/\sqrt{2p+1})$. By an elementary calculation we have

$$\Delta(m(\alpha), 1/\sqrt{2p+1}) = \mathbb{D}\left(\frac{2p\,m(\alpha)}{2p+1-m(\alpha)^2}, \frac{\sqrt{2p+1}(1-m(\alpha)^2)}{2p+1-m(\alpha)^2}\right).$$

Hence

$$\mathbb{D}\left(0, \frac{1-\sqrt{2p+1}m(\alpha)}{\sqrt{2p+1}-m(\alpha)}\right)$$

is the largest disk with center 0 which is contained in $\Delta(m(\alpha), 1/\sqrt{2p+1})$ and

$$\mathbb{D}\left(0, \frac{1+\sqrt{2p+1}m(\alpha)}{\sqrt{2p+1}+m(\alpha)}\right)$$

is the smallest disk with center 0 which contains $\Delta(m(\alpha), 1/\sqrt{2p+1})$ (see 3.1). Furthermore if $z_0 \in \partial \Delta(m(\alpha), 1/\sqrt{2p+1})$, then we have

$$\mu_p(B_\alpha, z_0) = \mu_p(T_{m(\alpha)}B, z_0) = \mu_p(B, \tau_{m(\alpha)}(z_0)) = M(|\tau_{m(\alpha)}(z_0)|) = 1. \quad (3.3)$$

By Lemma 2.1, this shows $B'_{\alpha}(z_0) \in \partial V^p_{\alpha}(z_0)$, when $z_0 \in \partial \Delta(m(\alpha), 1/\sqrt{2p+1})$. From these considerations it seems natural that the following theorem holds.

Theorem 3.2. For $\alpha \in [0,1]$ and $r \in (0,1)$ the variability region $V_{\alpha}^{p}(r)$ is a convex closed Jordan domain bounded by $\partial V_{\alpha}^{p}(r)$.

- (i) For $0 < r \le \frac{1 \sqrt{2p + 1}m(\alpha)}{\sqrt{2p + 1} m(\alpha)}$, the boundary $\partial V_{\alpha}^{p}(r)$ is given by the mapping $(-\pi, \pi] \ni \theta \mapsto B'_{\alpha}(re^{i\theta})$.
- (ii) For $\frac{1-\sqrt{2p+1}m(\alpha)}{\sqrt{2p+1}-m(\alpha)} < r < \frac{1+\sqrt{2p+1}m(\alpha)}{\sqrt{2p+1}+m(\alpha)}$, the boundary $\partial V^p_{\alpha}(r)$ is the union of two arcs Γ_1 and Γ_2 . Here Γ_1 is given by the mapping $[-\theta_{\alpha}(r), \theta_{\alpha}(r)] \ni \theta \mapsto B'_{\alpha}(re^{i\theta})$, where

$$\theta_{\alpha}(r) = \arccos\left(\frac{(2p+1-m(\alpha)^2)r^2 + (2p+1)m(\alpha)^2 - 1}{4prm(\alpha)}\right).$$

The arc Γ_2 is the circular arc contained in $\partial \mathbb{D}(0, (1-r^2)^{-p})$ with endpoints $B'_{\alpha}(re^{i\theta_{\alpha}(r)})$ and $B'_{\alpha}(re^{-i\theta_{\alpha}(r)})$ that passes through the point $(1-r^2)^{-p}$.

(iii) For $\frac{1+\sqrt{2p+1}m(\alpha)}{\sqrt{2p+1}+m(\alpha)} \leq r < 1$, the boundary $\partial V_{\alpha}^{p}(r)$ coincides with the whole circle $\partial \mathbb{D}(0,(1-r^{2})^{-p})$.

Furthermore $f'(r) = B'_{\alpha}(re^{i\theta})$ holds for some $f \in \mathfrak{B}^p_1(\alpha)$ and $(r, \theta) \in \left(0, \frac{1-\sqrt{2p+1}m(\alpha)}{\sqrt{2p+1}-m(\alpha)}\right) \times \mathbb{R}$ or $(r, \theta) \in \left[\frac{1-\sqrt{2p+1}m(\alpha)}{\sqrt{2p+1}-m(\alpha)}, \frac{1+\sqrt{2p+1}m(\alpha)}{\sqrt{2p+1}+m(\alpha)}\right) \times (-\theta_{\alpha}(r), \theta_{\alpha}(r)),$ if and only if $f(z) = e^{-i\theta}B_{\alpha}(e^{i\theta}z)$.

When p=2 and $\alpha=\frac{1}{\sqrt{2}}\left(\frac{9}{8}\right)^2$, we can draw $V_{\alpha}^p(r)$ by Mathematica.

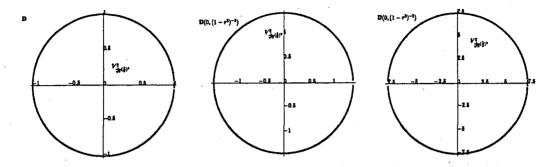


Figure 3.2: r = 0.06

Figure 3.3: r = 0.4

Figure 3.4: r = 0.8

To show $\Gamma_2 \subset \partial V^p_\alpha(r)$ in case (ii) and $\partial \mathbb{D}(0, (1-r^2)^{-p}) = \partial V^p_\alpha(r)$ in case (iii), we shall construct a function $f \in \mathfrak{B}_1^p(\alpha)$ satisfying $f'(r) = w_0$ for any $w_0 \in \Gamma_2$ in case (ii) and for any $w_0 \in \partial \mathbb{D}(0, (1-r^2)^{-p})$ in case (iii). For $a \in [0,1), \lambda \in (0,p]$ and $\theta \in \mathbb{R}$ put

$$F_{a,\lambda,\theta}(z) = \int_0^z \frac{(1-a^2)^{\lambda}(a-\zeta)}{h(\lambda,1/\sqrt{2\lambda+1})(1-a\zeta)^{2\lambda+1}\{1-(e^{-i\theta}\zeta)^2\}^{p-\lambda}} d\zeta, \quad (3.4)$$

where $h(\lambda, x) = x(1-x^2)^{\lambda}$, $0 \le x \le 1$, is strictly increasing on $[0, 1/\sqrt{2\lambda+1}]$ and strictly decreasing on $[1/\sqrt{2\lambda+1}, 1]$. We note that

$$F'_{a,\lambda,\theta}(0) = \frac{h(\lambda,a)}{h(\lambda,1/\sqrt{2\lambda+1})}$$
(3.5)

and

$$\mu_{p}(F_{a,\lambda,\theta},z)$$

$$= (1 - |z|^{2})^{p} \frac{(1 - a^{2})^{\lambda}|a - z|}{h(\lambda, 1/\sqrt{2\lambda + 1})|1 - az|^{2\lambda + 1}|1 - (e^{-i\theta}z)^{2}|^{p - \lambda}}$$

$$= (1 - |z|^{2})^{p} \frac{|\tau_{a}(z)||\tau'_{a}(z)|^{\lambda}}{h(\lambda, 1/\sqrt{2\lambda + 1})|1 - (e^{-i\theta}z)^{2}|^{p - \lambda}}$$

$$= \frac{1}{h(\lambda, 1/\sqrt{2\lambda + 1})} \frac{(1 - |z|^{2})^{p - \lambda}}{|1 - (e^{-i\theta}z)^{2}|^{p - \lambda}} |\tau_{a}(z)|(1 - |\tau_{a}(z)|^{2})^{\lambda}$$

$$= \frac{h(\lambda, |\tau_{a}(z)|)}{h(\lambda, 1/\sqrt{2\lambda + 1})} \left(\frac{1 - |z|^{2}}{|1 - (e^{-i\theta}z)^{2}|}\right)^{p - \lambda}$$

$$\cdot \leq 1$$

with equality if and only if $|\tau_a(z)| = 1/\sqrt{2\lambda + 1}$ and $e^{-i\theta}z \in \mathbb{R}$.

Proposition 3.1. Let $\alpha \in [0,1]$.

(i) If $\alpha \in [0,1)$, then for any $z_0 \in \mathbb{D}\backslash\Delta(m(\alpha),1/\sqrt{2p+1})$ there exists a unique pair $(a(z_0),\lambda(z_0))$ with $0 < \lambda(z_0) < p$ and $0 \le a(z_0) < 1/\sqrt{2p+1}$ such that

$$h(\lambda(z_0), a(z_0)) = \alpha h(\lambda(z_0), 1/\sqrt{2\lambda(z_0) + 1}),$$
 (3.7)

$$|\tau_{a(z_0)}(z_0)| = \frac{1}{\sqrt{2\lambda(z_0) + 1}}.$$
 (3.8)

The functions $a(z_0)$ and $\lambda(z_0)$ are continuous on $\mathbb{D}\backslash\Delta(m(\alpha),1/\sqrt{2p+1})$.

(ii) If $\alpha = 1$, then for any $z_0 \in \overline{\mathbb{D}}(1/2, 1/2) \setminus [\Delta(1/\sqrt{2p+1}, 1/\sqrt{2p+1}) \cup \{0, 1\}]$ there uniquely exists $\lambda(z_0)$ such that

$$|\tau_{1/\sqrt{2\lambda(z_0)+1}}(z_0)| = \frac{1}{\sqrt{2\lambda(z_0)+1}}.$$
 (3.9)

The function $\lambda(z_0)$ is continuous on $\overline{\mathbb{D}}(1/2, 1/2) \setminus [\Delta(m(1), 1/\sqrt{2p+1}) \cup \{0, 1\}].$

Combining Proposition 3.1, (3.5) and (3.6) it follows that $F_{a(z_0),\lambda(z_0),\theta_0} \in \mathfrak{B}_1^p(\alpha)$ and $F'_{a(z_0),\lambda(z_0),\theta_0}(z_0) \in \partial \mathbb{D}(0,1/(1-|z_0|^2)^p)$, where $\theta_0 = \arg z_0$. This and some more analysis on behavior of $F'_{a(z_0),\lambda(z_0),\theta_0}(z_0)$ will complete the proof of Theorem 3.2. See Chapter 5 for details. Furthermore as a consequence of Theorem 3.2, we obtain the following corollary.

Corollary 3.1. Suppose $\alpha \in [0,1]$ and $f \in \mathfrak{B}_1^p(\alpha)$.

$$\begin{split} \text{(i)} \ \ \textit{For} \ |z| &< \tfrac{1+\sqrt{2p+1}m(\alpha)}{\sqrt{2p+1}+m(\alpha)} \\ \text{Re} \ f'(z) &\geq B'_{\alpha}(|z|) = \sqrt{2p+1} \left(\frac{2p+1}{2p} \right)^p \frac{(1-m(\alpha)^2)^p(m(\alpha)-|z|)}{(1-m(\alpha)|z|)^{2p+1}} \\ \text{with equality at } z &= re^{i\theta}, \ r \in \left(0, \tfrac{1+\sqrt{2p+1}m(\alpha)}{\sqrt{2p+1}+m(\alpha)} \right), \ \textit{if and only if } f(z) = e^{i\theta} B_{\alpha}(e^{-i\theta}z). \ \textit{In particular, we have } \operatorname{Re} \ f'(z) > 0 \ \textit{for} \ |z| < m(\alpha). \end{split}$$

(ii) For
$$|z| < \frac{1 - \sqrt{2p + 1} m(\alpha)}{\sqrt{2p + 1} - m(\alpha)}$$

$$|f'(z)| \le B'_{\alpha}(-|z|) = \sqrt{2p + 1} \left(\frac{2p + 1}{2p}\right)^{p} \frac{(1 - m(\alpha)^{2})^{p} (m(\alpha) + |z|)}{(1 + m(\alpha)|z|)^{2p + 1}}$$
with equality at $z = re^{i\theta}$, $r \in \left(0, \frac{1 - \sqrt{2p + 1} m(\alpha)}{\sqrt{2p + 1} - m(\alpha)}\right)$, if and only if $f(z) = -e^{i\theta}B_{\alpha}(-e^{-i\theta}z)$.

The proof of Corollary 3.1 will be given in Chapter 3. The following corollary is obtained directly by integrating inequalities in Corollary 3.1.

Corollary 3.2. Suppose $\alpha \in [0,1]$ and $f \in \mathfrak{B}_1^p(\alpha)$.

- (i) For $|z| \leq \frac{1+\sqrt{2p+1}m(\alpha)}{\sqrt{2p+1}+m(\alpha)}$, we have $\operatorname{Re} f(z) \geq B_{\alpha}(|z|)$ with equality at $z = re^{i\theta}$, if and only if $f(z) = e^{i\theta}B_{\alpha}(e^{-i\theta}z)$.
- (ii) For $|z| \leq \frac{1-\sqrt{2p+1}m(\alpha)}{\sqrt{2p+1}-m(\alpha)}$, we have $|f(z)| \leq -B_{\alpha}(-|z|)$ with equality at $z = re^{i\theta}$, if and only if $f(z) = -e^{i\theta}B_{\alpha}(-e^{-i\theta}z)$.

From Corollary 3.1 and the Wolff-Warschawski-Noshiro Theorem it follows that $f \in \mathfrak{B}_1^p(\alpha)$ is univalent in $\mathbb{D}(0, m(\alpha))$, when $0 < \alpha \leq 1$. Since $B'_{\alpha}(m(\alpha)) = 0$, B_{α} is not univalent in any larger disk $\mathbb{D}(0, m(\alpha) + \varepsilon)$ for any $\varepsilon > 0$.

Corollary 3.3. The radius of univalence for $\mathfrak{B}_1^p(\alpha)$ is $m(\alpha)$. More precisely, if $\alpha \in (0,1]$ and $f \in \mathfrak{B}_1^p(\alpha)$, then f is univalent in $\mathbb{D}(0,r)$ for some $r > m(\alpha)$ unless $f(z) = e^{i\theta}B_{\alpha}(e^{-i\theta}z)$ for some $\theta \in \mathbb{R}$.

Chapter 4

Proofs of Theorem 3.1 and Corollary 3.1

First, we consider the case that $\alpha \in [0,1)$ in Theorem 3.1. We need the following lemma.

Lemma 4.1. Let \mathbb{D}_1 and \mathbb{D}_2 be disks with $c_1 \in \mathbb{D}_1$ and $c_2 \in \mathbb{D}_2$. Suppose that $F: \mathbb{D}_1 \to \mathbb{D}_2$ is a conformal mapping with $F(c_1) = c_2$. Let $\delta_{\mathbb{D}_1}$ and $\delta_{\mathbb{D}_2}$ be the hyperbolic distances on \mathbb{D}_1 and \mathbb{D}_2 , respectively. If $f: \mathbb{D}_1 \to \mathbb{D}_2$ is an analytic function with $f(c_1) = c_2$, then

$$\delta_{\mathbb{D}_2}(f(z), c_2) \leq \delta_{\mathbb{D}_1}(z, c_1), \qquad z \in \mathbb{D}_1.$$

Furthermore $f(z_0) = F(z_0)$ at some $z_0 \in \mathbb{D}_1 \setminus \{c_1\}$ holds if and only if f = F.

We can easily verify Lemma 4.1, and so we omit its proof.

Proof of Theorem 3.1 in the case when $0 \le \alpha < 1$. Let $f \in \mathfrak{B}_1^p(\alpha)$. Then

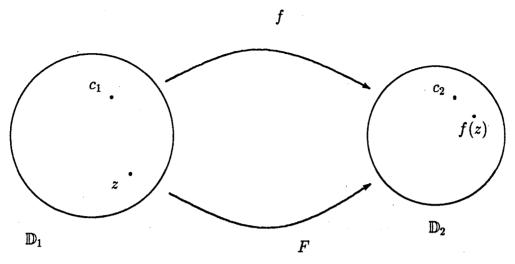


Figure 4.1:

from $T_{-m(\alpha)}f \in \mathfrak{B}_1^p(\alpha)$ we have for $|z| < 1/\sqrt{2p+1}$

$$|(T_{-m(\alpha)}f)'(z)| \le \frac{1}{(1-|z|^2)^p} < \left(\frac{2p+1}{2p}\right)^p$$

and by $M(m(\alpha)) = \alpha$, we have

$$(T_{-m(\alpha)}f)'(-m(\alpha)) = \frac{\alpha}{(1-m(\alpha)^2)^p} = \sqrt{2p+1}\left(\frac{2p+1}{2p}\right)^p m(\alpha) = \gamma_p m(\alpha),$$

where $\gamma_p = \sqrt{2p+1} \left(\frac{2p+1}{2p}\right)^p$. Letting $\mathbb{D}_1 = \left\{z \in \mathbb{C} : |z| < \frac{1}{\sqrt{2p+1}}\right\}$ and $\mathbb{D}_2 = \left\{w \in \mathbb{C} : |w| < \left(\frac{2p+1}{2p}\right)^p\right\}$, $(T_{-m(\alpha)}f)'$ is an analytic mapping of \mathbb{D}_1 into \mathbb{D}_2 with $(T_{-m(\alpha)}f)'(-m(\alpha)) = \gamma_p m(\alpha)$. Applying Lemma 4.1 we have for $|z| < 1/\sqrt{2p+1}$

$$\delta_{\mathbb{D}_2}\left((T_{-m(\alpha)}f)'(z),\gamma_p m(\alpha)\right) \le \delta_{\mathbb{D}_1}(z,-m(\alpha)). \tag{4.1}$$

Take $z_0 \in \Delta(m(\alpha), 1/\sqrt{2p+1}) = \tau_{-m(\alpha)}(\mathbb{D}_1)$ with $z_0 \neq 0$ arbitrarily and put $z_1 = \tau_{m(\alpha)}(z_0) (\in \mathbb{D}_1)$. Let $\overline{\mathbb{D}}_0$ be the closed hyperbolic subdisk of \mathbb{D}_2 with center $\gamma_p m(\alpha)$ and radius $\delta_{\mathbb{D}_1}(z_1, -m(\alpha))$. Then by (4.1) we have

 $(T_{-m(\alpha)}f)'(z_1) \in \overline{\mathbb{D}}_0$. Thus

$$f'(\tau_{-m(\alpha)}(z_1))\tau'_{-m(\alpha)}(z_1)^p \in \overline{\mathbb{D}}_0.$$

This implies

$$f'(z_0) \in \frac{(1-m(\alpha)^2)^p}{(1-m(\alpha)z_0)^{2p}}\overline{\mathbb{D}}_0.$$

Hence we have

$$V_{\alpha}^{p}(z_0) \subset \frac{(1-m(\alpha)^2)^p}{(1-m(\alpha)z_0)^{2p}} \overline{\mathbb{D}}_0. \tag{4.2}$$

Since $B'_{\alpha}(z) = (T_{m(\alpha)}B)'(z)$, we have $(T_{-m(\alpha)}B_{\alpha})'(z) = B'(z) = -\gamma_p z$. Thus $(T_{-m(\alpha)}B_{\alpha})'$ is a conformal mapping of \mathbb{D}_1 onto \mathbb{D}_2 with $(T_{-m(\alpha)}B_{\alpha})'$ $(-m(\alpha)) = \gamma_p m(\alpha)$. In particular we have $(T_{-m(\alpha)}B_{\alpha})'(z_1) \in \partial \mathbb{D}_0$ and hence

$$B'_{\alpha}(z_0) \in \frac{(1 - m(\alpha)^2)^p}{(1 - m(\alpha)z_0)^{2p}} \partial \mathbb{D}_0.$$
 (4.3)

Since $B'_{\alpha}(z_0) \in V^p_{\alpha}(z_0)$, it follows from (4.2) and (4.3) that $B'_{\alpha}(z_0) \in \partial V^p_{\alpha}(z_0)$. Next, we prove the uniqueness. Assume that $z_0 \in \Delta(m(\alpha), 1/\sqrt{2p+1})$ with $z_0 \neq 0$ and $f'(z_0) = B'_{\alpha}(z_0)$ for some $f \in \mathfrak{B}^p_1(\alpha)$. Then we have $(T_{-m(\alpha)}f)'(z_1) = (T_{-m(\alpha)}B_{\alpha})'(z_1)$, where $z_1 = \tau_{m(\alpha)}(z_0)$. Applying the uniqueness part of Lemma 4.1 at $z_1(\neq -m(\alpha))$ we obtain $(T_{-m(\alpha)}f)' = (T_{-m(\alpha)}B_{\alpha})'$ and hence $f' = B'_{\alpha}$. Since $f(0) = B_{\alpha}(0) = 0$ we have $f = B_{\alpha}$.

Proof of Corollary 3.1 in the case that $0 \le \alpha < 1$. We use the same notation as in the above. Take $z_0 = r \in \left(0, \frac{1+\sqrt{2p+1}m(\alpha)}{\sqrt{2p+1}+m(\alpha)}\right)$ and put $z_1 = \tau_{m(\alpha)}(r)$. Since $(T_{-m(\alpha)}B_{\alpha})'(z) = -\gamma_p z$ maps \mathbb{D}_1 conformally onto \mathbb{D}_2 and $-\gamma_p z_1 < \gamma_p m(\alpha)$, we have

$$\min_{w \in \overline{\mathbb{D}_0}} \operatorname{Re} w = -\gamma_p z_1 = -\gamma_p \tau_{m(\alpha)}(r)$$

and hence for $f \in \mathfrak{B}_1^p(\alpha)$

$$\operatorname{Re} f'(\tau_{-m(\alpha)}(z_1))\tau'_{-m(\alpha)}(z_1)^p = \operatorname{Re} (T_{-m(\alpha)}f)'(z_1) \ge -\gamma_p \tau_{m(\alpha)}(r).$$

This implies

$$\operatorname{Re} f'(r) = \operatorname{Re} f'(\tau_{-m(\alpha)}(z_1)) \ge -\gamma_p \tau_{m(\alpha)}(r) \tau'_{m(\alpha)}(r)^p = B'_{\alpha}(r). \tag{4.4}$$

It is not difficult to see that equality holds in (4.4) if and only if $f = B_{\alpha}$. Now let $f \in \mathfrak{B}_{1}^{p}(\alpha)$ and $\zeta_{0} = r_{0}e^{i\theta_{0}}$ with $0 < r_{0} < \frac{1+\sqrt{2p+1}m(\alpha)}{\sqrt{2p+1}+m(\alpha)}$ and $\theta_{0} \in \mathbb{R}$. Applying (4.4) to $\tilde{f}(z) = e^{-i\theta_{0}}f(e^{i\theta_{0}}z) \in \mathfrak{B}_{1}^{p}(\alpha)$ at r_{0} we have

$$\operatorname{Re} f'(\zeta_0) = \operatorname{Re} \tilde{f}'(r_0) \ge B'_{\alpha}(r_0) = B'_{\alpha}(|\zeta_0|)$$

with equality if and only if $\tilde{f} = B_{\alpha}$ i.e., $f(z) = e^{i\theta_0} B_{\alpha}(e^{-i\theta_0}z)$.

Take $z_0 = -r$ with $r \in \left(0, \frac{1-\sqrt{2p+1}m(\alpha)}{\sqrt{2p+1}-m(\alpha)}\right)$ and $z_1 = \tau_{m(\alpha)}(-r)$. Since $0 < \gamma_p m(\alpha) < -\gamma_p z_1$, we have

$$\max_{w \in \overline{\mathbb{D}_0}} |w| = -\gamma_p z_1 = -\gamma_p \tau_{m(\alpha)}(-r).$$

Hence for $f \in \mathfrak{B}_1^p(\alpha)$ we have

$$|f'(\tau_{-m(\alpha)}(z_1))\tau'_{-m(\alpha)}(z_1)^p| \le -\gamma_p \tau_{m(\alpha)}(-r)$$

and thus

$$|f'(-r)| \le -\gamma_p \tau_{m(\alpha)}(-r) \tau'_{m(\alpha)}(-r)^p = B'_{\alpha}(-r)$$
 (4.5)

with equality if and only if $f = B_{\alpha}$.

Let $f \in \mathfrak{B}_1^p(\alpha)$ and $\zeta_0 = -r_0 e^{i\theta_0}$ with $0 < r_0 < \frac{1-\sqrt{2p+1}m(\alpha)}{\sqrt{2p+1}-m(\alpha)}$ and $\theta_0 \in \mathbb{R}$. Applying (4.5) to $\tilde{f}(z) = -e^{-i\theta_0} f(-e^{i\theta_0}z) \in \mathfrak{B}_1^p(\alpha)$ at $-r_0$ we have

$$|f'(\zeta_0)| = |\tilde{f}'(-r_0)| \le B'_{\alpha}(-r_0) = B'_{\alpha}(-|\zeta_0|)$$

with equality if and only if $\tilde{f} = B_{\alpha}$ i.e., $f(z) = -e^{i\theta_0}B_{\alpha}(-e^{-i\theta_0}z)$.

In order to prove Theorem 3.1 in the case that $\alpha = 1$, we need the following result known as Julia's lemma.

Lemma 4.2 (Julia). Let g be an analytic function on $\mathbb{D} \cup \{1\}$ with g(1) = 1 and |g(z)| < 1 for $z \in \mathbb{D}$. Then $\beta = g'(1) > 0$ and

$$\frac{|1 - g(z)|^2}{1 - |g(z)|^2} \le \beta \frac{|1 - z|^2}{1 - |z|^2}, \qquad z \in \mathbb{D}.$$
(4.6)

Equality occurs in (4.6) at $z_0 \in \mathbb{D}$ with $w_0 = g(z_0)$ if and only if

$$\tau_{w_0}(g(z)) = \frac{1 - w_0}{1 - \overline{w_0}} \frac{1 - \overline{z_0}}{1 - z_0} \tau_{z_0}(z)$$

For a proof of the inequality (4.6) see [1, Theorem 1-5]. For a proof of the uniqueness part see [11].

Proof of Theorem 3.1 in the case that $\alpha = 1$. First we note that $m(1) = 1/\sqrt{2p+1}$. We consider the following composite functions to apply Julia's lemma in the disk $\Delta(m(1), 1/\sqrt{2p+1})$. For $f \in \mathfrak{B}_1^p(1)$ put

$$g_f(z) = \left(\frac{2p}{2p+1}\right)^p (T_{-m(1)}f)' \left(-\frac{z}{\sqrt{2p+1}}\right)$$

$$= \left(\frac{2p}{2p+1}\right)^{2p} f' \left(\frac{\sqrt{2p+1}(1-z)}{(2p+1)-z}\right) \frac{1}{(1-z/(2p+1))^{2p}}.$$
(4.7)

Then we have for |z| < 1

$$|g_{f}(z)| = \left(\frac{2p}{2p+1}\right)^{p} \left| f'\left(\tau_{-m(1)}\left(-\frac{z}{\sqrt{2p+1}}\right)\right) \right| \left| \tau'_{-m(1)}\left(-\frac{z}{\sqrt{2p+1}}\right) \right|^{p}$$

$$= \frac{(2p/(2p+1))^{p} \mu_{p}(f, \tau_{-m(1)}(-z/\sqrt{2p+1}))}{\left(1 - \left|z/\sqrt{2p+1}\right|^{2}\right)^{p}}$$

$$\leq \frac{(2p/(2p+1))^{p}}{\left(1 - \left|z/\sqrt{2p+1}\right|^{2}\right)^{p}} < 1$$

and $g_f(1) = f'(0) = 1$. In view of the inequality

$$1 + \operatorname{Re} \left(f''(0)z \right) + \dots = |f'(z)| \le \frac{1}{(1 - |z|^2)^p} = 1 + p|z|^2 + \dots,$$

f''(0) = 0 holds for each $f \in \mathfrak{B}_1^p(1)$. From this and (4.7)

$$g'_f(1) = \frac{g'_f(1)}{g_f(1)} = -\frac{\sqrt{2p+1}}{2p} \frac{f''(0)}{f'(0)} + 1 = 1.$$

Applying Lemma 4.2, we have

$$\frac{|1 - g_f(z)|^2}{1 - |g_f(z)|^2} \le \frac{|1 - z|^2}{1 - |z|^2} = \delta(z). \tag{4.8}$$

Since we can rewrite (4.8) as

$$\left|g_f(z) - \frac{1}{1 + \delta(z)}\right| \le \frac{\delta(z)}{1 + \delta(z)},$$

it follows that

$$g_f(z) \in \overline{\mathbb{D}}\left(\frac{1}{1+\delta(z)}, \frac{\delta(z)}{1+\delta(z)}\right)$$
 (4.9)

for all $z \in \mathbb{D}$. Take $z_0 \in \Delta(m(1), 1/\sqrt{2p+1})$ arbitrarily. Substituting $z = -\sqrt{2p+1}\tau_{m(1)}(z_0)$ in (4.9), we obtain

$$f'(z_0) \in \left(\frac{2p+1}{2p}\right)^p \tau'_{m(1)}(z_0)^p \overline{\mathbb{D}} \left(\frac{1}{1+\tilde{\delta}(z_0)}, \frac{\tilde{\delta}(z_0)}{1+\tilde{\delta}(z_0)}\right),$$
 (4.10)

where

$$\tilde{\delta}(z_0) = \delta(-\sqrt{2p+1}\tau_{m(1)}(z_0)).$$

Thus we have

$$V_1^p(z_0) \subset \left(\frac{2p+1}{2p}\right)^p \tau'_{m(1)}(z_0)^p \overline{\mathbb{D}}\left(\frac{1}{1+\tilde{\delta}(z_0)}, \frac{\tilde{\delta}(z_0)}{1+\tilde{\delta}(z_0)}\right). \tag{4.11}$$

Now let us consider the case that $f = B_1$. Since $B_1 = T_{m(1)}B$, we have

$$\begin{split} g_{B_1}(z) &= \left(\frac{2p}{2p+1}\right)^p (T_{-m(1)}(T_{m(1)}B))' \left(-\frac{z}{\sqrt{2p+1}}\right) \\ &= \left(\frac{2p}{2p+1}\right)^p B' \left(-\frac{z}{\sqrt{2p+1}}\right) = z. \end{split}$$

This implies $g_{B_1}(z) \in \partial \mathbb{D}(1/(1+\delta(z)), \delta(z)/(1+\delta(z)))$ for all $z \in \mathbb{D}$. Hence we have

$$B_1'(z_0) \in \left(\frac{2p+1}{2p}\right)^p \tau_{m(1)}'(z_0)^p \partial \overline{\mathbb{D}} \left(\frac{1}{1+\tilde{\delta}(z_0)}, \frac{\tilde{\delta}(z_0)}{1+\tilde{\delta}(z_0)}\right). \tag{4.12}$$

Since $B_1'(z_0) \in V_1^p(z_0)$, we infer from (4.11) and (4.12) that $B_1'(z_0) \in \partial V_1^p(z_0)$.

Finally, we deal with uniqueness. Suppose $f'(z_0) = B'_1(z_0)$ for some $f \in \mathfrak{B}_1^p(1)$ and $z_0 \in \Delta(m(1), 1/\sqrt{2p+1})$. Then we have $g_f(z_1) = g_{B_1}(z_1) = z_1$, where $z_1 = -\sqrt{2p+1}\tau_{m(1)}(z_0)$. By Lemma 4.2 we obtain $g_f(z) = z$ in \mathbb{D} and hence $f'(z) = B'_1(z)$ in $\Delta(m(1), 1/\sqrt{2p+1})$. By the identity theorem for analytic functions, the relation $f'(z) = B'_1(z)$ holds on \mathbb{D} . From this and $f(0) = B_1(0) = 0$ we have $f = B_1$. Therefore we complete the proof of Theorem 3.1.

Proof of Corollary 3.1 in the case that $\alpha = 1$. Since $m(1) = \frac{1}{\sqrt{2p+1}}$, (ii) in Corollary 3.1 never occurs. We use the same notation as in the proof of Theorem 3.1 in the case that $\alpha = 1$. Let $z_0 = r \in \left(0, \frac{1+\sqrt{2p+1}m(1)}{\sqrt{2p+1}+m(1)}\right) = \left(0, \frac{\sqrt{2p+1}}{p+1}\right)$. Then by (4.10) we have

$$\operatorname{Re} f'(z) \ge \left(\frac{2p+1}{2p}\right)^p \tau'_{m(1)}(r)^p \frac{1-\tilde{\delta}(r)}{1+\tilde{\delta}(r)}.$$

Since $\frac{1-\delta}{1+\delta} = \frac{\operatorname{Re}_{z-|z|^2}}{1-\operatorname{Re}_z}$ and $\tilde{\delta}(r) = \delta(-\sqrt{2p+1}\tau_{m(1)}(r)),$

$$\operatorname{Re} f'(r) \ge -\sqrt{2p+1} \left(\frac{2p+1}{2p}\right)^p \tau_{m(1)}(r) \tau'_{m(1)}(r)^p = B_1(r).$$

The rest of the proof is quite similar as in the case that $0 \le \alpha < 1$ and we omit it.

Chapter 5

Proofs of Proposition 3.1 and Theorem 3.2

We need a technical lemma characterizing a monotone property of a family of subdisks of \mathbb{D} .

Lemma 5.1. Let c(t) and $\rho(t)$ be continuously differentiable functions on an interval I satisfying $c(t) \in \mathbb{D}$ and $\rho(t) \in (0,1)$ on I. Then the family of disks $\{\Delta(c(t), \rho(t))\}_{t \in I}$ is nondecreasing if and only if

$$\frac{|c'(t)|}{1 - |c(t)|^2} \le \frac{\rho'(t)}{1 - \rho(t)^2}$$

on I. Furthermore if $|c'(t)|/(1-|c(t)|^2) < \rho'(t)/(1-\rho(t)^2)$ holds on I, then $\{\Delta(c(t),\rho(t))\}_{t\in I}$ is strictly increasing in the sense that $\overline{\Delta}(c(t_0),\rho(t_0))\subset \Delta(c(t_1),\rho(t_1))$ for any $t_0,t_1\in I$ with $t_0< t_1$ (see Figure 5.1).

Proof. Let $t_0, t_1 \in I$ with $t_0 < t_1$. Put

$$\tilde{c}(t) = \tau_{c(t_0)}(c(t)) = \frac{c(t) - c(t_0)}{1 - \overline{c(t_0)}c(t)}, \quad t \in I.$$

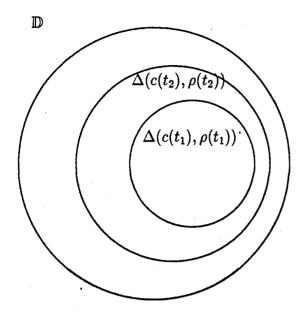


Figure 5.1:

Then we have $\tau_{c(t_0)}(\Delta(c(t),\rho(t))) = \Delta(\tilde{c}(t),\rho(t))$ and $\tilde{c}(t_0) = 0$.

Assume that $\{\Delta(c(t), \rho(t))\}_{t \in I}$ is nondecreasing. Then $\{\Delta(\tilde{c}(t), \rho(t))\}_{t \in I}$ is also nondecreasing and hence

$$\begin{split} \mathbb{D}(0,\rho(t_0)) &= \Delta(\tilde{c}(t_0),\rho(t_0)) \subset \Delta(\tilde{c}(t_1),\rho(t_1)) \\ &= \mathbb{D}\left(\frac{(1-\rho(t_1)^2)\tilde{c}(t_1)}{1-|\tilde{c}(t_1)|^2\rho(t_1)^2},\frac{(1-|\tilde{c}(t_1)|^2)\rho(t_1)}{1-|\tilde{c}(t_1)|^2\rho(t_1)^2}\right). \end{split}$$

This implies

$$\rho(t_0) \leq \frac{(1-|\tilde{c}(t_1)|^2)\rho(t_1)}{1-|\tilde{c}(t_1)|^2\rho(t_1)^2} - \frac{(1-\rho(t_1)^2)|\tilde{c}(t_1)|}{1-|\tilde{c}(t_1)|^2\rho(t_1)^2} = \frac{\rho(t_1)-|\tilde{c}(t_1)|}{1-|\tilde{c}(t_1)|\rho(t_1)}.$$

From this it follows that

$$|\tilde{c}(t_1) - \tilde{c}(t_0)| = |\tilde{c}(t_1)| \le \frac{\rho(t_1) - \rho(t_0)}{1 - \rho(t_0)\rho(t_1)}.$$

Dividing both sides of the above inequality by $t_1 - t_0$ and then letting $t_1 \downarrow t_0$ we obtain

$$\frac{|c'(t_0)|}{1-|c(t_0)|^2}=|\tilde{c}'(t_0)|\leq \frac{\rho'(t_0)}{1-\rho(t_0)^2}.$$

Conversely assume that $|c'(t)|/(1-|c(t)|^2) \le \rho'(t)/(1-\rho(t)^2)$ holds on I.

We note that

$$\frac{|\vec{c}'(t)|}{1 - |\tilde{c}(t)|^2} = \frac{|c'(t)|}{1 - |c(t)|^2} \le \frac{\rho(t)}{1 - \rho(t)^2}$$

and $\tilde{c}(t_0) = 0$. Since $\left| \frac{d}{dt} |\tilde{c}(t)| \right| \leq \left| \frac{d}{dt} \tilde{c}(t) \right|$, we have

$$\frac{1}{2} \log \frac{1 + |\tilde{c}(t_1)|}{1 - |\tilde{c}(t_1)|} \\
= \left| \int_{t_0}^{t_1} \frac{1}{2} \frac{d}{dt} \left\{ \log \frac{1 + |\tilde{c}(t)|}{1 - |\tilde{c}(t)|} \right\} dt \right| \\
= \left| \int_{t_0}^{t_1} \frac{\frac{d}{dt} |\tilde{c}(t)|}{1 - |\tilde{c}(t)|^2} dt \right| \\
\le \int_{t_0}^{t_1} \frac{\left| \frac{d}{dt} \tilde{c}(t) \right|}{1 - |\tilde{c}(t)|^2} dt \\
\le \int_{t_0}^{t_1} \frac{\rho'(t)}{1 - \rho(t)^2} dt = \frac{1}{2} \log \frac{1 + \rho(t_1)}{1 - \rho(t_1)} \frac{1 - \rho(t_0)}{1 + \rho(t_0)}.$$

Thus we have

$$\frac{1+|\tilde{c}(t_1)|}{1-|\tilde{c}(t_1)|} \le \frac{1+\rho(t_1)}{1-\rho(t_1)} \frac{1-\rho(t_0)}{1+\rho(t_0)}$$

and hence from an elementary calculation it follows that

$$|\tilde{c}(t_1)| \le \frac{\rho(t_1) - \rho(t_0)}{1 - \rho(t_0)\rho(t_1)}.$$
 (5.1)

Now we put

$$a = \frac{(1 - \rho(t_1)^2)\tilde{c}(t_1)}{1 - |\tilde{c}(t_1)|^2 \rho(t_1)^2}, \quad r = \frac{(1 - |\tilde{c}(t_1)|^2)\rho(t_1)}{1 - |\tilde{c}(t_1)|^2 \rho(t_1)^2}.$$

Then we have $\Delta(\tilde{c}(t_1), \rho(t_1)) = \mathbb{D}(a, r)$ and

$$r - |a| = \frac{(1 - |\tilde{c}(t_1)|^2)\rho(t_1) - (1 - \rho(t_1)^2)|\tilde{c}(t_1)|}{1 - |\tilde{c}(t_1)|^2\rho(t_1)^2} = \frac{\rho(t_1) - |\tilde{c}(t_1)|}{1 - |\tilde{c}(t_1)\rho(t_1)|}.$$

We claim that $r - |a| \ge \rho(t_0)$ holds, which is a simple consequence of (5.1). Thus we have

$$\tau_{c(t_0)}(\Delta(c(t_0), \rho(t_0))) = \Delta(0, \rho(t_0)) \subset \mathbb{D}(0, r - |a|)$$

$$\subset \mathbb{D}(a, r)$$

$$= \Delta(\tilde{c}(t_1), \rho(t_1)) = \tau_{c(t_0)}(\Delta(c(t_1), \rho(t_1)))$$

and hence $\Delta(c(t_0), \rho(t_0)) \subset \Delta(c(t_1), \rho(t_1))$.

If $|c'(t)|/(1-|c(t)|^2) < \rho'(t)/(1-\rho(t)^2)$ holds on I, then it is easy to see that strict inequality sign holds in (5.1). This implies $r-|a|>\rho(t_0)$ and thus we conclude $\overline{\Delta}(c(t_0),\rho(t_0))\subset\Delta(c(t_1),\rho(t_1))$.

Let
$$E = \{(\lambda, x) : 0 \le \lambda \le p \text{ and } 0 \le x \le 1/\sqrt{2\lambda + 1}\}$$
 and
$$h(\lambda, x) = \begin{cases} x(1 - x^2)^{\lambda}, & (\lambda, x) \in E \setminus \{(0, 1)\}\\ 1, & (\lambda, x) = (0, 1). \end{cases}$$

Lemma 5.2. The function $h(\lambda, x)$ is nonnegative and continuous on E, and satisfies $h(\lambda, x) \leq 1$ with equality if and only if $(\lambda, x) = (0, 1)$. Furthermore for fixed $\lambda \in [0, p]$, $h(\lambda, x)$ is a strictly increasing function of $x \in [0, 1/\sqrt{2\lambda + 1}]$ and for fixed $x \in (0, 1)$, $h(\lambda, x)$ is a strictly decreasing function of $\lambda \in [0, \min\{2^{-1}(x^{-2} - 1), p\}]$.

Proof. The monotonic properties of $h(\lambda, x)$ is clear. And it is also clear that $h(\lambda, x)$ is continuous and satisfies $h(\lambda, x) < 1$ on $E \setminus \{(0, 1)\}$. Thus we only have to show that $h(\lambda, x)$ is continuous at (0, 1). To show this let $0 < \delta < 1$. Then for $(\lambda, x) \in E \setminus \{(0, 1)\}$ with $1 - \delta \le x < 1$ and $0 < \lambda \le \delta$ we have

$$1>h(\lambda,x)\geq h(\lambda,1-\delta)\geq h(\delta,1-\delta)=(1-\delta)\delta^\delta(2-\delta)^\delta\to 1$$
 as $\delta\downarrow 0$.

Let $\alpha \in [0,1]$. For each fixed $\lambda \in [0,p]$ let $x=c(\lambda)$ be the unique solution of the equation

$$h(\lambda, x) = \alpha h(\lambda, 1/\sqrt{2\lambda + 1}), \quad 0 \le x \le \frac{1}{\sqrt{2\lambda + 1}}.$$

Lemma 5.3. If $\alpha=0$ or $\alpha=1$, then $c(\lambda)=0$ or $c(\lambda)=1/\sqrt{2\lambda+1}$, respectively. If $0<\alpha<1$, then the function $c(\lambda)$ is a continuously differentiable function of $\lambda\in(0,p)$ satisfying $0< c(\lambda)<1/\sqrt{2\lambda+1}$ and $c'(\lambda)<0$ in (0,p). Furthermore we have $c(0)=\lim_{\lambda\downarrow 0}c(\lambda)=\alpha$ and $c(p)=\lim_{\lambda\uparrow p}c(\lambda)=m(\alpha)$.

Proof. We shall only show the assertions, when $0 < \alpha < 1$. In this case it is easy to see that $0 < c(\lambda) < 1/\sqrt{2\lambda + 1}$. Put $H(\lambda, x) = h(\lambda, x)/h(\lambda, 1/\sqrt{2\lambda + 1})$. Then by Lemma 5.2, $H(\lambda, x)$ is continuous on E and continuously differentiable in Int E. Since

$$\frac{\partial}{\partial x}H(\lambda, x) = \frac{\{1 - (2\lambda + 1)x^2\}(1 - x^2)^{\lambda - 1}}{h(\lambda, 1/\sqrt{2\lambda + 1})} > 0$$
 (5.2)

in Int E, it follows from the implicit function theorem that $c(\lambda)$ is continuously differentiable in (0, p). Since

$$h(\lambda, c(\lambda)) = \alpha h(\lambda, 1/\sqrt{2\lambda + 1}), \tag{5.3}$$

we have

$$\log c(\lambda) + \lambda \log(1 - c(\lambda)^2) = \log \alpha - \frac{1}{2} \log(2\lambda + 1) + \lambda \log \frac{2\lambda}{2\lambda + 1}.$$

By differentiating both sides of the above formula and $0 < c(\lambda) < 1/\sqrt{2\lambda + 1}$ we obtain

$$c'(\lambda) = \frac{c(\lambda)(1 - c(\lambda)^2)}{1 - (2\lambda + 1)c(\lambda)^2} \log \frac{2\lambda}{(2\lambda + 1)(1 - c(\lambda)^2)} < 0.$$
 (5.4)

Thus $c(\lambda)$ is strictly decreasing and hence $c(0+) = \lim_{\lambda \downarrow 0} c(\lambda)$ and $c(p-0) = \lim_{\lambda \uparrow p} c(\lambda)$ exist. By continuity of $h(\lambda, x)$ on E we have $c(0+) = \alpha$ and $c(p-0)(1-c(p-0)^2)^p = \alpha h(p, 1/\sqrt{2p+1})$. These imply $c(0+) = \alpha = c(0)$ and $c(p-0) = m(\alpha) = c(p)$.

Lemma 5.4. If $\alpha \in [0,1)$, then the family of disks $\{\Delta(c(\lambda), 1/\sqrt{2\lambda+1})\}_{0 \le \lambda \le p}$ is strictly decreasing and

$$\bigcup_{0 < \lambda < p} \Delta(c(\lambda), 1/\sqrt{2\lambda + 1}) = \Delta(\alpha, 1) = \mathbb{D},$$

$$\bigcap_{0 < \lambda < p} \Delta(c(\lambda), 1/\sqrt{2\lambda + 1}) = \overline{\Delta}(m(\alpha), 1/\sqrt{2p + 1}).$$

If $\alpha=1$, then $c(\lambda)=1/\sqrt{2\lambda+1}$ and $\{\Delta(1/\sqrt{2\lambda+1},1/\sqrt{2\lambda+1})\}_{0<\lambda\leq p}$ is decreasing and satisfies

$$\begin{split} &\bigcup_{0<\lambda< p} \Delta(1/\sqrt{2\lambda+1},1/\sqrt{2\lambda+1}) = \mathbb{D}(1/2,1/2), \\ &\bigcap_{0<\lambda< p} \Delta(1/\sqrt{2\lambda+1},1/\sqrt{2\lambda+1}) = \overline{\Delta}(1/\sqrt{2p+1},1/\sqrt{2p+1})\backslash\{0\}. \end{split}$$

Proof. If $\alpha = 1$, then $c(\lambda) = 1/\sqrt{2\lambda + 1}$ and it is not difficult to see that the assertion of the lemma holds in this case.

Suppose that $0 \le \alpha < 1$. Put $\rho(\lambda) = 1/\sqrt{2\lambda + 1}$, $0 < \lambda \le p$. Applying Lemma 5.1 to $\{\Delta(c(-t), \rho(-t))\}_{-p \le t \le 0}$, it suffices to show $|c'(\lambda)|/(1-|c(\lambda)|^2) < -\rho'(\lambda)/(1-\rho(\lambda)^2)$. By (5.4) and $0 < c(\lambda) < \rho(\lambda) = 1/\sqrt{2\lambda + 1}$ we obtain

$$\frac{c'(\lambda)}{1 - c(\lambda)^2} = -\frac{c(\lambda)\rho(\lambda)^2}{\rho(\lambda)^2 - c(\lambda)^2} \log \frac{1 - c(\lambda)^2}{1 - \rho(\lambda)^2} < 0.$$

Thus by making use of the inequality $1+x \leq e^x$ and $\rho'(\lambda) = -\rho(\lambda)^3$ we have

$$\begin{split} \frac{|c'(\lambda)|}{1 - |c(\lambda)|^2} &= \frac{c(\lambda)\rho(\lambda)^2}{\rho(\lambda)^2 - c(\lambda)^2} \log\left(1 + \frac{\rho(\lambda)^2 - c(\lambda)^2}{1 - \rho(\lambda)^2}\right) \\ &\leq \frac{c(\lambda)\rho(\lambda)^2}{1 - \rho(\lambda)^2} \\ &< \frac{\rho(\lambda)^3}{1 - \rho(\lambda)^2} = -\frac{\rho'(\lambda)}{1 - \rho(\lambda)^2}. \end{split}$$

Proof of Proposition 3.1. Suppose that $0 \le \alpha < 1$. Then by Lemma 5.4, for any $z \in \mathbb{D}\backslash\Delta(m(\alpha), 1/\sqrt{2p+1})$ there exists a unique $\lambda = \lambda(z) \in (0, p]$ such that

$$z \in \partial \Delta(c(\lambda), 1/\sqrt{2\lambda + 1}).$$
 (5.5)

We define $a(z) = c(\lambda(z))$. Then by (5.3) and (5.5), $(a(z), \lambda(z))$ satisfies (3.7) and (3.8). Uniqueness and continuity of $(a(z), \lambda(z))$ on $\mathbb{D}\backslash\Delta(m(\alpha), 1/\sqrt{2p+1})$ follow from the monotone property of the function $[0, 1/\sqrt{2p+1}]$ $\ni x \mapsto h(\lambda, x)$ for fixed $\lambda \in [0, p]$ and the strictly decreasing property of $\{\Delta(c(\lambda), 1/\sqrt{2\lambda+1})\}_{0 \le \lambda \le p}$.

Next suppose that $\alpha = 1$. Note that $c(\lambda) = 1/\sqrt{2\lambda + 1}$. Then by Lemma 5.4, for any $z \in \mathbb{D}(1/2, 1/2) \setminus \Delta(1/\sqrt{2p+1}, 1/\sqrt{2p+1})$ there exists a unique $\lambda = \lambda(z) \in (0, p]$ such that

$$z \in \partial \Delta(1/\sqrt{2\lambda+1}, 1/\sqrt{2\lambda+1}).$$

Then it is easy to see that $a(z) = 1/\sqrt{2\lambda + 1}$ and $\lambda(z)$ satisfy (3.7) and (3.9). For $z \in \partial \mathbb{D}(1/2, 1/2) \setminus \{0, 1\}$ we define $\lambda(z) = 0$ and a(z) = 1. Then it is not difficult to see that $\lambda(z)$ is unique, and that it is continuous on $\overline{\mathbb{D}}(1/2, 1/2) \setminus [\Delta(1/\sqrt{2p+1}, 1/\sqrt{2p+1}) \cup \{0, 1\}]$.

Proof of Theorem 3.2. Let $\alpha \in [0,1)$. Suppose that $0 < r < \frac{1-\sqrt{2p+1}m(\alpha)}{\sqrt{2p+1}-m(\alpha)}$. Then, since

$$\mathbb{D}\left(0, \frac{1-\sqrt{2p+1}m(\alpha)}{\sqrt{2p+1}-m(\alpha)}\right) \subset \Delta(m(\alpha), 1/\sqrt{2p+1}),$$

we have $re^{i\theta} \in \Delta(m(\alpha), 1/\sqrt{2p+1})$ for all $\theta \in (-\pi, \pi]$. Thus by Theorem 3.1 and $V_{\alpha}^{p}(re^{i\theta}) = V_{\alpha}^{p}(r)$, the mapping $(-\pi, \pi] \ni \theta \mapsto B'_{\alpha}(re^{i\theta})$ gives a closed curve contained in $\partial V_{\alpha}^{p}(r)$. We show that it is a simple curve. Assume that $B'_{\alpha}(re^{i\theta_1}) = B'_{\alpha}(re^{i\theta_2})$ for some $\theta_1, \theta_2 \in (-\pi, \pi]$ with $\theta_1 < \theta_2$. Put $f(z) = e^{-i(\theta_2-\theta_1)}B_{\alpha}(e^{i(\theta_2-\theta_1)}z)$. Then $f'(re^{i\theta_1}) = B'_{\alpha}(re^{i\theta_2}) = B'_{\alpha}(re^{i\theta_1})$. Applying the uniqueness part of Theorem 3.1 at $re^{i\theta_1}$, we have $f(z) = B_{\alpha}(z)$ and hence $e^{-i(\theta_2-\theta_1)}B_{\alpha}(e^{i(\theta_2-\theta_1)}z) = B_{\alpha}(z)$ on \mathbb{D} , which is a contradiction.

Now we have shown that the simple closed curve given by $(-\pi, \pi] \ni \theta \mapsto B'_{\alpha}(re^{i\theta})$ is contained in the simple closed curve $\partial V^p_{\alpha}(r)$. Since a simple closed curve cannot contain any simple closed curve other than itself, $\partial V^p_{\alpha}(r)$ coincides with the curve given as the mapping $(-\pi, \pi] \ni \theta \mapsto B'_{\alpha}(re^{i\theta})$.

Suppose that $\frac{1-\sqrt{2p+1}m(\alpha)}{\sqrt{2p+1}-m(\alpha)} \leq r < \frac{1+\sqrt{2p+1}m(\alpha)}{\sqrt{2p+1}+m(\alpha)}$. Then $re^{i\theta} \in \Delta(m(\alpha), 1/\sqrt{2p+1})$ if and only if $|\theta| < \theta_{\alpha}(r)$. As in the above argument, it can be shown that the arc Γ_1 given by the mapping $[-\theta_{\alpha}(r), \theta_{\alpha}(r)] \ni \theta \mapsto B'_{\alpha}(re^{i\theta})$ is simple and contained in $\partial V^p_{\alpha}(r)$. We note that from (3.3) $B'_{\alpha}(re^{\pm i\theta_{\alpha}(r)}) \in \partial \mathbb{D}(0, 1/(1-r^2)^p)$.

Combining Proposition 3.1, (3.5) and (3.6) we have for $-\pi < \theta \le -\theta_{\alpha}(r)$ or $\theta_{\alpha}(r) \le \theta \le \pi$ that $F_{a(re^{i\theta}),\lambda(re^{i\theta}),\theta} \in \mathfrak{B}_{1}^{p}(\alpha)$ and $|F'_{a(re^{i\theta}),\lambda(re^{i\theta}),\theta}(re^{i\theta})| = 1/(1-r^{2})^{p}$. Since $\lambda(re^{\pm i\theta_{\alpha}(r)}) = p$ and $a(re^{\pm i\theta_{\alpha}(r)}) = m(\alpha)$, we have

$$F'_{a(re^{\pm i\theta_{\alpha}(r)}),\lambda(re^{\pm i\theta_{\alpha}(r)}),\pm\theta_{\alpha}(r)}(re^{\pm i\theta_{\alpha}(r)})=B'_{\alpha}(re^{\pm i\theta_{\alpha}(r)}).$$

Furthermore since by (3.4) we have

$$\begin{split} F'_{a(-r),\lambda(-r),\pi}(-r) &= \frac{1}{h(\lambda(-r),\sqrt{2\lambda(-r)+1})} \frac{(1-a(-r)^2)^{\lambda(-r)}(a(-r)+r)}{(1+a(-r)r)^{2\lambda(-r)+1}(1-r^2)^{1-\lambda(-r)}} > 0, \end{split}$$

it follows that $F'_{a(-r),\lambda(-r),\pi}(-r) = 1/(1-r^2)^p$. Thus the circular arc $\Gamma_2(\subset \partial \mathbb{D}(0,1/(1-r^2)^p))$ with endpoints $B'_{\alpha}(re^{\pm i\theta_{\alpha}(r)})$ that passes through $1/(1-r^2)^p$ is contained in $\partial V^p_{\alpha}(r)$.

Since the union $\Gamma_1 \cup \Gamma_2$ is a simple closed curve contained in $\partial V^p_{\alpha}(r)$, it coincides with $\partial V^p_{\alpha}(r)$.

Suppose that $\frac{1+\sqrt{2p+1}m(\alpha)}{\sqrt{2p+1}+m(\alpha)} \leq r < 1$. Then as in the above argument we have $|F'_{a(re^{i\theta}),\lambda(re^{i\theta}),\theta}(re^{i\theta})| = 1/(1-r^2)^p$ for all $\theta \in (-\pi,\pi]$ and that $F'_{a(-r),\lambda(-r),\pi}(-r) = 1/(1-r^2)^p$. Since $r \in \partial \Delta(a(r),1/\sqrt{2\lambda(r)+1})$, we have a(r) < r. This implies

$$\begin{split} F'_{a(r),\lambda(r),0}(r) &= \frac{1}{h(\lambda(r),\sqrt{2\lambda(r)+1})} \frac{(1-a(r)^2)^{\lambda(r)}(a(r)-r)}{(1-a(r)r)^{2\lambda(r)+1}(1-r^2)^{1-\lambda(r)}} < 0 \end{split}$$

and $F'_{a(r),\lambda(r),0}(r)=-1/(1-r^2)^p$. It is easy to see that $a(re^{-i\theta})=a(re^{i\theta})$ and $\lambda(re^{-i\theta})=\lambda(re^{i\theta})$. Thus we have

$$F'_{a(re^{-i\theta}),\lambda(re^{-i\theta}),-\theta}(re^{-i\theta}) = \overline{F'_{a(re^{i\theta}),\lambda(re^{i\theta}),\theta}(re^{i\theta})}.$$
 (5.6)

By a continuity argument we infer from

$$F'_{a(r),\lambda(r),0}(r) = -1/(1-r^2)^p, \quad F'_{a(-r),\lambda(-r),\pi}(-r) = 1/(1-r^2)^p$$

and the above symmetric property, that the image of the mapping $(-\pi, \pi] \ni \theta \mapsto F'_{a(re^{i\theta}),\lambda(re^{i\theta}),\theta}(re^{i\theta})$ contains the circle $\partial \mathbb{D}(0,1/(1-r^2)^p)$ and hence $\partial V^p_{\alpha}(r) = \partial \mathbb{D}(0,1/(1-r^2)^p)$.

Finally let $\alpha=1$. Then since $m(1)=1/\sqrt{2p+1}$, the case (i) in Theorem 3.2 does not occur. Suppose that $0 < r < \frac{1+\sqrt{2p+1}m(1)}{\sqrt{2p+1}+m(1)} = \frac{\sqrt{2p+1}}{p+1}$. Then as in the case that $0 \le \alpha < 1$, the arc Γ_1 given by the mapping $[-\theta_1(r), \theta_1(r)] \ni \theta \mapsto B_1'(re^{i\theta})$ is simple and contained in $\partial V_1^p(r)$, and $|B_1'(re^{\pm i\theta_1(r)})| = 1/(1-r^2)^p$. For $\theta \in (-\pi, \pi]$, $re^{i\theta} \in \mathbb{D}(1/2, 1/2) \setminus \Delta(1/\sqrt{2p+1}, 1/\sqrt{2p+1})$ holds if and only if $\theta_1(r) = \arccos r/(2\sqrt{2p+1}) \le |\theta| \le \arccos r$. Since $\lambda(\theta) \to 0$ as $|\theta| \uparrow \arccos r$, we have

$$F'_{1/\sqrt{2\lambda(re^{i\theta})+1},\lambda(re^{i\theta}),\theta}(re^{i\theta}) \to \frac{1}{(1-r^2)^p}, \text{ as } |\theta| \uparrow \arccos r.$$
 (5.7)

Thus the circular arc Γ_2 which has endpoints at $B_1'(re^{\pm i\theta_1(r)})$ and passes through $1/(1-r^2)^p$ is contained in $\partial V_1^p(r)$. Hence the simple closed curve $\Gamma_1 \cup \Gamma_2$ is contained in the simple closed curve $\partial V_1^p(r)$ and we have $\partial V_{\alpha}^p(r) = \Gamma_1 \cup \Gamma_2$.

Suppose that $\frac{\sqrt{2p+1}}{p+1} \leq r < 1$. Then we claim that the image of the mapping $[-\arccos r,\arccos r] \ni \theta \mapsto F'_{1/\sqrt{2\lambda(re^{i\theta})+1},\lambda(re^{i\theta}),\theta}(re^{i\theta})$ contains $\partial \mathbb{D}$ $(0,1/(1-r^2)^p)$, which implies $\partial V_1^p(r) = \partial \mathbb{D}(0,1/(1-r^2)^p)$. This is a consequence of (5.7), (5.6) and $F'_{1/\sqrt{2\lambda(r)+1},\lambda(r),0}(r) < 0$.

We note that the uniqueness part of Theorem 3.2 directly follows from the uniqueness part of Theorem 3.1.

References

- [1] L. V. Ahlfors, Conformal invariants, McGraw-Hill, New York, 1973.
- [2] F. G. Avhadiev, N. Schulte and K.-J. Wirths, On the growth of nonvanishing analytic functions, Arch. Math. 74 (2000), 356-364.
- [3] M. Bonk, Extremalprobleme bei Bloch-Funktionen, Dissertation, TU Braunschweig(1988).
- [4] M. Bonk, D. Minda, and H. Yanagihara, Distortion theorems for Bloch functions, Pacific J. Math. 179 (1997), 241-262.
- [5] M. Bonk, D. Minda and H. Yanagihara, Distortion theorems for locally univalent Bloch functions, J. Anal. Math. 69 (1996), 73-95.
- [6] O. Lehto, Univalent functions and Teichmüller spaces, Springer-Verlag, New York, 1987.
- [7] T. Sugawa and T. Terada, A coefficient inequality for Bloch functions with applications to uniformly locally univalent functions, Monatsh. Math. 156 (2009), 167-173.

- [8] T. Terada and H. Yanagihara, Sharp coefficient and distortion estimates for p-Bloch functions, Hiroshima Math. J. (to appear)
- [9] K.-J. Wirths, Über holomorphe Funktionen, die einer Wachstumsbeschränkung unterliegen, Arch. Math. 30 (1978), 606-612.
- [10] H. Yanagihara, Sharp distortion estimate for locally schlicht Bloch functions, Bull. London Math. Soc. 26 (1994), 539-542.
- [11] H. Yanagihara, On the locally univalent Bloch constant, J. Anal. Math.65 (1995), 1-17.

公表論文

(1) Sharp distortion estimates for *p*-Bloch functions.

Takao Terada and Hiroshi Yanagihara

Hiroshima Mathematical Journal, to appear.

(2) A coefficient inequality for Bloch functions with applications to uniformly locally univalent functions.

Toshiyuki Sugawa and Takao Terada Monatshefte für Mathematik, 156 (2009), 167-173.