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Chapter 1

Introduction

Fora € Candr > 0, set D(a,r) = {z € C: |z—a| < r} and D = D(0,1). For
ceDand0< p<1wealsoset A(c,p) ={z€D:|2—c|/|l —C2| < p}. Let
H(D) be the class of analytic functions in the unit disk D) endowed with the
topology of uni_form convergence on compact subsets of D. Let p € (0,00).

For a function f € H(D), we put
wlf,2) = (L= |2PPIF ()], €D,
A function f is called a p-Bloch function provided
I lew = sup g(, ) = sup(t = [sY11(2)

is finite. We denote by 8”7 the complex Banach space consisting of p-Bloch
functions f on [ normalized by f(0) = 0: B? = {f € H(D) : f(0) =
0, |fllse < co}. We also denote by BY the closed unit ball of B?, i.e.,

Bl ={f € B :||fllwr < 1}.
In [9] K-J.Wirths proved the following
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Theorem A If f € 8%, then (f' — £'(0))/8 € B, where

20041 a+3/2
,B = 2(a+ 1)(;“(2—(;)7)_;1—

1 40” +6a+1\"*
Yo = 5o+ 2 %0+ 1 '

As an application of Bonk’s result, Sugawa and the author obtained the

ya(l - yi)a+1,

following Fekete-Szego type inequality.
Theorem B. Let yp € C. Then |by + pb?| < C(p) is valid for every function
F(2) = by + by2® + - -+ in B}, where
1+ 3v3|ul® + (1 + 3|p|?)*/? (Iul > _?_)
2
Cly) = 6v/3|u 3v3

374\/—5 (I#I < 5%) .

Furthermore we derived a sharp inequality for the third coefficient of a
uniformly locally univalent function f(z) = z + a22? + a3z® +--- on the
unit disk with pre-Schwarzian norm ||T}|jp = sup,p(1 — |2)°)|T(2)} < A
for a given A > 0, where Ty = f"/f' is the pre-Schwarzian derivative
of f. In the present article we shall determine the variability region for
f'(20) when f ranges over the class B} with f'(z) = w, i.e.; VP(2¢; 21, w1)
= {f'(20) : f € B, f'(z1) = w1}, where 20,2y € D, wy; € C with z # 2z
and |w;| < 1/(1 —|21/?)?. We shall also give sharp distortion estimates as its
corollary. When p = 1, for related results see [4], [5], [10] and [11].
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Chapter 2
Preliminaries

For a € D, set
z—a

7a(2) = T z € D.

Then 7, is a conformal automorphism of D and 7 l = T—a- For a € D and

f € H(D) put
: ! ] : ! - 1—|a?)?
rie)= [ rwomera= [ 1) foaEl sem
It is easy to see that 7! = T_,. From the identity |7}(2)]/(1 — |ra(2)]?) =
1/(1 — |2|*) we have

up(Tafr2) = (1= |2PPITaf) (2)] | (2.1)
(A =laPP =P |, [ 2ta
B |1 —@z|% f (1—'&2)
zZ—a

(k)
= (1= |r(@)P)P1f ()]

= (1= )1 (ra(2DlIma(2)F
= pp(fv‘ra(z))‘
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Therefore T, acts on B? as an isometry.

It is not difficult to see that for any 8,0 € R
VP(e*29; €% 2y, ePw;) = e®VP(205 21, w1). (2.2)

Actually if wy € VP(29; 21, w, ), then there exists f € BY such that f(z;) = w;
for j = 0,1. Put f(z) = e+Df(e=z). Then f € B} and f'(e%z;) =
e f(z;) = e®w; for j = 0,1. Thus e®®wy € VP(e29;€" 21, € w;) and hence
we have

p

VP (2 21,w1) C VP(e¥ 295 €21, €0 w,).

By replacing z, z; and w; with e=*2y, e=*2; and e~*w;, we have
eing(e"i¢zo; €%z, e %w;) C VP(2;21,01).

- By replacing 6 and ¢ with —6 and —¢, we ha&e

V”(e“’zo; ez, eiowl) C ewV”(zo; 21, Wy).

For any a € D we also have

1
T3 (%0)P

For f € B with f’(zj) = w; forbj =1,2anda € ]D) we have T_,f € B} and
F(7—a(Ta(2))) T a(Ta(2;))? = w;/74(2;)P. Thus

VP(Ta(20); Ta(21), w1 /T (21)F) =

V(205 21, w1). (2.3)

Wo P . W
Té(Zo)p E V (TG(ZO)‘I Ta(zl), T,',(Zl)p)
and hence
1 | w1
P . . ——
Té(ZO)pV (?O,ZIawl) C | %4 (Ta(zo)y'ra(zl)a 7’,’,(21)”> .
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By replacing a with —a and then z; with 7,(z;) for j = 0,1, the reverse
inclusion relation follows.

By virtue of (2.2) and (2.3), without loss of generality we may assume
z; =0, w; =a €[0,1] and 2 =r € (0,1). Indeed for any 2, 21, wy, we put

a = z;. Then

. — - wl
VP(ZO, 21, 'lI)I) = T;I (Zo)pvp (T21 (Zo), Tz (21), _—T;I (zl)}’)
_ Q=1alPP (= 2yp
= (1 — 2_1Z0)2pV 1— -2_120’0’ (1 lzll ) wy ).

Put re’ = £22 and ae’ = (1 - |1|*)Pwy, where r, @ > 0 and ¢, § € R.

1—
Then
(1= ]zf?)P

Sl od ) EVANPRY) /s J/P0
a —’z—lzo)zﬂe VP(r;0,a)

V”(zo; Zhwl) =

where 7 = ll_zf::f'% €(0,1),a=(1- Izllz)plwll € [0, 1], 6 = argw;. We put

forzp€eDand0<a<l -

VP(z) = Vp(zo;O,a) = {f'(z) : f € Bi(a)}, (2.4)

where Bl(a) = {f € B? : f/(0) = o,||fllzr < 1}. Note that V2(z) =
VZ(lzl)-

For any fixed o € [0,1) and r € (0,1) it is easy to see that the set VP(r) is
a compact convex subset of C. This is a consequence of the fact that %8%(a)
is also compact and convex in ’H(]D)) We next see that « is an interior point
of V?(r). It is proved by using

w—a
3r2

G(z)=az+ 2

for w which belongs to D(a, pr?). Then we have G € Bf(a), because G(0) -



ﬁ(01(1 - lzl

Figure 2.1:

0, G'(0) = a and

w—0uo

2 (1= [P

IG'(2)|(1 = [2*)? =

a4+

r2

< (@+pl2P)(1 - |22 < (@ +pl2P)(1 - |2 < 1.

Furthermore it follows from

rr=w
r2 G

G’(r) = & +

that w € V¥(r). As a result, since D(a,pr?) C V2(r), a is an interior point
of V2(r).

Thus V2(r) is a closed Jordan domain, i.e., dVP(r) is a simple closed
curve and V?(r) is the union of 8V?(r) and its inner domain. Since we havé

the trivial relation
V2 (20) C D(0, (1 - |20[*)7?),

the following simple but useful fact holds.

Lemma 2.1. If |f'(x)] = gy for some f € BY(a), then f'(z) €
OV2(zo) (see Figure 2.1).



Chapter 3

Extremal functions and main

results

To state our theorem explicitly we need to introduce some functions which
are ext.remal for the results in this article. |

Let M(t) = v2pFT(%2) 61— #2), 0 < ¢ < 1. Then M(t) is
strictly increasing on [0,1/+/2p + 1}, strictly decreasing on [1//2p + 1, 1] and
M(1//2p+1)=1. The function

. p .
B(2) =_V2”2+1 (21’2’;1) 2, zeD

satisfies _
2p+1\° 2
pp(By2) = /2p+1 o |2[(1 = 2" = M(|2]) <1, 2€D

~with equality if and only if |2| = 1/y/2p+ 1. Let m : [0,1] — [0,1/+/2p + 1]
be the inverse function of the restriction M|y /5571 The function m is
strictly increasing with m(0) =0, m(1) =1/y/2p + 1.
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A half class of extremal functions is obtained by putting for a € [0,1]
Ba(#) = Trie B(2) (3.)
= [ B e @i (0P
2p+1 (1 — m(a)*)P(m(a) = ¢)
- v (B2) [ e

Precisely by integration and M(m(a)) = a we have

[
2p(2p - 1)m(a)®

14+ (2p—Um(a)’ =2pm(e)z . . mla)?
o e I 1~ - m)'}.

B,(z) =

when p # 1, and

o« 1 m(a)(1 = m(a)?)z
Balz) = m(a)3 {log 1-m(e)z  1-m(a)z } ’

when p = 1. By (2.1) we have p,(B,, z) < 1 with equality if and only if
2 P

ey (2)| = 1/v/FF L. From
' 2 1\? (1 —= m(a))P(m(a) — =
Ba(z) - m( p2-;)- ) ( (1 £ 73’220{()2)(21’-!)-1 )

we obtain

BL(0) = /2p +1(?”2%1) m(a)(1 - m(@)?f = M(m(a)) = . (32)

Thus for each a € [0,1] the function B, satisfies B,(0) = 0, B, (0) = a and
tp(Bay2) < 1 on D with equality if and only if |7y (2)] = 1/v2p+1. In
particular B, € B}(a).

Theorem 3.1. For z € A(m(a),1//2p+1) the relation B, (29) € OVE(z)
holds. Furthermore for f € BY(a), f'(z0) = B.(2) holds if and only zf
f=Bs. |
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Figure 3.1:

We shall prove Theorem 3.1 in chapter 4. By Theorem 3.1 and V?(z) =
V?(|20]) we have for fixed r € (0,1) the mapping 8 ++ B! (re¥) gives an arc
contained in 9V, (r), whenever re® € IA(m(cx), 1/v/2p +1). By an elementary
calculation we have ' |

A(m(a), 1/ /——2p+i) =D( 2pm(a)  VZpFI(L —m(a)’)).

2p+1—-m(a)?’ 2p+1-m(a)?

Hence

D (0_ 1-v2pF lm(a)>
" V2 +1 - m(a) |
is the largest disk with center 0 which is contained in A(m(a),1//2p +1)

and

1++2p+1Im(a)
D (0’ V2p+1+m(a) )
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is the smallest disk with center 0 which contains A(m(a),1//2p +1)(see
3.1). Furthermore if zg € 8A(m(a),1/+/2p + 1), then we have

ttp(Boe %) = pp(Tim(@) By 20) = pp(Bs Tene) (20)) = M(|Tim(ey (20)]) = 1. (3.3)

By Lemma 2.1, this shows B}, (20) € 8V2(2), when z, € 0A(m(a),1/+/2p 1)

From these considerations it seems natural that the following theorem holds.

Theorem 3.2. For a € [0,1] and r € (0,1) the variability region V¥(r) is a

convez closed Jordan domain bounded by OV (r).

(i) For0<r < %ﬂ’i%o%l, the boundary OVP(r) is given by the mapping
(=m,7] 2 6 — B.(re®).

(ii) For I_T’_,_”E—_%(%l <r< %ﬁ%{%, the boundary OVP(r) is the union

of two arcsT'; and T'y. HereT'; is given by the mapping [—04(r), 0a(r)] 3
0 ++ B! (re®), where

(2p +1 = m(a))r? + (2p + )m(a)? — 1) .

Gar) = arccos ( tole)

The arc Ty is the:circular arc contained in OD(0, (1 — r?)~P) with
endpoints B! (re?=(") and B! (re~"%(")) that passes through the point
(1-r2)"r, |

(iii) For %”i&)’ < r <1, the boundary OVE(r) coincides with the whole
circle 8D(0, (1 — r2)7P).

Furthermore f'(r) = B',(re®) holds for some f € B%(a) and (r,0) €

(0, HEEERE) x Roor (r,6) € Lo EEna), LyBEIn(a)) (g, (1), 6a(r))

if and only if f(2) = e~* B,(e¥2).
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When p=2and a = 715 (%)2, we can draw V?(r) by Mathematica.

D(,(t ~ )

oE.U-Y)

0.8

Figure 3.2: r = 0.06 Figure 3.3: r =04 Figure 3.4: r = 0.8

~ To show I'; C 8VP(r) in case (i) and OD(0, (1 — r?)~?) = 8VP(r) in case
(iii), we shall construct a function f € B}(a) satisfying f'(r) = we for any
wy € Tz in case (ii) and for any wy € 8D(0, (1 — r?)~?) in case (iii). For
a€[0,1), X € (0,p] and 6 € R put |
| : (1—a)Na=() v
F, = ; ¢, (3.4
'“(Z)‘ /0 R\ 1/V2X+T)(1 — ag)P+{1 — (e=#()2}e=> 04
where h(}, z) = 2(1—-2?)*, 0 < z < 1, is strictly increasing on [0,1/v/2A + 1]
and strictly decreasing on [1/4/2X + 1,1]. We note that

) _ h(X,a)
Fi5,6(0) = RO L/VIA T ) (3.5)
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and

”P(FG,/\,07 z) (36)
(1~ a?)*a — 2|
B(A1/V2X + 1)1 — az|2M11 — (e—#2)2|p—A
= (1= |2y [ra(2)llra(2)
h(A, 1/\/Z\Ti)ll —,\(e—‘az)2|p—«\

= 1 Sl i Ta(2)|(1 = |7a(2)|?
A/ VAT L~ e eI = Ira(2)F)
_ b ira(2))) ( 1 - |22 )P-A

", 1/var+T) \T= (@77

<1

= (1 -]

with equality if and only if |r,(2)] = 1/v2X+1 and e~z € R,
Proposition 3.1. Let a € |0,1].

() If @ € [0,1), then for any z, € D\A(m(«a),1/+/2p +1) there ezists
a unique pair (a(z),\(20)) with 0 < A(z) < p and 0 < a(z) <

1/y/2p +1 such that

h(A(x),a(z0)) = ah(Az0), /DG + D), (37)
= (3.8)

|Ta(z0) (20)] = N ESE

The functions a(zo) and A(29) are continuous on D\A(m(c),1//2p +1).

(i) If « = 1, then for any z, € D(1/2,1/2\[A(1/\2p +1,1//2pF1) U
{0,1}] there uniquely exists A(zo) such that
1

7, /()] = Tt (3.9)

14



The function A(zy) is continuous on D(1/2, 1/2)\[A(m(1), 1/\/7;3_4:_1)U
{0,1}].

Combining Proposition 3.1, (3.5) and (3.6) it follows that Fu(:)A(z0),60 €
B () and Fj ;) 5040 (%0) € OD(0,1/(1 ~ |2|*)?), where 6y = argzo. This
and some more analysis on behavior of F;(zo)’ A(zo),ao(ZO) will complete the
proof of Theorem 3.2. See Chapter 5 for details. Furthermore as a conse-

quence of Theorem 3.2, we obtain the following corollary.

Corollary 3.1. Suppose a € [0,1] and f € B}(a).
(i) For |2| < ‘oS
e 2p+ 1\ (1= m(e)?)?(m(e) - ||)
! > ! —
Ref() 2 Bueh = VAP (%5 ) S

 with equality at z = re?, r € (0, %%[mﬂ(%l), if and only if f(z) =
e B,(e7*z). In particular, we have Re f'(z) > 0 for |2| < m(c).

(i) For |z| < 7#-(-11" - ftlr:?(:)
ot - 5

with equality at z = _re"o, re (0, 5}}%’%‘5}), if and only if f(z) =

| —e" B, (—e%2).

The proof of Corollary 3.1 will be given in Chapter 3. The following

corollary is obtained directly by integrating inequalities in Corollary 3.1.
Corollary 3.2. Suppose a € [0,1] and f € Bi(a).
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(i) For |z| < %’%ﬁ% we have Ref(z) > B,(|z|) with equality at z =
re®, if and only if f(z) = ¥ By (e~ 2).

(ii) For |z| < 17_;%"%51, we have |f(2)| < —Ba(—|z|) with equality af
z =re', if and only if f(z) = —€® B,(—e¥2).

From Corollary 3.1 and the Wolff-Warschawski-Noshiro Theorem it fol-
lows that f € %§(a) is univalent in (0, m(c)), when 0 < o < 1. Since
B'(m(e)) =0, B, is not univalent'in any larger disk D(0, m(e) +¢) for any
e>0.

Corollary 3.3. The radius of univalence for B () is m(c). More precisely,
if a € (0,1} and f € Bi(a), then f is univalent in D(0,r) for some r > m(a)
unless f(z) = e®B,(e™z) for some 6 € R.
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Chapter 4

Proofs of Theorem 3.1 and
Corollary 3.1

First, we consider the case that a € [0,1) in Theorem 3.1. We need the

following lemma.

Lemma 4.1. Let D, and D, be disks with ¢c; € Dy and ¢, € D,. Suppose
that F : Dy — D, is a conformal mapping with F(c;) = cs. Let 0p, and dp,
be the hyperbélic distances on D; and D, respectively. If f : Dy — D, is an
analytic function with f(c,) = c,, then

op, (f(2),¢2) < 0p, (2,¢1), z € Dy.

Furthermore f(z0) = F(zo) at some 2o € Dy\{c,} holds if and only if f = F.

We can easily verify Lemma 4.1, and so we omit its proof.
Proof of Theorem 3.1 in the case when 0 < @ <1. Let f € Bj(e). Then
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F
Figure 4.1:

from T_p(a)f € BY(a) we have for |2| < 1//2p+1

. ] ' 1 2p+1 ’
(Tome) £)'(2)] < (1 -2 < ( 2p )

~ and by M(m(a)) = a, we have

o 2p+1

(T (=) = s = VB FT ( BE1) () = nym(a),

where v, = /2p + 1 (zfg—l)p. Letting D; = {z €C:lz|< W;ﬁ} and D, =
{w €C:|w|< (?%:—l)p}, (T_m(e)f)' is an analytic mapping of I; into D,
with (T_p(a) f)' (—m(a)) = ypm(c). Applying Lemma 4.1 we have for |z| <

1/v2p+1

60, (T-m(@)£)'(2), % (@) < bp, (2,~m(a)). (41)

Take 20 € A(m(a),1/v2p+1) = T_jn(a)(D1) with z # 0 arbitrarily
and put z; = Tm(a)(20)(€ Dy). Let D, be the closed hyperbolic subdisk of
D, with center y,m(a) and radius dp, (21, —m(a)). Then by (4.1) we have

18



(T-m(e) f)'(21) € Do. Thus
f’(T-m(ﬂ)(zl))T-'—m(a)(zl)p € ﬁo'
This implies '

(1 -m(@)? =
1- m(a)zo)2PD |

f'(zo) € (
Hence we have
(1= m@?p &
(1= m(a)z)?
Sipce,B{,(z) = (Tm(a)B)'(2), we have (T_m)Ba)'(2) = B'(2) = —p2.
Thus (T-m(a)Ba)' is a conformal mapping of D; onto D; with (T- () Ba)'

(4.2)

VE(20) C

—m(a)) = vp,m(a). In particular we have (T_m(a)Ba)'(21) € 8D, and hence
P (o)
(1= m(a)?)
(1 - m(a)zo)?

Since B.,(z9) € V?(2), it follows from (4.2) and (4.3) that B, (z) € OV?(z).

Next, we prove the uniqueness. Assume that 2y € A(m(a),1/v/2p+1)
with 2o # 0 and f'(z) = B.(20) for some f € BY(a). Then we have
(Tem(@)f)'(21) = (T=m(@)Ba)'(21), where 21 = Tin(a)(20). Applying the unique-
" ness part of Lemma 4.1 at 2;(# —m(a)) we obtain (T-m)f)' = (T-m()Ba)’
and hence f' = B.,. Since f(0) = B,(0) =0 we have f = B,. -0

B;(Zo) €

oD,. (43

Proof of Corollary 3.1 in the case that 0 < o < 1. We use the same notation
as in the above. Take 2y =1 € (O, %‘;—7‘%‘%1) and put z; = Tm(a)(f). Since
(T-m(a)Ba)'(z) = —7p2 maps D, conformally onto D, and —v,21 < Tpm(a),
we have ' . '

min Rew = —7p21 = —pTin)(r) -

weDg
and hence for f € Bf(a)

Ref'(T-m(a)(21)) "L (21)" = Re(T_m(0)f)'(21) 2 =YpTim() (T)-

19



This implies
Ref'(r) = Ref'(T-m(@)(21)) 2 = %Tmi(@) (N T (1) = By(r).  (4:4)
It is not difficult to see that equality holds in (4.4) if and only if f = B,.
Now let f € BY(a) and o = roe® with 0 < rp < %ﬁi—;’&l and 6, € R.
Applying (4.4) to f(z) = e~ f(e%z) € BY(a) at ro we have
Ref'(¢o) = Ref'(ro) 2 Bi,(ro) = BL(IGo)

~ with equality if and only if f = B, i.e., f(2) = e B,(e~%>).

Take zp = —r with r € (O, %) and 2z, = Tp(q)(—r). Since
- 0 < ypm(a) < =721, we have -

max |w] = =21 = ~YpTine) (—7)-

UJGDQ

Hence for f € Bi(a) we have

|f'(T—m(a)(zl))T-'-m(a) (zl)pl < " Tm(a) (—7‘)

| and thus
I (=)l € =VTm(@) (=) Ty (=7)F = Bo(=7) (4.5

with equality if and only if f = B,.

Let € B}(e) and G = —roe™ with 0 < ro < SZEME) and 4, €R.
Applying (4.5) to f(z) = —e~*% f(—ez) € Bi(a) at ~ry we have

|7'(¢o)l = 1f'(=r0)| < Bi(~r0) = Bo(~|ol)
with equality if and only if f = B, ie., f(z) = —e/ B,(—e~%2). a

In order to prove Theorem 3.1 in the case that &« = 1, we need the

following result known as Julia’s lemma.

20



Lemma 4.2 (Julia). Let g be an analytic function on DU {1} with g(1) =1
and |g(2)| <1 for z € D. Then B =g'(1) >0 and

z e D. : (46)

Equality occurs in (4.6) at zo € D with wy = g(zo) if and only if

l—wyl—-%

Tuwo (9(2)) = T2 (2) _

1—_’(1—1-61—20

For a proof of the inequality (4.6) see [1, Theorem 1-5]. For a proof of

~ the uniqueness part see [11].

Proof of Theorem 3.1 in the case that o = 1. First we note that m(1) =1/
V2Zp+1. We consider the following composite functions to apply Julia’s
lemma in the disk A(m(1),1/4/2p+1). For f € Bi(1) put

1) = (727) Comi ) (- ) )
B (5521_1) K (%&l—_ zZ)) (i- z/(21p+ D)%

Then we have for |z| < 1

ny(z)i = (ﬁ—i;)p f (T—m(l) (—\/_57%__1')” o m(1) (“\72_;;;{)

_ @p/@p+ 1)) i(f, T-me)(=2/VEPFT))
(1= zverFaf)’
(2p/(p +1))"
s (1_ |2/\/7P_'*‘_T|2)p

r
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and gs(1) = f'(0) = 1. In view of the inequality

1+Re(fll(0)z)+=|f'(z)l S-(-l—:l'z—lz—)-z;=1+p|z|2+,

') = 0 holds for each f € B?(1). From this and (4.7)
_9) _ vBFIf0)

GBO=m="" o) TIET

Applying Lemma 4.2, we have

=g _ =2
T 1o GF S 1= = 06 (48)

Since we can rewrite (4.8) as

1 4(2)
Igf(z) T140(2)| " 1+e(z)
it follows that _ _
= 1 4(2)
95(z) €D (1 +3()°1 +6(z)) (4.9)

for all z € D. Take zo € A(m(1),1/+/2p + 1) arbitrarily. Substituting z =
—2p + Irm1)(20) in (4.9), we obtain

F) E‘(ngl)x’rg(l)(%)pﬁ ( 1 d() ) (410)

1+6(z0) 14 8(z)
where

B(20) = 8(=~ /2P Lrin(y (20)).

Thus we have

2 2+1\ 0 wp 1 8(20)
M O)C( 2p ) ) (20) D(1+S(zo)’1+3(zo))' (411
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Now let us consider the case that f = B;. Since By = Tjn(1)B, we have

98, (2) = (;Eﬁ) (Tm() (Tm(B))' ( \/gpiﬂ)

-(751) 7 ()=
2p + 1 V2r+1)
This implies gp, (z) € 8D(1/(1 + &(2)),8(2)/(1 + &(2))) for all z € . Hence
we have |
Bl(x) € (2p2-; 1)?,;7‘(1)(.20)100@ (1 +(15,(20), 1 i(?z)zo)) L (412)
Since B! (z) € V¥ (20), we infer from (4.11) and (4.12) that B}(z) € 0V{ ().
Finally, we deal with uniqueness. Suppose f'(20) = B}(2o) for some f €
8%(1) and 7 € A(m(1),1/+/2p+1). Then we have g¢(z1) = gp,(z1) = 21,
where z; = —+/2p + 17m(1)(20). By Lemma 4.2 we obtain gs(2) = 2z in D
and hence f'(z) = Bj(z) in A(m(1), I/JZ)TI') By the identity theorem
for analytic functions, the relation f'(z) = Bj(z) holds on ID) From this and
f(0) = By(0) = 0 we have f = B. Theréfore we complete the proof of
Theorem 3.1. O

Proof of Corollary 3.1 in the case that & = 1. Since m(1) = —gb=, (ii) in

Corollary 3.1 never occurs. We use the same notation as in the proof of The-

orem 3.1 in the case that a = 1. Let zp =r € (0 %ﬁl) (0, 3%?)

Then by (4.10) we have

. 2 ?, 1-5(r
rere)2 (557) o5

Since -1;—2 = R—eEJ—L and 8(r) = 6(=v/2p F 17m(1) (7)),
! p+1 P / b4
Ref'(r) 2~y HT ( 22} 1y () (0 = B,
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The rest of the proof is quite similar as in the case that 0 < @ < 1 and we

omit it. d
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Chapter 5

Proofs of Proposition 3.1 and

Theorem 3.2

We need a technical lemma characterizing a monotone property of a family

of subdisks of .

Lemma 5.1. Let c(t) and p(t) be continuously differentiable functions on an
interval I satisfying c(t) € D and p(t) € (0,1) on I. Then the family of disks
{A(c(t), p(t) }er is nondecreasing if and only if

COl___A®)
T=]e(®F = 1= p(t7

on I. Furthermore if |c'(t)|/(1 — |c(t)]?) < p'(t)/(1 — p(t)?) holds on I, then
{A(c(t), p(t) }eer is strictly increasing in the sense that A(c(to), p(ta)) C
A(c(ty), p(t1)) for any to,t; € I with ty <ty (see Figure 5.1).

Proof. Let ty,t; € I with t5 < t;. Put

&(t) = Ty (c(t)) = ic(f—%f)-(f% tel
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Figure 5.1:

Then we have 7.(;,) (A(c(t), p(t))) = A(E(t), p(t)) and E(tg) = 0.
Assume that {A(c(t), p(t)) }ier is nondecreasing. Then {A(E(t), p(t)) her

is also nondecreasing and hence

D(O,p(tO)) = A(E(tO),p(tO)) c A(&(t1)7p(t1))

o (A =p(t)?)Et) (1= [Eét)P)e(t)
=D (1 — [e(t)Pp(t1)?" 1 = [E(t1)[20(t1)? ) '

This implies

(L= [t P)plt) _ (L= p(t)DEE)] _ plta) — (k)]
L= [&(t)Pp(t1)?  1—[e(t)Pp(t1)? 1= [é(t)le(t1)

From this it follows that

p(to) <

p(t1) — p(to)

et) = )] = [e(t)] < LEALRL
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Dividing both sides of the above inequality by ¢; — ¢, and then letting ¢, |

we obtain

A7) p'(to)
T Tet)F S T

Conversely assume that |c'(t)|/(1 = |c(t)|?) < £'(¢)/(1 — p(t)?) holds on I.
We note that

el __ el __p@)
1-g@®)F  1-]e())? = 1 - p(t)?
and &(to) = 0. Since |4[&(t)|| < |£E(t)|, we have
1. 14]6(t)
2 %6 T e(e)

| s
l/ b ol
< /to l—l-_‘ilcz((t)Tlldt

") 1+ p(t1) 1 — p(to)
S/to 1-p(2)? *= 21 ET=p(t2) 1+ plto)

Thus we have

1+[et)]  L+p(t)1 - plto)
1= |ét)] = 1= p(t1) 1+ p(to)
and hence from an elementary calculation it follows that

I (t)l < l—(t%io—)”%l)—) (5.1)
Now we put ' .
_ (A —p@)Met) | _ (A=lEt)P)e(t)

R Y ) R T E A OV
Then we have A(é(t;), p(t1)) = D(a,r) and
oy = A= EEP)ot) = (0= )] _ plt) = (0
1 — |e(t1)]2p(t1)? 1- |5(t1)ﬂ(t1)|'
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We claim that r — |a| > p(t,) holds, which is a simple consequence of (5.1).

Thus we have

Tetto) (A(c(to), £(t0))) = A(0, p(to)) C D(0,r — |al)
C D(a,r)

= A(é(tl),p(tl)) = Tc(to)(A(c(tl)’p(tl)))

and hence A(c(to), p(to)) C A(c(tr), p(t1))-

If |d(@®)|/(1 - |e(®)]?) < p'(£)/ (1 = p(t)?) holds on I, then it is easy to see
that strict inequality sign holds in (5.1). This implies r — |a] > p(¢;) and
thus we conclude A(c(to), p(to)) C Ac(tr), plt1))- O

Let _E={(/\,:p):051\$pand0§.;c$ 1/v2X +1} and

B o) = {x(l -2, (ha) € B\{(Q,D)
1, (A z) = (0,1).

Lemma 5.2. The function h()\,z) is nonnegative and continuous on E,
and satisfies h(A,x) < 1 with equality if and only if (\,z) = (0,1). Fur-
thermore for fized A € [0,p], h(A,z) is a strictly increasing function of
z € [0,1/v/2X +1] and for fized x € (0,1), (), z) is a strictly decreasing
function of A € [0, min{2"(z~2 - 1), p}].

Proof. The monotonic properties of h(A,z) is clear. And it is also clear that
h(A,z) is continuous and satisfies h(A,z) < 1 on E\{(0,1)}. Thus we only

have to show that h(), z) is continuous at (0,1). To show this let 0 < § < 1.
Then for (A, z) € E\{(0,1)} with 1 —§ < 2 <1 and 0 < A < 4 we have

1>h(A\2) > h(A\1=0)>h(5,1-8)=(1-6)5@2 -8 =1
as 6 J 0. : O
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Let a € [0,1]. For each fixed A € [0,p] let z = c(}) be the unique solution

of the equation

1
h{\,z) = ah(A,1/V2A+1), 0Lz < .
(02) = ch(\ VIR FD), 0SS s

Lemma 5.3. Ifa =0 or a = 1, then ¢(\) = 0 or ¢(\) = 1/v2X +1, respec-
- tively. If 0 < @ < 1, then the function c()) is a continuously differentiable

function of X € (0, p) satisfying 0 < c¢(X) < 1/vV2X+1 andd(X) < 0in(0,p).
Furthermore we have c(0) = limyo c()\) =« and c(p) = lim,\Tp c(A) = m(a).

Proof. We shall only show the assertions, when 0 < @ < 1. In this case
it is easy to see that 0 < c(A) < 1/v2X+1. Put H(A,z) = h(A,z)/h(},
1/v/2X +1). Then by Lemma 5.2, H(),z) is continuous on E and continu-
ously differentiable in Int E. Since '

9 _{1-@X+ 1221 -2 |
—H(\z)= OV >0 (5.2)

Oz
in Int E, it follows from the implicit function theorem that c(A) is continu-

ously differentiable in (0,p). Since
h(A,c(N)) = ah(A,1/V2A+ 1), (5.3)

we have

1 22
[ 2 3 -—— .
log c(\) + Alog(l — c(A)*) =loga 5 log(2A +1) + Alog T 1

By differentiating both sides of the above formula and 0 < ¢(A) <1/v2A+1
we obtain

W= | )\

@ Dor tmEna-om < &Y

d(N) =
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Thus c(A) is strictly decreasing and hence ¢(0+) = limyo ¢(A) and ¢(p—0) =
limy, c(A) exist. By bcontinuity of h(A,z) on E we have ¢(0+) = a and
c(p — 0)(1 — c(p = 0)%)? = ah(p,1/+/2p + ). These imply c¢(0+) = a = ¢(0)
and c(p — 0) = m(a) = ¢(p). O

Lemma 5.4. Ifa € [0,1), then the family of disks {A(c()), 1/vV2A + 1) }o<rzy

1s strictly decreasing and

U A@®),1/v2A+1) = A(e,1) =D,

0<Ap
() Al(),1/v2X+1) = A(m(e),1/1/2p +1).

If a = 1, then ¢(A) = 1/v2X+1 and {A(1/vV2X+1,1/V2X + 1) }ocrsp s

decreasing and satisfies

U A@/V2A+1,1/v2X+1) = D(1/2,1/2),

0<A<p N .
() A/V2X+1,1/v2X+1) =A(1//2p +1,1//2p + 1)\{0}.
0<A<p

Proof. If @ =1, then ¢(\) =1/v/2X + 1 and it is not difficult to see that the
assertion of the lemma holds in this case.

Suppose that 0 < @ < 1. Put p(Aj =1/vV2X+1,0 < X < p. Apply-
ing Lemma 5.1 to {A(c(—t)., p(—1))}-p<t<o, it suffices to show |c'(A)]/(1 —
[e(WI?) < =£'(N)/(1 = p(A)?). By (5.4) and 0 < ¢(A) < p(}) = 1/v2A+1

we obtain '
dO) ___eNpP | 1=c()?

T2~ POV — O BT <
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Thus by making use of the inequality 1+ z < e and p'(A) = —p(A)® we have

I(N)] e(A)p(A)? o p(A)? = c(A)?
T—JcF ~ POVE = (2 8 (1 TTI0F )
< S
~ 1-p()?
P P
1—p(A)2  1—pA)?

0

Proof of Proposition 8.1. Suppose that 0 < a < 1. Then by Lemma 5.4, for
any z € D\A(m(a),1/v/2p +1) there exists a unique A = A(2) € (0, p] such
that

z € 0A(c(X),1/V2A + 1). (5.5)

We define a(z) = c¢(A(z)). Then by (5.3) and (5.5), (a(2),A(2)) satisfies
(3.7) and (3.8). Uniqueness and continuity of (a(z), A(z)). on D\A(m(a),
1/y/2p + 1) follow from the monotone property of the function [0,1//2p + 1]
5 z — k() z) for fixed A € [0,p] and the strictly decreasing property of
{ACO), VB F Dhoorg

Next suppose that & = 1. Note that ¢(\) = 1/v/2X +1. Then by Lemma
5.4, for any z € D(1/2,1/2)\A(1/v/2p +1,1/+/2p + 1) there exists a unique
A = A(2) € (0,p] such that

z € OA(1/V2A+1,1/V2A +1).

Then it is easy to see that a(z) = 1/v2A+1 and A(z) satisfy (3.7) and
(3.9). For z € 6D(1/2,1/2)\{0,1} we define A(z) = 0 and a(z) = 1. Then
it is not difficult to see that A(z) is unique , and that it is continuous on

D(1/2,1/2\[A(1/v2p +1,1/v2p +T) U {0,1}]. .
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Proof of Theorem 3.2. Let o € [0,1). Suppose that 0 < r < 1_‘7_%%151'

Then, since

1— I FIm(a) |
D (0, VT —m(o) ) C A(m(a),1/4/2p + 1),

we have re’ € A(m(a),1/v/2p+1) for all § € (—m,n]. Thus by Theorem
3.1 and VP(re'®) = VP(r), the mapping (~7, 7] 3 6 1 B! (re') gives a closed
curve contained in JV?(r). We show that it is a simple curve. Assume that
B! (re®®t) = B! (re'%) for some 6,0, € (=, 7] with 6; < 6,. Put f(2) =
e~i0:-0) B, (e!®2=01)z). Then f'(re®*) = B’ (re'*:) = B! (re’). Applying
the uniqueness part of Theorem 3.1 at re’, we have f(z) = B,(z) and
hence e=i(#1=%) B, (¢i®2=01) ) = B,(2) on D, which is a contradiction.

Now we have shown that the simple closed curve given by (—m, 7] 3
8 + B! (re®) is contained in the simple closed curve 8V?(r). Since a simple
closed curve cannot contain any simple closed curve other than itself, 9V?(r)
coincides with the curve given as the mapping (=m,7] 3 6 = B! (re¥).

Suppose that % <r< %’%3. Then re’ € A(m(a)
,1/v/2p+1) if and only if |6] < 84(r). As in the above argument, it can be
shown that the arc T'; given by the mapping [—8,(r),8.(r)] 3 8 = B.(re')
is simple and contained in OV?(r). We note that, from (3.3) B! (re¥%(")) g
aD(0,1/(1 — r?)P).

Combining Proposition 3.1, (3.5) and (3.6) we have for —7 < 6 < —0,(r)
or O,(r) < 8 < 7 that 'Fa(,e;o)’,\(,e.-a)’g € Bi(a) and IF;(re“),,\(re"e),a("ew)I =
1/(1 —r?)?. Since A(re*?=()) = p and a(re**=() = m(a), we have

Fl

! rekita(r)) A(redita(n) 0o 1) (r e:ue.,(r)) =B (Te:tié’a(r)).
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Furthermore since by (3.4) we have

Fé(—r),,\(—r),«(—r)
1 (1 = a(=r)*"Na(=r) + 1)
h(/\ -—1‘) /2,\(_ ) (1 + a( 1')7‘)2’\("')+1(1 —_ 1.2)1 A(-r)
it follows that Fy_ . .(-7) =1/ (1 — r2)?, Thus the circular arc I'y(C
dD(0,1/(1 — r?)P)) with endpoints B, (re**=(")) that passes through 1/(1 —

r#)P is contained in 8VZ(r).

>0,

Since the union I'; UT% is a simple closed curve contained in 0V?(r), it
coincides with V2 (r).

Suppose that 72%%"(%’)2 < r < 1. Then as in the above argument
we have |Fy i y(,zi0)g(re”)| = 1/(1 — r?)? for all 6 € (—m,7] and that
Fy_nana(—T) =1/(1 = r*)?. Since r € 8A(a(r), 1/4/2X(r) + 1), we have
a(r) < r. This implies

Ftlt(r),A(r),O(r) '
L 1 (1= a(n)*Na(r) — 1)
= h(A(r), r———-zA(r) T 1) (1 _ a(r)r)2A(r)+1(1 - 1"2)1_'\(')
and Fj ) yno(r) = =1/(1 = ?)P. It is easy to see that a(re™) = a(re”)
and A(re~*) = A(re?). Thus we have

<0

F,:(,.e-;a),,\(re_ig),_e(Te-w) = Fci(re""),/\(re“’),e(rew)' (56)
By a continuity argument we infer from

F;(');A(T),O(r) = _1/(1 - ,,_2)p’ Fé(—r),)‘(—r)nr(—r) = 1/(1 - ,,.2)p

and the above symmetric property, that the image of the mapping (—=, 7] 2
6 — F are), Arei) 5(T€”’) contains the circle dD(0,1/(1 - r*)?) and hence
ove(r) = 31!1)(0 1/(1 - r?)P).
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Finally let @ = 1. Then since m(1) = 1/4/2p + 1, the case (i) in Theorem
3.2 does not occur. Suppose that 0 < r < %ﬁ# = Jp@‘ Then as in
the case that 0 < a < 1, the arc I'; given by the mapping [—6,(r), 8:(r)]
6 — Bj(re®) is simple and contained in dV{(r), and |Bj(re** )| = 1/(1 -
r?)?. For 6 € (—m,x], re’® € D(1/2,1/2)\A(1//2p +1,1/+/2p + 1) holds if

and only if 6;(r) = arccosr/(24/2p + 1) < |0] < arccosr. Since A(8) — 0 as

|6] 1 arccos r, we have

8
1;/ 2,\(,5-'0).,.1,,\(,6:'0),3(7‘6’ ) = = as |6] 1 arccosr. (5.7)

Thus the circular arc I, which has endpoints at B, (re**1()) and pésses
- through 1/(1 — r?)? is contained in 8VP(r). Hence the simple closed curve
I'; UT; is contained in the simple closed curve V7 (r) and we have 8ch(7~) =
Iy ur,.

Suppose that % < r < 1. Then we claim that the image of the

mapping [— arccos r,arccos7] 3 6 — Fl' IR ei) a(re‘”) contains oD
(0,1/(1 — r%)?), which implies V¥ (r) = 0D(0,1/(1 — r?)?). This is a conse-

/ .
quence of (5.7), (5.6) and F Wy (r)’o(r) <0.
We note that the uniqueness part of Theorem 3.2 directly follows from

the uniqueness part of Theorem 3.1. O
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