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Introduction

In [10] and [11], E. Rees and E. Thomas have studied the divisibility of
some Chern numbers of the complex cobordism classes and the homotopy groups
of MU(n). The purpose of this paper is to study the symplectic cobordism theory
by using their methods.

Let MSp(n) be the Thom space of the universal symplectic vector bundle
over the classifying space BSp(n), and MSp={MSp(n), ¢,} be the Thom spectrum
of the symplectic cobordism theory, where ¢,: 2*MSp(n)—»MSp(n+1) is the
structure map. Let b,: MSp(n)—»>Q*"MSp(n+ N) be the adjoint map of the
composition &, y: Z*¥MSp(n)->MSp(n+N) of X¢,,; where N=n>0. Con-
verting b, into a fibering with fiber F,, we consider the fibering

(1) F, — MSp(n) 2=, Q*"MSp(n+N).

Then F, is (8n-2)-connected, and we can determine the cohomology groups of
F, in dimensions less than 12n-2 (see Proposition 2.15).

Let P;e H*(BSp) be the i-th symplectic Pontrjagin class. For a symplectic
cobordism class ueny,(MSp) and a class P, ---P; e H*(BSp) with ¥/, i,=k,
P, ---P; [u] denotes the Pontrjagin number of u for a class P, ---P; .

Our first purpose is to obtain the divisibility of some Pontrjagin numbers of
the symplectic cobordism classes by making use of the cohomology groups of
F,. As a concrete result, we have the following theorem (see Theorem 3.8):

n

THEOREM 1. Let n=1. Then
(1) P,[u]=0 mod8 for any uen,, (MSp).
(i) P,P,Jul—((n+4)/2)P,,;[ul=0 mod 24 for any u € 74, ,(MSp).

The divisibility of Pontrjagin numbers of some symplectic cobordism classes
has been studied in [14], [13], [3], [6] to investigate the structure of m,.(MSp).
For the divisibility (i) of the above theorem, E. E. Floyd [3] has proved it with
some restriction by using the alternative method, and some application of the
method of Floyd is considered in [4].

The second purpose of this paper is to study the homotopy groups
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Tgy— 1 (MSp(n)) and ng,,,(MSp(n)) by using the fibering (1) and some examples
of the symplectic cobordism classes. Our second results are stated as follows
(see Corollaries 4.4, 4.5 and Theorems 4.6, 4.7):

THEOREM II. (i) Let m(n) be the greatest common measure of {(1/8)P,[u]|
uem, (MSp)}. Then the induced homomorphism

bys: Mgy 1(MSp(n)) — 74, (MSp)

of b, in (1) is epimorphic and its kernel is a cyclic group of order 4m(n) gene-
rated by the Whitehead product [i, i] for the homotopy class i of the natural
inclusion S**—MSp(n).

(i) If 2m,,~(MSp)=0 and n is not a power of 2, then b,, in (i) is split
epimorphic, that is,

Tgn— 1 (MSDP(1)) = Zym(my @ Tan-1(MSP).

(iii) m(n) is a power of 2 for n#1, 3, and m(1)=m(3)=3.
iv) m(n)=1if n=2%4+2'—1 or 2*+2} (k, 120) and n+#1, 3.

THEOREM III. (i) 7g,.s(MSp(n))(n=3) has no p-torsion for any odd
prime p.

(ii) The homomorphism b, g, s(MSp(n))—>n,, . (MSp) is epimorphic
fornz1.

(i) If n=2k+2'—1(k,1=1), then b,, in (ii) is isomorphic, that is,
g+ 3(MSp(n)) = 14+ 3(MSP).

We notice that the assumption 274, (MSp)=0 in Theorem II (ii) is valid
for n <8 by the result of D. M. Segal [12].

This paper is organized as follows. In § 1 we summarize the necessary
lemmas concerning the iterated cohomology suspension investigated by R.J.
Milgram [5]. In § 2 we study the cohomology groups of F,, and in § 3 we state
the divisibility of some Pontrjagin numbers and prove Theorem I. In §4 we
consider the homotopy exact sequence concerning mg,—,(MSp(n)) and g, ;
(MSp(n)) and state Theorems II and III. In § 5 we prepare some symplectic
cobordism classes and prove these theorems.

The author wishes to express his hearty thanks to Professor M. Sugawara for
his valuable suggestions, to Professor S. Oka for his helpful advices and stimulating
discussions, and to K. Morisugi for his useful conversations and encouragement.

§1. Preliminaries

In this section, we summarize some necessary lemmas concerning the iterated
cohomology suspension studied by R. J. Milgram [5].



Symplectic Pontrjagin numbers and homotopy groups of MSp(n) 153

Let Y be an (r— 1)-connected CW-complex, and j: Y- Q*Z*Y be the natural
inclusion. Then Milgram [5; Th. 1. 11] proved that the cofiber Q¥X*Y/|Y of j
is homotopy equivalent in dimensions less than 3r—1 to the spaCe Sk-Ip<, YA Y,
where S*~!e<;YA 'Y is the quotient space of S*~!x (Y A Y) by the identification
of (x, y, ¥;) with (—x, y,, y;) and (x, *) with the base point.

When Y=Q*X for a (k+r—1)-connected CW-complex X, we can consider
the evaluation map e: Z*Q*X — X and the fibering

FlALBkYy 2, X  (Y=0¢X).

Then the inclusion j: Y- Q*Z*Y is a section of the fibering QFF 25i, Qkyky Lke, y,
and we have the maps Fee JkQF 2Xa:0%D, pk(QkFkY[Y), where q: Q¥Z*Y—
QkZkY|Y is the canonical projection. Since these maps are (k+ 3r — 1)-equivalent,
we have the following lemma (cf. Proof of [5; Cor. 4.4]).

Lemma 1.1. In dimensions less than k+3r—1, F is homotopy equivalent
to ZH(S* 1< Q¥ X A Q% X).

Take X to be the Thom space MSp(n+ N) of the universal symplectic vector
bundle over BSp(n+N). Then we have the fibering

(1.2) F(e) —— Z*¥Q*"MSp(n+ N) -~ MSp(n+N).

Hereafter we shall take integers n and N to satisfy N=n>0. By Lemma 1.1,
we have

COROLLARY 1.3. In dimensions less than 4N+ 12n—1, F(e) is homotopy
equivalent to Z*¥I'(n, N), where we use the notation

I'(n, N) = SN 1p< Q*NMSp(n+ N)A Q**MSp(n+ N).
Put A=Z or Z, (p: prime). By this corollary, we have the isomorphisms
Hi*3N(F(e); A) = H{(I'(n, N); A) for i<12n-2,

Therefore the Serre cohomology exact sequence of (1.2) turns out to the exact
sequence

(1.4) - — H"Y(I'(n, N); A) == H*4¥(MSp(n+ N); A) -
Hi(Q*"MSp(n+N); A) —— Hi(I'(n, N); A) — -+ (i< 12n-2),

where 1, o and j are the transgression, the induced homomorphisms e* and i*
composed with the suspension isomorphisms respectively, and ¢ is known to be
the iterated cohomology suspension.

We shall use the following notations:
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(1.5) (i) By a series R=(r,, r3,...), we mean that r,’s are non negative integers
with the condition r;=0 (i 2 m) for some m =1, and this condition will be denoted
by R<m.

(ii) For a series R=(ry, ry,...), we set |R|= 35, ir;.

(iii) For series R=(ry, r,,...) and S=(s4, 5,,...), R>S means that r,=
s; (i>m) and r,,>s,, for some m>1.

Let P;e H*(BSp) be the universal i-th symplectic Pontrjagin class. Then
it is known that H*(BSp(n+N))=Z[P,,..., P,on]. We set PR=PpP5...
€ H*RI(BSp) for a series R=(ry, 15,...).

Let U € H*»*M(MSp(n+ N)) be the Thom class of MSp(n+ N), and consider
the composition

U

Vi Hi=4(BSp(n+ N))—=— Hi***(MSp(n + N)) -2 HI(Q**MSp(n+ N)),

where U is the Thom isomorphism given by U(x)=Ux and ¢ is the iterated coho-
mology suspension in (1.4). Here ¢ is isomorphic for i<8n—1, and
H*(Q*"MSp(n+ N)) for *<8n—1 is the free abelian group with basis {V(PR)|
IRl < n}, where

(1.6) V(PR) = g(UPR) e H*"+IRD(Q*NMSp(n + N)).

The following lemma is.an immediate consequence of [5; Prop. 3.1] (cf.
[11; (2.1)]), where {8, 8'> and ¢! - 0®8 are the notations used in [11].

Lemma 1.7. (i) The cohomology group H(I'(n, N)) for i<12n—2 is a
direct sum of some copies of Z and Z,. A basis of its free part consists of the
following classes:

{V(PR), V(PS)) e H3"+4(RI*IS(I'(n, N)) with R>S, |R| + |S| £ n—1,
1. V(PR) ® V(PR)e H8*8IRI(I'(n, N)) with2|R| £ n—1.
A basis of its Z,~-summands consists ofvthefollowing classes:
e2k . V(PR) ® V(PR)e He#2k+8IRI(I"(n, N)) with k=1, 2k + 8|R| £ 4n—-2.

(i) A basis of H(I'(n, N); Z,) for i<12n—2 consists of the mod2 re-
ductions of the classes given in (i) and moreover the classes

e2kt1, V(PR) ® V(PR)EH8n+2k+1+8]R[([‘(n, N); Z,)
‘ with k=0, 2k + 8|R| < 4n—4.

We remark that the classes u-0®8in [11; (2.1)] do not appear in H{(I'(n, N))
for i£12n—2, since N=n.
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By the above lemma, we have H/(I'(n, N))=0if j is odd and j<12n-2, and
the following

LEmMA 1.8. (i) The sequence (1.4) for A=Z and i<12n—2 is short exact:
0 —s H**NMSp(n+N)) <5 H(Q**MSp(n+ N)) AN H{(I'(n, N)) — 0.
(i) HYQ*"MSp(n+N))=0if i is odd and i<12n-2.

For the maps j and 7 in (1.4), we have the following lemma by [5; Th. 4.6]
(cf. [11; (2.10), (2.5)D):

LemMa 1.9. (i) In the integral cohomology groups,

CV(PR), V(PS)) if R>S,
(V(PR)V(PS)) =
JV PRV (P)) L

(ii) In the mod 2 cohomology groups,
7(e*i=1. V(PR) @ V(PR)) = Sq*»+i*IRD(U PRY,

The next lemma can be proved by a similar argument to E. Recs and E.
Thomas [11; 2.4, 2.6, 2.8].

LEMMA 1.10. For i<3n, the cohomology group H*(Q**MSp(n+ N))
is a free abelian group.

ProoF. H*(Q**MSp(n+ N)) has no odd torsion by Lemma 1.7. We
prove that

) t: H4=1(I(n, N); Z;) — HV(MSp(n+N); Z,)

is monomorphic if i < 3n.

Then H*¥-1(Q*¥MSp(n+N); Z,)=0 by the exact sequence (1.4), and hence
H4(*¥MSp(n+ N)) has no 2-torsion by the universal coefficient theorem.
Thus we have the lemma.

Now we prove (*). A basis of H*~!(I'(n, N); Z,) (i<3n) consists of the
classes ap=e*"8*HIRD-1. V(PRYQV(PR) with 4i—8(n+|R|)—1>0 by Lemma
1.7 (ii), and '

“W(ag) = Sq*(UPR), t=i—n—IRl,
by Lemma 1.9 (ii). We have Sq‘U=UP; if i=4j, =0 otherwise. Hence, by the
Cartan formula, the Wu formula Sq*P;= Z,(]—sjl— 1)PS_,PJ-,L, and the
condition 2(n+|R]) <i<3n, we see that '
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1(ag) = Sq*'(UPR) = UP,PR + Y 5., msP5, R<t=i—n—|R|,

for some integers mg, where < is the notation in (1.5) (i). Therefore we sec
that 7 is monomorphic and (*) is proved. q.e.d.

The formulas for the cohomology operations on H*(I'(n, N); Z,) are given
by Milgram [5; Th. 3.7.] (cf. [11; (2.3)]) as follows:

Lemma LUL (i) SqéCV(PR), V(PS)) = X os,<isz (Sq* V(PR),
SqHDV(PS)),
Sqi(V(PR), V(PS> =0 if j#0 mod4.
(i) Sq(l-V(PR)® V(PR) = Tos,<yz <Sq* V(PR), Sq*¢—IV(PR)

+2jz0 <" J;'_Rzlj_j ) e*i784. Sq*V(PR) @ Sq*/V(PR),

Sqi(1-V(PRY® V(PR)) =0 if j# 0 mod4.
(iiiy Fork =1,
Sqi(ek- V(PR) ® V(PR))

= a0 (5) (FGFIRIED ) evizei squiv(pm) @ Sq4v(P).

Especially, we have
COROLLARY 1.12. For k=1,

Sql(e*- V(PR) ® V(PR)) = kek*1.V(PR) ® V(PY),

Sq¥(e* - V(PR) ® V(PR)) = (’5) ¢+2. V(PR) ® V(PF),

Sq*(e* - V(PR) ® V(PR)) = ((’j) 40+ |R|) ¢k+4 . V(PR) ® V(PF).

Let X be a (k+r—1)-connected space and r=2. The evaluation map
e;: ZIQ'X - X is the composition of the evaluation maps e': Z/Q/ X —-»X/~1Qi~1X
(izj=1), and we have the commutative diagram

Fley) — ZFQF X &%, X
(1.13) 1 , le' H

Flep-y) — Z*-1Qk-1Y _Ce=t, ¥,
where F(e) (i=k—1, k) are the fibers of the respective fiberings and f; is the
restriction of e’ to the fiber. If we identify F(e) with X (S~ 1p<, Q!X A Q'X)

in dimensions less than i+3r—1 by Lemma 1.1, then we see that f, is identified
with the composition of
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TH(Sk b, Y A Y) 22T, TKQ(Sk20<,ZY A ZY)
&, ISk 2o QF1X A QF1X),

where Y=0X and 7, is the natural map Q*Z*Y/Y—-Q(Q*-1Xk~1(ZY)/ZY) (see
[5; §2]) with the identifications Q' ZIW/W~Si~te<, WA W(W=Y,XY) and &
is the map induced by the evaluation maps.

In the diagram (1.13), set X=MSp(n+N) (N=n+2) and k=4N,...,4N -3
to obtain the commutative diagram

Flesy) ——s ZNQWMSp(n+N) —22 5 MSp(n+N)

(1.14) Ir e “
Fleay—s) — TN-4QN-4MSp(n+ N) —22=4, MSp(n+N),

where e"=(¢')* and f=(f,)*. Let o¢': HI**¥=4MSp(n+ N))->Hi(Q*N*MSp
(n+ N)) be the iterated cohomology suspension. Then, by using the identifications
of F(e,y) with Z*¥I'(n, N), F(e4y_,) with Z4N=4I'(n+1, N—1) and f, with
é(Z*1,) as is stated above, we have the following lemma by [5; Th. 3.8] on 1,:

LeEMMA 1.15. Set V'(x)=0¢'(Ux). Then
T*(e*-V'(PR) ® V'(PR)) = e**4. V(PR) @ V(PR) for any k =0,
S*KV'(PR), V'(P9))) = 0.

§2. The cohomology groups of F,

The structure map ¢,: Z* MSp(n)—=MSp(n+1) in the Thom spectrum
MSp={MSp(n), ¢,} of the symplectic cobordism theory is defined to be the map
induced by the bundle map of £, @1 to &,,,, where £; is the universal symplectic
vector bundle over BSp(i) and 1 means the trivial symplectic line bundle. Con-
sider the composition ¢, y: Z*¥MSp(n)>MSp(n+N) of Xie,.; and its adjoint
map b, y: MSp(n)—>2*YMSp(n+ N). Converting b, y into a fibering with fiber
F, n, we consider the fibering

n

(2.1) Fyx — MSp(n) 23, Q*NMSp(n+N).

For any N'>Nzn21, the homotopy groups, the cohomology groups of F,y
and F,y. are naturally isomorphic in dimensions less than 12n—2, because
g,+n 1S (8n+8N +6)-equivalent. Therefore, for a positive integer n, we shall
take an integer N large enough to satisfy N=n; and we denote simply by

bn = b",N and Fn = FH,N)
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and investigate the cohomology groups of F, in dimensions less than 12n—2.
We remark that F, is (8n —2)-connected.
Let I, H*(BSp) be the ideal generated by {P;|i>n}, and

2.2) Ui c H4n+N+i(MSp(n+N)) be the subgroup generated by {UPR|PR
eli =1, n Hi(BSp)}.

Then we have
LEMMA 2.3. (i) The composition
e(X4Np,): 24N MSp(n) — Z*N¥ Q*NMSp(n+ N) — MSp(n+ N)

is homotopic to g, y, where e is the evaluation map in (1.2).

(i) The following commutative diagram of four short exact sequences
holds for i<12n—2:

UI:"—4n g N Hi—l(F") _;» H"(I'(n, N))

[0 I |
H*N(MSp(n+ N))>2— H(Q®MSp(n+ N)) —L > Hi(I'(n, N))
et |ex
HN(Z98MSp(n)) 20— HY(MSp(n)).
Here the central horizontal sequence is the one in Lemma 1.8 (i), the central
vertical sequence is the Serre cohomology exact sequence of the fibering (2.1),
where 1 denotes its transgression, G is the restriction of o, and j is the composition
jt.
PROOF. (i) is clear by definition.
(i1) The left hand vertical sequence is exact by the definition (2.2) of U,
By (i), the lower square commutes. Since ¢} y is epimorphic, so is b¥, and the
central vertical sequence is short exact. Since the central horizontal sequence is
short exact as is shown in Lemma 1.8 (i), so is the upper one by the 9 lemma.
g.e.d.

Consider the central vertical exact sequence in Lemma 2.3 (ii):
0 — HI"Y(F,) == H(Q*¥MSp(n+ N)) 25, Hi{(MSp(n)) — 0.

LEMMA 24, In HE"H4(Q*¥MSp(n+N)) for i<n, the following elements
belong to Ker b*=Imt:

(1) V(PR)V(PS)— V(P,PRPS) for any series R and S with |R|+|S|=i,

(2) V(P,.PR) for any k and any series R with k=1 and k+|R|=1.
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Proor. (1) Let U denote the Thom class of MSp(n). Then, by Lemma 2.3,
by(V(PR)V(P®)) = bra(UPR)- bio(UPS) = (Z*V)~ ey (UPR)-(Z*¥) ey f(UP?)
= UPR.0PS = UP,PRPS = b}(V(P,PRPS)).
(2) By the condition, x=P,, PRel, and V(x)=0(Ux)=16(x)eIm1.
g.e.d.

Especially, (V(PR)?2—V(P,(P?)?) (2|R|<n) is contained in Ker b¥ by the
above lemma for R=S. On the other hand, its j-image is 2(1- V(PR)® V(PR))
by Lemma 1.9 (i). Therefore, by the commutative diagram in Lemma 2.3 (ii),
we see the following

(2.5) For any series R with 2|R|<n, there are elements b’ e H8(»FIRD-I(F )
and v’ e I4"*8IR| such that j(b')=1- V(PR)® V(PR) and

V(') = o(Uv') = 2t(b") — (V(PR))? + V(P,(PR)?).

LeMMA 2.6. For any series R with 2|R|<n, we can take elements

b(R) (= b, x(R)) € H¥~!(F,) and v,(R)(=v, x(R)) e I}***I®] (i =n + |R|)
such that

(i) j(b(R)) = 1-V(PR)® V(PR) + a torsion element,

(iD) (b(R) = (1D {V(PR)? — V(P,(PR)) + V(o (R)} in HE(QWVMSp
(n+N)), and that v,(R) for 0<2|R| < n—13 satisfies the conditions

(iii) 0(R)=P, g PR+ X s<n+|r) MsP® for some integers mg,

(iv) Uv(R)=Sq*(UPR)-+UP,(PR)? in H*¥*8(MSp(n+ N); Z,).

Proor. By the Cartan formula, we have

Sq*(UPR) = Ux + UP,(PR)2, x=P,PR + Y |RI-1 P,_ . Sq*(PR).

Hence we can take an element v, (R)e I4*4IRl such that its mod 2 reduction is
x and that it satisfies (iii), and then it satisfies (iv) also.

Now, let b’ e H8(F,) and v’ e I4+4IRl be elements in (2.5). Then we can
prove the lemma by showing

2.7) V(@)= V(@(R)) mod2 for R # 0 (the O-series) with 2|R| < n — 3.

In fact, there is an element y=(1/2){V(v)—V(v,(R))} by (2.7), and b}(y)=0
since H8(MSp(n)) has no torsion. Thus we see that b(R)=b"—1"1(y) and
v,(R) satisfy (1) and (ii) by (2.5). When R=0 or 2|R|>n—-3, b(R)=b" and
v,(R)=v" are the desired element.
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To show (2.7), consider the commutative diagram (8i<12n—9, n=2)
H8-Y(I'(n, N); Z,) ——— H8**N(MSp(n+N); Z,)
I |
H8=5(F(n—1, N+1); Zy) < HS*N(MSp(n+N); Z,)
—7— HS(Q*¥MSp(n+N); Z,)

14

ag
2, HBI-4(QN 4 MSp(n+ N); Z,).

Here two exact sequences are the ones in (1.4) for A=Z,, f* is the homomorphism
in Lemma 1.15, and o, ¢/, 6" are the iterated cohomology suspensions. Since
V(PR = V(P(PR))+ V(v)=0 in HE(Q**MSp(n+N); Z,) by (2.5), we have
V(P (PR)?)+ V'(v)=0 where V'(x)=0'(Ux). Hence there is a class ze H83
(F(n—1, N+1); Z,) satisfying t'(z2)=UP,(PR)*+Uv'. Since v'el,, we have
z=e3. VI (PRYQV'(PR)+ Xrizy Are® 3 V(PHY@V'(PT) for some /,reZ,,
by Lemmas 1.7 (ii) and 1.9. These two equalities imply
UP,(PR)? + Uv' = Sq*(UP) + 1(2') (z' = Z 21 44,7e% 71 - V(PT) @ V(PT))

by Lemmas 1.15 and 1.9. Therefore the mod 2 reduction of Uv' —Up,(R) is
equal to 1(z") by (iv), and hence that of V(v")— V(v (R)) is equal to a1(z")=0.
Thus we see (2.7). q.e.d.

LemMmAa 2.8. Assume N=3n—2. Then, for any integer k=1 and any
series R with k+2|R|Sn—1, there is an element c(4k, R)e H8*IRD+4k-1(F )
satisfying

©(c(4k, R)) = (1/2){ — V(P4 1(P®)?) + V(v,+(R))},

where 0, (R)=0, 1, n—i(R) € I40+¥*8IRl s an element in Lemma 2.6 and it
satisfies

Up sl R) = Pryr|g| PR + Zs<n+r+r MsPS  for some integers my.
Proor. Consider the commutative diagram
F,———— MSp(n) SN Q*NMSp(n+N)
A |
QUF, .y Q% MSp(n+k) 2 bner | QINMSH(n+ N),

where b is the restriction of b, Then we have the commutative diagram

Hi+=1(F, ) —2 HiZW(Q4F, ) -2, Hi-\(F,)

~

(+) Ir If

Hi+4(Q4N-OMSp(n+ N)) -2 HI(Q*MSp(n+N)),
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where ¢’s are the iterated cohomology suspensions. Furthermore,
o{(V'(PR))? = V'(Ppr i PR)?) + V(01 (RN} = — V(P 1l PR)?) + V(0n14(R)),

where v, (R) satisfies (iii) in Lemma 2.6, i.e., the last equality in the lemma, since
2|R|€n+k—3. Thus c(dk, R)="b*a(b, . y-«(R)) satisfies the desired equality
by Lemma 2.6. q.e.d.

Now we can define the following classes a(R, S), b(R), ¢(2i, R) and d(k, R) in
H*(F,) (*<12n—-3):

(2.9) a(R, S)e H8**+4URI*+ISD-I(F ) for series R and § with R>S and [R|+]S|
< n—1 satisfying

t(a(R, S)) = V(PR)V(PS) — V(P,PRP5), (cf. Lemma 2.4).

(2.10) b(R)e H8"*IRD-{(F} in Lemma 2.6 for a series R with 2|R|Zn—1
satisfying

(b(R)) = (D {(V(PR))* — V(P,(PF)?) + V(v,(R))} .

(2.11) c(4k, R)e H8(m*IRD+4k-1(F ) in Lemma 2.8 for an integer k=1 and a
series R with k+2|R|<n—1 satisfying

1(c(4k, R) = (1/2){ = V(P,+x(P*)?) + V(v,.i(R))}, (N 23n-2).

(2.12) c(4k+2, R) e H8(r+IRD+4k+1(F ) for an integer k=0 and a series R with
k+2|R|Z£n—1 satisfying

J(c(dk+2, R)) = e*k*2. V(PR) ® V(PR),
where j=jt: H=Y(F,)-»H(I'(n, N)) in Lemma 2.3 (ii) is isomorphic if i=1
mod 4.

(2.13) d(k, R)ye H8"+4IRI+4k=1(Fy for an integer k=1 and a series R with
k=Z|R|<n—1—k satisfying

2(d(k, R)) = V(P,+,PR), (cf. Lemma 2.4).

For the epimorphism j=jt: Hi~Y(F,)»H!I'(n, N)) (i£12n—2) in Lemma
2.3 (ii), we have the following

LemMma 2.14. (i) j(a(R, S))=<{V(PR), V(PS)),
J(B(R))=1-V(PR)®V(PR)+a linear combination of e*.V(PS)QV(PS) (I=1),
J(c(4k, R))=e* . V(PRY® V(PR)+a linear combination of

kD L V(PSYQ V(PS) (12 1).
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Especially, for the case R=0 (the O-series),
JOON=1-V®V, j(cdk, 0)=e*-VRV (V=V(1)).

(i) The set of d(k, R) in (2.13) and 2¢(4k, T) of c(4k, T) in (2.11) forms
a basis of Kerj.

Proor. (i) By (2.9) and Lemma 1.9, we have
j(a(R, 8)) = j(V(PR)V(PS) — V(P,PRPS)) = (V(PR), V(P5)).

The second equality is in Lemma 2.6 (i). By the definition of fin (1.14), we have
the commutative diagram

Hi+4k(Q4N-D MSp(n+N)) —L H* ([ (n+k, N~k))

4 o )

H{(QYMSp(n+N))—J, Hi(I'(n, N))

for i<12n—2, where N=3n—-2, j’s are the homomorphisms in (1.4) and ¢ is the
iterated cohomology suspension. By (#) in the proof of Lemma 2.8, this diagram,
Lemmas 2.6 (i) and 1.15, we have

J(c(@k, R)) = jou(b, 11 (R)) = (f*)*j(by+i(R))
= (A V(PR Q VI(PF) +--) = e**- V(PR) @ V(PF) +---.
(i) It holds that d(k, R)=&(UP, ., P?) where n+k<n+|R| by (2.13). Also,
2¢(4k, R) = G(UP, 414 || PR + Zs<n+r+rymsUPS) for some integers msg,

where n+k+|R|>n+|R| by (2.11) and Lemma 2.8. Since ¢ is monomorphic
and Ker j =Img, these facts and the definition of UJ, imply (ii). q.e.d.

Now, by using the upper short exact sequence in Lemma 2.3 (ii) and Lemmas
1.7 and 2.14, we see immediately the following

ProposITION 2.15. LetjSn—1. Then
(i) HB»*4I-YF)) is a free abelian group with basis consisting of the
Sfollowing classes:
a(R, S) in (2.9) with |R|+|S|=], b(R) in (2.10) with 2|R[=],
c(4k, R) in (2.11) with k+2|R|=j], d(k, R) in (2.13) with k+|R|=j.
(il) HB®#+4J+1(F ) is isomorphic to a direct sum of some copies of Z, with

basis consisting of ¢(4k+2, R) in (2.12) with k+2|R|=j.
(iii) H®"4i-2(F,)=H8"+*i(F,)=0.
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For the mod 2 cohomology of F,, we can define the class

(2.16) c(4k+1, R)e H8(*IRD*4k(F - Z.) for an integer k>0 and a series R
with k+2|R}| <n—1 satisfying

J(c(4k+1, R)) = e*+1. V(PR) ® V(PR),
where j: Hi=\(F,; Z,)-»H{I'(n, N); Z,) is isomorphic for i=1 mod 4.
By the same way as the above proposition, we have

LemMma 2.17. The mod 2 reductions of a(R, S), b(R), ¢(2k, R), d(k, R) in
(2.9-13) and ¢(4k+1, R) in (2.16) form a basis of Hi(F,; Z,) for i<12n—3.

We can study the cohomology operations on H*(F,; Z,) for *<12n-3.

We remark that the transgression t: H*=!(F,; Z,)->H(Q*"MSp(n+N); Z,)
is monomorphic for i < 12n—2, by the proof of Lemma 2.3 (ii).

When p is an odd prime, the operation P! on H*(F,; Z,) for *+2i(p—1)<
12n—13 is completely determined by Proposition 2.15 and (2.9-13), because we
can compute T(Pix)=Pit(x) for any xe H*(F,; Z,) and 7 is monomorphic.
Consider the operation Sq' on H*(F,; Z,) for *+i<12n—3. Then we can
determine Sqix for x=a(R, S), d(k, R), by the same way as above. For x=
c(4k+j, R) (j=1, 2), we can compute j(Sq'x)=Sq'j(x) by Lemma 1.11 (iii), (2.16)
and (2.12). For y=b(R), c(4k, R), we have j(Sq'y)=Sq'j(y)=0 if i£0 mod 4,
by lemmas 1.11 (ii), (iii) and 2.14. Since j: Hi"Y(F,; Z,)—»H{(I'(n, N); Z,)
(i£12n-2) is monomorphic if i#0 mod 4, Sq*c(4k+j, R) for j=1,2 and i+
j#0 mod 4 can be determined and Sq*b(R)=Sq’c(4k, R)=0 if i£0 mod 4.

Consequently we have the following

Lemma 2,18 (i) Sq'a(R, S)=Sq'b(R) = Sq'c(4k, R) = Sq'(d(k, R))=0 if
i#0 mod 4.

(i) Sq'c(dk+1, R) = c(4k+2, R).

In the case R=0 (the O-series), we have the following

LemMma 2.19. (1) Sq*b(0)=a((1), 0)+nc(4, 0),

P1p(0) = —(a((1), 0) + (n+1)c(4,0)  for p=3.
(i) Sqic(4k+1,0) = c(4k+2,0) if i=1,
=0 ifi=2 =(n+k)(4k+5,0) if i=4,

Sqic(4k+2,00=0 if i=1, =c(4k+4,0) if i=2, =(n+k)c(4k+6,0) if i=4,
Sqic(4k,0) =0 if i=1,2, =(n+k)c(4k+4,0) + 6(UP,P,.,) if i =4,
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where & is the homomorphism in Lemma 2.3 (ii).

Proore. First, we prove the formula for P'b(0). When p=3, it holds
PV=—V(P,) and P'P,=(n+1)P,,,—P,P,, where V=V(1). By (2.9-11),
wa((1), N=V(PYIV=V(PP,), (bO)=(1/2)(V>-V(P,) and 1(c(4,0)=
(1)2)V(P,,,). By these relations, we have 1(P'b(0))=—1(a((1),0)+
(n+1)c(4, 0)). Since t is monomorphic, we have the desired formula for P!5(0).

Next, by using Lemmas 1.11, 2.14 and (2.16), we have j(Sq*b(0))=
(V(P), VY +ne*- VR V=j(a((1),0)+nc(4,0)) and we can compute j(Sqic(k, 0))=
Sq'j(c(k, 0)) for i=1,2,4 and k=1, 2. Since j: H"\(F,; Z,)=H(I'(n, N); Z,)
is monomorphic for i<8n+6, we have the desired formulas for Sq*b(0),
Sqice(k,0) (i=1,2,4 and k=1, 2).

To obtain the formulas for Sqic(4k+j, 0), consider the commutative dia-
gram () in the proof of Lemma 2.8. Then, we see that

Q20)  Brob'(0) = o4k, 0), Bro(c'i, 0) = eldk+i, 0) (i 2 1),
b*a(a’'((1), 0)) = —G(UP,P,.)),

where b'(0), ¢'(i, 0) and a'((1), 0) are the classes in H¥*(F,,,). In fact, the first
equality is seen there. We have the second equality for i=0 mod 4 and the last
equality by considering th*a(x)=a1(x) for x=c'(4j, 0), a’((1), 0) and by Lemma
2.8 and (2.9). By considering jtb*a(c’(i, 0)) for i=1,2 mod 4 and by using the
commutative diagram in the proof of Lemma 2.14 (i), we have the second equality
for i=1,2 mod 4 by Lemma 1.15. 1In (2.20), we have Sq*c'(1, 0)=(n+k)c'(5, 0),
for example, by the formula for Sq*c'(1,0). Thus, by the naturality of the coho-
mology operation, we obtain the desired formulas for Sq’c(4k +j, 0). q.e.d.

§3. Symplectic Pontrjagin numbers

For a symplectic cobordism class u e n{MSp) and a class y e H/(BSp), let
y[u] be the Pontrjagin number of u for the class y.
To study the divisibility of some Pontrjagin numbers, consider a fixed element

©) Xo =X + x" e H'(F,) (t=8n+4j—1 with j < n),

where x is one of the classes a(R, S), b(R), c¢(4k, R) and d(k, R) given in Pro-
position 2.15 (i) and x’ is a linear combination of another classes. Then we can
take the following steps (1)-(4):

(1) Take a basis {x;} of H!(F,) which includes x,, and let {xX;} be the dual
basis of H(F,).

(2) Take a suitable cell decomposition of F,, and denote its i-skeleton by
F.
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(3) For an integer =2 and the Hurewicz homomorphism H®: n(F,/
Fy=9) > H/(F,/F¢ D)= H(F,), set
HOW) = TkP@F  for ven(F,/Fy),

where k{P(v) are integers.
(4) Let a(l) be the greatest common measure of {kP(v)|v e n,(F,/F& D)}

Now we have the following basic lemma.
LEMMA 3.1.  Assume that the class xo=x+x"' € H'(F,) in (0) satisfies
T(xg) = 20 (A4/2)V(PT) + X for some integers Ar,

where ©: H(F,)>H'* Y (Q**MSp(n+ N)) is the transgression in Lemma 2.3 (ii),
and X is a sum of decomposable terms. Then

SrArPT[u]l =0 mod2«(l)  for any uen({MSp),
where a(l) is the integer given in the step (4).

Proor. Consider the following commutative diagram:

T oosne1(MSP) <Z_ 7, ((QVMSp(n+N)) -2 7,(F,) 9%, 7, (F,|F¢D)
R iH l# e
H,_4ne1(MSp) °_ H,, (Q*"MSp(n+N)) 2, H(F,) 2*, H/(F,/F{V).

Here 0 and 7 are the connecting map and the transgression of the fibering (2.1)
respectively, o is the iterated homology suspension, g is the natural projection
and H’s are the Hurewicz homomorphisms. For any class uen,_,,4,(MSp),
let 4’ em,, (Q*"MSp(n+ N)) be the class corresponding to u under the isomor-
phism in (3.2). By the above step (3), HPq,6(u")=3 k¥ (q.0w"))%; Taking
the Kronecker pairing, we have

(HWPq, o), xo> = k§(q:¢")) =0 mod «(l).
On the other hand, by (3.2) and the assumption, we have
2{HPqyé(u’), xo) = 2CH(u'), 1(x0)) = X1 Ar{H(u"), o(UPT)> = X1 ArPT[u].
Thus we have the lemma. g.e.d.

By this lemma, if we can take a basis of H*(F,)in (1) and a cell decomposition
of F,in (2) which enable us to compute k{P(v) in (3) and a(]) in (4) for a fixed
element x, in (0), then we have the divisibility of some Pontrjagin number. Here
we shall consider the case xq=a((1), 0)+(n+4)c(4, 0) or c¢(4, 0).
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We remark that F, is (8n—2)-connected. By Proposition 2.15 and Lemmas
2.18 and 2.19, we have

LeMMA 3.3. (i) Fornzl,
H3"U(F,) = Z{b(0)), HP"(F,) =0, HP"I(F,) =Z{c(2,0)).
(iiy Forn=2,
H8"2(F,) = H¥*4(F,) =0, H®"*3(F,) = Z{a") & Z{c(4, 0)),
HE3™5(F,) = Z,{c(6, 0)),
where a’=a((1), 0)+(n+4)c(4, 0).
(iii) Sqg*b(0)=a’, PHO0)=—-a" for p=3,
Sq'b(0)=0 if 1<i<7 and i#4,
Sqic(1, 0)=c(2,0) if i=1, =0ifi=2, =nc(,0)ifi=4,
Sqie(2,0)=01if i=1, =c4,0)ifi=2, =nc(6,0)ifi=4,
Sqi(ay=Sq’c(4,0)=0 if I1Zi<3.
By this lemma, we have immediately the following
LEMMA 3.4. Let n=2. Then we can take a complex K given by
K=S81"1, €% \U,, €81 Uy vy, (€373 v e§743) U, e81%4 U, eBnts

and a map f: K—F,, which satisfy the following (1)-(ii):

(i) f«: H{K)—>H{F,) is isomorphic for i<8n+4.

(ii) The cells e§"*3 and e§"*3 correspond to the cohomology classes f*(a’)
and f*(c(4, 0)) respectively.

PROPOSITION 3.5. Let n=2. Then

(1) Ty 1(F)=Z, ng,(F,) =gy 4 {(F) =Z,DZ,, Mgy o(F,)=0,
Tgni3(F)=Z®Z (resp. ZOZ®Z,) if n is odd (resp. even).

(i) We can take a basis {u(3), v(3)} of a free part of ng,.s(F,) to satisfy
H@u(3)=24a' and H(v(3))=4c(4,0), where H: ng,,;(F,)>Hg, 3(F,) is the
Hurewicz homomorphism and {@’,c(4,0)} is the dual basis of {a’, ¢(4,0)} in
Lemma 3.3. : : :

ProoF. By Lemma 3.4, we prove the proposition for K in Lemma 3.4
instead of F,. :

It is obvious that mg,_,(K)=Z and K®" =881y 88 If g ,: KEI~
S8-1 and gq,: K(®8 88" are the respective projections, then g,¢, is homotopic
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to the constant map and deg g,¢, =2 since Sq?b(0)=0 and Sqlc(1, 0)=c(2, 0) by
Lemma 3.3 (iii). Hence we have K'=K®@#+)=[KBn+2)=g88n-1y (§8n /,
e®1) and the split exact sequence

(*) 0 — Mgpe; (8871 T 71g,4:(K") P, i (SER AU, e871) 0
qx

where p and g are the projections. Therefore nng,(K)=ng,,(K)=Z,DZ,.
Furthermore

(3.6)  gns oK) X Mgy oS3 D)@ 75,4 2(S8" U, ") =Z,,@Z, (cf. [2; 4.1]),
and for the attaching maps ¥, and ¥, g+, and p., generate the first and
second summands respectively, and the orders of p,Y¥, and gq,y, are divisors
of 2 and 4 respectively.

To prove the latter half of (3.6), we consider the commutative diagram

SSn+2 N SSn—l 5 S8n—1 Uq!//ke8"+3

§ Nk

S8n+2 l/l" K(8n+l) K(8n+1) ka e8n+3

F

S8n+2 N SSn+l R S8n+1 Unwke8n+3

for k=1 and 2, where x is the natural projection, and § and # are the maps de-
fined by q and = respectively. Consider the mod 2 and mod 3 cohomology groups
of this diagram. Then, since Sq*b(0)=a’ and P!b(0)=—a’ for p=3 by Lemma
3.3 (iii), we see that g, is a generator of 7g,,,(S%*1)=Z,, and the order of
qsY, is a divisor of 4. Since Sq2%¢(2,0)=c(4, 0) by Lemma 3.3 (iii), n4y;=0
and m,p,#0 in mg,, ,(S8"*1)=Z,. Hence the order of p,y, is at most 2 and
DPx¥, is a generator of mg,, ,(K'[SE" ") =mng,,,(S8" \U, e8"*1)=Z,, by the fact
that 7i: mg,+2(S3*2 U, e8P )5 mg,, ,(S8"41) is epimorphic, where 7’ is the
restriction of = (cf. [2; 4.17). These imply the latter half of (3.6).

7gn+ 2( K)=0 follows immediately from (3.6).

Consider the exact sequence

ns,,+3(S§"+2VS§"+2)—M’ﬂs,,+3(K')—ii+ Tanes(K(Br3)

0 n Vivis) ,
— Tgn42(S% +2VS%"+2)(V1—!//2*> Tgni2(K').

Then Im é=Ker (¥/; v /)« =Z{24¢,)>B®Z{4¢,) by (3.6), where ¢; is a generator
of 7g,42(88"*%) (j=1,2). On the other hand, py:7g,43(K)=7g,43
(S8 \, e8n*1) in (%) for i=3 is isomorphic since ng,,3(S8"~1)=0. Furthermore
Tgns+3(S8"\ U, 8"t N)=Z,®Z, and one of its generators is #n, where fj€ng, .,
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(S8, et =Z, and nemng,,;(S8"*2)=Z, are generators (cf. [2;4.1]). By
(3.6), we can take ij=p,Y¥, and then p,f;=2¢ij. Thus p,,.(n,)=2ejn=0 and
Ps¥ax()=7n for the generator n;emg,, (S8"*?)=Z,. These imply that
Imi,=Z, and rg,, ;(KE"*IN=ZDZDZ,.

Now, the attaching map ¢, is contained in Kerd=Imi,=Z, by the last
two equalities in Lemma 3.3 (iii). Furthermore, since Sg*c(l, 0)=nc(5, 0) by
Lemma 3.3 (iii), we see that ¢, #0if n is odd and ¢,=0if nis even. Thus we see
that the desired results for mg, , 5(K).

By the above exact sequence, we can take a basis {u(3), t(3)} of ng,,3(K)/
Tor=mg,, ;(K®**3)/Tor to satisfy du(3)=24¢, and Jév(3)=4¢,. These imply
that H(u(3))=24a’, and H(v(3))=4¢(4, 0), and we complete the proof. g.e.d.

REMARK 3.7. Forn=1, ng,,(F,) (i=—1,0, 1) are the same as the ones given
in Proposition 3.5.

By Lemmas 3.1, 3.3 and Proposition 3.5, we have the following
THEOREM 3.8. Let n=1. Then

(i) P,Ju]=0 mod8  forany uemn,(MSp).
(i) P,P,[u]-((n+d/)P,. [u]l=0 mod24 forany uemny,, ,(MSp).

ProOF. For n=1, (i) and (ii) follow from the results of [7], [6] on n,(MSp)
and ng(MSp). Let n=2. We consider the case that x,=a’ or ¢(4, 0) and /=5
in Lemma 3.1. By Lemma 3.3 (ii), we can take a basis {a’, c(4, 0)} of H®"*3(F),).
When x,=c(4,0), we see that «(5) is a multiple of 4 by Proposition 3.5 and
(c(4, 0))=(1/2)V(P,,,) by (2.11), hence (i) follows from Lemma 3.1. When
xo=a', o(5) is a multiple of 24 by Proposition 3.5 and t(a")=—V(P,P,)+
((n+4/DV(P,. )+ V(P)Vby (2.9) and (2.11), hence (ii) follows from Lemma 3.1.

g.e.d.

REMARK 3.9. In addition to Proposition 3.5 (i), the homotopy groups
n(F,) can be determined for i <8n+6 by the results due to S. Oka.

§4. Homotopy groups of MSp(n)

In the rest of this paper, we study the homotopy groups ng,_ (MSp(n)) and
Tgn+ 3(MSp(n)) for nz1.
Consider the homotopy exact sequence of the fibering (2.1):

@1) s m(MSP) —2s 1y 4y 1(Fy) — Ty 4n 1(MSp(n))

Busy o\ MSp) s Mo (F) — - (1S 80-2),
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where we identify n(MSp) with =, . (2*¥MSp(n+ N)) since N=n. Because
F, is (8n—2)-connected, b,, is isomorphic for i<4n—1 and epimorphic for
i=4n.

ProrosiTioN 4.2. (i) For 0: n,MSp)—ng,_(F)=Z (nz1) (see Pro-
position 3.5 (i) and Remark 3.7), it holds that )

ou = +(1/2)P,[u]  forany ueny,(MSp).
(i) For 0: 744 o(MSP)—Tg,s3(F)=Z<{u3))DZ{v(3))@Tor (n22) (see
Proposition 3.5), it holds that
ou = ((1/24)(— P,P,[u] + (n+4)/2)P,. 1 [u]), (1/8)P,.,[u])
for any uemn,,, (MSp), where (k, )=ku(3)+1v(3)+a torsion element.

ProOF. We shall prove (ii). (i) can be proved similarly.

For uen,,. s(MSp)=ng,+(Q*"MSp(n+ N)), set du=(k, ). Then H(du)=
24ka’ +-4le(4, 0) by Proposition 3.5 (ii). Thus, by taking the Kronecker pairing,
we have

24k = (H(0u), a’) = {H(u), W(a)) = — P,P,[u] + (n+4)/2)P, [u],
4l = (H(Cu), (4, 0)> = (H(u), t(c(4, 0))> = (1/2)P,,[u],

since ©(a’)=V(P)V=V(P\P,)+((n+4)/2)V(P,+,), and 1(c(4,0))=(1/2)V(P,4,)
by (2.9) and (2.11). Hence we have the desired result. g.e.d.

The Pontrjagin number P,fu] is a multiple of 8 for any uen,,(MSp) (n=1)
by Theorem 3.8 (i). Thus we set

(4.3) m(n) =g.c.m. {(1/8)P,[u]|uen, (MSp)} for nx=1.

COROLLARY 4.4. The kernel of the epimorphism b,,: ng,_ (MSp(n))—
T4n—1(MSPp) is a cyclic group of order 4m(n) generated by the Whitehead product
[i, i] for the homotopy class i of the natural inclusion i: S**—MSp(n).

Proor. By Proposition 4.2 (i), the definition (4.3) and the exact sequence
(4.1), we see that Ker b, is a cyclic group of order 4m(n). Consider the com-
mutative diagram

F(il) l_') S4n iy Qs4n+1

P !

F, L MSp(n) b=, Q35 MSp(n+ N).

Here i, denotes the natural inclusion and F(i,) is the fiber, and i’ is the com-
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position QS4+1 L QINSAHN) L OANMSp(n+ N) of the natural inclusions. It
holds that ng,_(F(i;))=Z and ji(1)=+[¢, ¢] for a generator ¢em,,(S*") by
the definition of the Whitehead product. Since iy: mg,_ (F(i,))>rg,—(F,) is
isomorphic, the kernel of b,.: ng,_(MSp(n))—>n,,_,(MSp) is generated by
[i, i1 by the naturality. g.e.d.

Let MU(2n) be the Thom space of the universal complex vector bundle over
BU(2n), and consider the map c: MSp(n)—»MU(2n) induced by the inclusion
Sp(nyc U(2n). Then we have the following corollary, where v,(y) is the ex-
ponent of 2 in the prime power decomposition of a positive integer y:

COROLLARY 4.5. Assume that
(a) nis not a power of 2 and 2n,,_,(MSp)=0, or

(®) va(m(n))+2=v,(|ng,— (MU (ZN))I).

Then the epimorphism b, ng,_(MSp(n))—>mn,,_(MSp) is split, that is,
Mg 1 (MSP(n)) = Zgmny @ T4n-1(MSpP).

Proor. Let F,,—»>MU(2n)82~ Q*¥MU(2n+2N) be the fibering defined by
the same way as (2.1), and consider the commutative digaram

F, — MSp(n) 22 Q*MSp(n+ N)

2 k Josve

F,, — MUQn) 2=, 4V MUQR+2N)
induced by ¢. We remark that F,, is (81—2)-connected. Then we have the
commutative digaram

b
Tan(MSp) 25 7g,_y(F,) —> mgny(MSp(m)) 225, 74, (MSp) — 0

lc* lc; 1c* lc*

T4n(MU) 2, Tgn-1(F24) — 7g,ey (MU(20)) _banx, 0,

In the first place, we notice that ¢ is isomorphic. By E. Rees and E. Thomas
[11; § 2], H8=1(F,,) is Z generated by «, which satisfies

t(ey) = (1/2)(6(Ucyy) — (60D,

where 7: H8"1(F,)>HS"(Q*¥M) and &: H8"**N(M)—H®"(Q*NM) are the
transgression and the iterated cohomology suspension respectively, and Ue
H47+4N(M) is the Thom class (M=MU(Q2n+2N)). The above equality and
(b(0)=(1/2)(VZ-V(P,)) of (2.10) imply zc'(2;)=—1(b(0)) and so c'*(x,)=
—b(0), because c*(c;,)==+P,, c*(0)=+U and 7 is monomorphic. Thus c'*:
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He==3(F, )— H8"~1(F,) is isomorphic and so is ¢} in the diagram.

Furthermore mg,_,(MU(2n))=Cokerd is a cyclic group of order 2¢ where
B=po(2n)—1 by [11; Th. A], and Coker 0=2,,,,, by Corollary 4.4. Thus we
have the commutative diagram

0 — Coker 3(= Zypm(n) — Ton-1(MSp(n)) 2%, 7, (MSp) — O

(*) lc' lc*

Coker 0(= Z,s) = mg,_,(MU(2n)),

where ¢” is the epimorphism induced by cj.

When (b) holds, ¢” induces the isomorphism of the 2-torsion parts, hence the
upper sequence in (x) splits because n,,_,(MSp) is a 2-torsion group (cf. [15;
20. 40]).

Now we assume that (a) holds. Then f#0 by the definition of py(2n)
([11; Th.A]) and n,,-,(MSp)®Z,=m,,_,(MSp). Hence, by tensoring Z, to
(), we have the split exact sequence 0—>Z,—ng,_ (MSp(n)®Z,—n,,_ (MSp)
—0. Therefore the upper sequence in () splits as desired. q.c.d.

We shall prove the following theorems in the next section by preparing some
symplectic cobordism classes.

THEOREM 4.6. For the integer m(n) in (4.3), the following (i) and (ii) hold:
(i) m(n) is a power of 2 for n#1, 3, and m(1)=m(3)=3.
(i) mm)=1ifn=25+2—10r 25+2V (k, 120) and n#1, 3.

TuHeoreM 4.7. (1) m(MSp(n)) (i£8n+3) has no p-torsion for any odd
prime p, except for (n, )=(1, 7), (1, 10), (1, 11), (2, 19) and (3, 23).

(ii) bps: g s(MSp(n))— 14,4 3(MSp) is epimorphic for n=1.

Gi))y If n=2*+2'—1 (k,I=1), then b,, in (ii) is isomorphic, that is,
Tgn+ 3(MSp(n)) = 74,4 3(MSp).

§5. Symplectic cobordism classes

In this section, we examine the characteristic numbers of some symplectic
cobordism classes to prove Theorems 4.6 and 4.7.

Let {=¢, be the universal symplectic line bundle over the quaternion pro-
jective spaceé HP*=BSp(l), and (@ E®E be the tensor product of & over
HP*x HP* x HP* by taking & as the complex vector bundle. Then it is a sym-
plectic vector bundle &3 (cf. [14]), and so we denote its classifying map by

(5.1) ¢: Y= HP* x HP* x HP* — BSp.

Let P}SPe MSp*(BSp) be the universal first Pontrjagin class and PY¥5p(¢)e
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MSp*(HP*) be the Euler class of ¢ in the symplectic cobordism theory. By
using the projection ¢;: Y->HP* (i=1, 2, 3) onto the i-th factor, we set X;=
qFP¥5r(¢)e MSpX(Y). Then MSp*(Y)=MSp*[X,, X5, X;], and we have an
expansion

(5-2) d)*(P)l"Sp) = Piws"(é?) = Z;+,~+kgl aiij§X£X§
for some cobordism classes
(5.3) Qiji € Magi+ j+k-1y(MSP).

We shall consider the Pontrjagin numbers P, ;. x_ [a;4] and P1Piyjii_s
[aijk]-

Consider the classes x;=q¥P,({)e HY(Y) (i=1,2,3) where Y=HP*x
HP®x HP®, Then H*(Y)=Z[x,, x5, x3], and we have the following lemma,
where P4i e H*(BSp) denotes the primitive class defined inductively by P4i=
T (= 1)FIPPA-i (= 1)i*1iP, and C(r, s, 1) denotes (r+s+1)!/ris!t!:

LEMMA 5.4. For the induced homomorphism ¢*: H¥(BSp)->H*(Y) of
¢ in (5.1),
(b*(PA‘) =4 Zk+l+m=i C(zk’ 21, 2’”)x'{x’2x’3"'

PrROOF. Let ¢;e H2(BU) be the i-th Chern class, and c¢4te H?(BU) be
the primitive class defined inductively by c4:=3 iz} (—1)/*ic;cdi-1+(—1)*ic,
Then, for the canonical map ¢: BSp—BU, it holds c*(c42¢)=2P4: by the de-
finitions of P4 and ¢4/. Hence, by the definition of ¢,

2¢*(P41) = 2P4(%) = ¢ ® £ ® &) in HH(Y).

Let n be the canonical complex line bundle over CP®, and # be the conjugate
bundle of #. Then n®7 is a symplectic line bundle over CP*, and we denote its
classifying map by gq: CP*->HP®. Set Z=CP*xCP*»x CP*., Then H*(Z)=
Z1y1, 2 ¥3), where y,=q¥c,(m)e HY(Z)(i=1, 2, 3) for the projection q;: Z—
CP* onto the i-th factor. For the homomorphism (g x ¢ x q)*: H¥(Y)— H*(Z),
we see that

(g% gxg)*(c?*((® £ ® &) = c*2(((nDif) ® (D7) ® (nD7))
=2+ 2y )+ 4y =) + (= ya )P+ (= v ya)*
=8 Zk+l+m=i C(Zk’ 21’ 2m)y%ky%ly§m,
by using the equality (3, {)=2:(ci({))  for line. bundles {,. Since

(q X g x g)* is monomorphic and (g X g x g)*(x,)=yz for k=1, 2, 3, we have the
desired result by the above equalities. g.e.d.
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Now, for E=H or MSp, let p%eE,(HP®) be the dual class of (P§(£))/
where P§(&) is the Euler class of £ Then the following holds (cf. [8], [15;
§ 16]):

(5.5) E (HP®)is a free ny(E)-module with basis {f%|j=0}, and
E MSp)=n(E)[bf, b,...], b} = ixBf+1 € E4(MSp),
where i: HP®—X*MSp is the natural inclusion.

Let (b) € H,(MSp) denote the 4l-dimensional component of bk=(1+b,+
by+--), ie.,

(5.6) (14byx+byx2+4 )k =354 (b)ix!, where b;=b¥ in (5.5),
and let H: n,(MSp)— H,.(MSp) be the Hurewicz homomorphism.
PROPOSITION 5.7. For any non negative integers r,s,t with r+s+t21,
X H (a;) (D)i-Ab)- (b)k—y = 4C(2r, 25, 200D, 4441
where the summation is taken over all i, j, k=0 with iZr, j<s, k<1,

Proor. Consider the commutative diagram

MSp*(BSp) s (H A MSp)*(BSp) = H,(MSp) ® H*(BSp)
b p i@
MSp*(Y) — ", (H A MSp)*(Y) = H,(MSp) ® H*(Y),
where & denotes the Boardman homomorphism. Then we have
(5.8) (1@ ¢*)(P}Isr) = hop*(PYs?).
The following relation holds (cf. [1], [8; (5.1)]):
(5.9) h(P}sey = 3y b (P4,
where P4 is the primitive class in Lemma 5.4. By (5.9) and Lemma 5.4,
(1@*)R(PY5?) =4,y p4smizs C(2r, 25, 20b;_ 1 X]x5x5.
On the other hand, by (5.9) and (5.6),
RXD) = (Ziz1 bi- X)) = Tz () x5
By (5.2) and this equality, we have
ho*(PYSP) = T ptcvizn (ZH (@) (BB (b)E- )xTx5xs.
Therefore, we have the proposition by (5.8). q.e.d.
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For any class u € n,,(MSp), its Hurewicz image H(u) can be written as
Hw) = X 4,,,,,. bi'by*---e H{(MSp) = Z[b,, b,...].

For our purpose, we denote simply the coefficient 7, of b} by (u) (n=1) and
An-2,1 Of B772b, by (ud> (n22).
Then we have

(5.10) P,u] = (), P,P,_,[u] = <ud> + n(u) for n=1.

These formulas can be proved by the same proof as that for MU given in [1;
pp. 10-11], [15; pp. 401-402].

By comparing the coefficients of bj*s*t~! or bj*s*t~3p, in the both sides
of the equality in Proposition 5.7, and by the above notations ( ) and ¢ >, we
have the following

LemMaA 5.11. Forr,s, t =0, the following hold, where summations are taken
over i, j, k=0 with i<r, j<s, kL1,

O = @o(,5) (] )(tfk)=[4C(2r’ 2,20 Y rsisd,

0 =L)AL
+f<rii>(s£;iz>(sz> + k(,ii)(sij)(,f;_lz))}

4C(Q2r, 2s, 21) if r+s+t1=3,
B [ 0 otherwise.
ProrosiTION 5.12. (i) For i, j=1,
8 mod16 if i and j are powers of 2,
(aij0) = [

0 mod16 otherwise.
(i) Fori,j, k=1, (a;3)=0 and
8 mod16 if i, j, k are powers of 2,
i = [ 0 mod 16 otherwise.

We shall prove Proposition 5.12 by preparing the following two lemmas:

LEMMA 5.13. (1) (a,-jk)=0 lf‘l, j, kgl.

o (L)L)

otherwise,
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for r,s,t=1, where the summation is taken over all i,j, k=1 with i<r, j<s,
k.

ProOF. (i) By Lemma 5.11 (i), 3 (aijk)(r’_i> (SJ_ j> ( K k):o for any r,
s, t=1, where the summation is taken over all i, j, k=1 with i<r, j<s, kZt.
Therefore we see (i) by the induction on i+j+k.

(i) (i) and Lemma 5.11 (ii) imply (ii). q.e.d.

LemMA 5.14. (i) <a;u> is a multiple of {a,,,>=360 for any i, j, k=1.
(ii) <a;py=<ayjpy for any permutation (i',j', k') of (i, j, k).

Gi) X7, <a,.s,>(rii>=o forrz2ands, t21.

(iv) Set m;y=<{a;;3>[360. Then m,,=n Mg 1My, forr,s, t21.

W i ={o moas whermise

PrRoOOF. By Lemma 5.13 (ii), we can prove (i) and (ii) by the induction on
i+j+k, and (iii) by the induction on s+t. We can prove (iv) inductively on
r+s+t by using (iii) and (ii), and (v) inductively on r by using (iii) and the fact

that (_2'.,) for r>2i is odd if and only if r=2%1, g.e.d.
r—=2

PRrROOF OF PROPOSITION 5.12. (i1) The first equality is proved in Lemma
5.13 (i). The second equality is an immediate consequence of Lemma 5.14

@iv), (v).
(i) By Lemma 5.11 (1), we see that for r, s=>1,

Zlg.-é,,lé,.gs((,UO)Cii)(sij)={24 if r=s=1

0 otherwise.

By using this equality instead of Lemma 5.13 (ii), we can prove (i) by the same
way as the above proof of the second equality in (ii). q.e.d.

Now we consider another example of symplectic cobordism classes defined
by R. E. Stong [14] and N. Ray [9]. We follow the methods due to N. Ray.

The complex projective space CP?i~! is a weakly almost symplectic manifold
(see [14]), and so is the product [ 122, CP?"~t, Consider the composition

f:TIz, cpmmt L, (CP®)> ™, cP* 4, HP™,

where j and g are canonical maps and m is the classifying map of the tensor
product of 2r copies of the canonical complex line bundle  over CP®. Then
we have a bordism class

[T1%, CP*™~1, f1e MSpy(y-n(HP®)
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for n=>72,n, By (5.4), we have an expansion

(T2, CP?7 1, f1 = 3yso ax(ny,..., ny)BRSP

for some classes

(5.15) ay(Myyeees N2y) € My(n—p—1(MSp) (n=X¥En,nmz1).

=

By the result of N. Ray [9; (3.1), (3.2)] for the computation of the Hurewicz
image of these classes a,(n,,..., n,,), we have the following proposition, where

C(jl"",.;l)=(2£=1.]-.i)!/l—ﬂ=1 (j;)'

PROPOSITION 5.16.  For the Hurewicz homomorphism H: ny,_,_,,(MSp)—
H 4o r-y(MSp), it holds

H(alny,..., ny) = X2 C(il,---,jzr)(b)},"'"‘(b);;f'(b)ﬁ—r—k-j,
where n=32, n,, j=%2, j, ji=2n;—j)—1 and the summation is taken over
all j,;20.
We notice that the coefficients of b} and bi~2b, in the 4/-dimensional com-

ponent of (b)™™ are (— 1),<mn—1|~_l—1 1> and (— 1)"1(1—1)('""':_1_1 2) respectively.

Therefore, by comparing the coefficients of bj~"* and b?~r"%2b, in the both
sides of the above equality, and by using the notations ( ) and { > in (5.10), we
see the following

LeMMA 5.17. The following (i) and (ii) hold, where n=Y%t, n;, j=3%,j,
ji=2(m;—j)—1, m=n—r—k—j and the summations are taken over j;=0 with
Jism—1 (1Sig2r):

(D @15 12)) = (= 1) e o) T (MY,
(i) <da(ny,..., ny,)y is equal to
S~ C s Fad tm=1(, % ) = (§) =22, G- i

(ni+j,— D} T, (n,- tji 1> .
ni'—l
When k=1, we have the following
PROPOSITION 5.18. (i) P,_,_i[ai(nq,e.., i )I(n=X%, n;=r+2) is equal to

Zni—Z
ni—l

(— @0 T

) if r=landn;,n, =22, or r=2,

0 otherwise.
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(@) PiPyesla(n, 1)]=(= 1= D)(3TF)  =men)
if"l,nzgz-

Proor. (i) The equality in Lemma 5.17 (i) for k=1 is

(al(nl,..., 712,))= Z(_l)jc(jla ’Jlr) r <ni+jirl>’

n;—

where the summation is taken over j;=20 (1<i<2r) with j,<n;—1 and j=n—r-—1,
n—-r—2. Therefore the left hand side is 0 if =3, because j=n—2r.

Letr=1. Ifn,, n,=2, then the summation in the above equality is taken over
(j1,j2)=(n,—1, ny—1),(n,—1, n,=2) and (n,—2, n,—1), and then C(j,, j,)=
2, 4 and 4 respectively. Hence we have

- 2n—=2\/2n,—2
@0, m)) = (=D)=2 (P (22 for oy m22,

If n,=1, then n,=2 and the summation is taken over (j,,j,)=(0, n,—1) and
(0,n,—2). Hence we see that (a(1, n,))=0. (a,(ny, 1))=0 holds similarly.
Thus we have the desired equality for P,_,[a,(n,, n,)] by (5.10).

For the case r=2, the summation in the first equality is taken over j;=
n,—1 (1<i<4) only, and then C(j,,...,j,)=24. Thus we have the desired
equality for P,_s[a,(n,, n;, ns, ny)].

(i) By the equality in Lemma 5.17 (ii), and by a similar argument to (i),
we see that

@ m)y = (=0T if mmz2

n,—1

By (5.10), P, P,_i[a,(n,, n;)]=<a,(ny, n,)>+(n—2)(a,(n,, n,)) forn=3. Hence
we have (ii) by the above equalities for {a,(n,, n,)> and (a,(n,, n,)). q.e.d.

COROLLARY 5.19. P,_._,[a(n,,..., n,,)] (n—r=2) is congruent to
8 modl16 if r=1andn,—1,n,—1 are powers of 2, or
r=2andn, =ny=ny=ng=1,
0 mod16 otherwise.

Proor. It is sufficient to prove the corollary for the first two cases in Pro-
position 5.18 (i). We notice that vz(("’:))=a(n)+a(m—n)—a(m) (cf. [10;

(6)1), where a(y) is the number of I’s in the dyadic expansion of y. Thus, by
Proposition 5.18 (i), we have

vo(IPy—zlay(ny, )N =1+ a(n,—1) + a(n,—1) if ny,n, =2,
vao(|P,-slay(ny, ny, ny, n)I) =3+ b a(n—1).
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Hence v,(|P,_,[a,(n,, n,)]}) is at least 3, and is 3 if and only if n; —1 and n,—1
are powers of 2. Also v,(|P,-sla,(ny, ny, n3, n)])) is 3 if and only if m=1
(1£i£4). Thus we have the corollary. q.e.d.

REMARK 5.20. In addition to Proposition 5.18, we can prove the following
equalities by (5.10), Lemma 5.17 and routine computations:

. 2n.—2
@ PiPrpalay(ruse, )] = ATHL (2077) (1= Siamzr+2),

where A=(—1)**'(n—5) if r=1 and n,, n,22, =(—1)"12(n—41-2) if r=2
(I is the number of i’s with n;>2), =(—1)"720 if r=3, =0 otherwise.
, .,
(@) Poslag(n, 1] = (—D™1242=7(n-3)/@n, —3) @~ D21 77)

% (2”2_‘2> (n=n1+n2) ifnl, n223'
nz_l

Now we can prove the following theorem which is Theorem II (i):
THEOREM 5.21. mg,,(MSp(n)) (n=3) has no p-torsion for any odd prime p.
Proor. Let Q,={l/m|(m, p)=1}=Q. Tensoring Q, to (4.1) for i=
4n+4 (n=2), we have the exact sequence '
Tans 4 (MSP) ® 0,220 0, ® Q) — 75, 5s(MSp()) © 0, — O,

since g, 3(F,)®0,=0,®Q, (n=2) by Proposition 3.5 (i) and 74, 3(MSp) is a
2-torsion group. Therefore it is sufficient to show that

(5.22) 0®1: My sMSP)R®Q,— @, D Q, is epimorphic for n = 3.

Set y,=a,(1,1,1, 1), y,=a,(2, i) 2<i<6) and z=a,(3, 3). Then, by using
Proposition 4.2, the equalities

(5.23) Py i[uv] = PulP[v],
. PPy y[uv] = PPy [ulP[v] + P [ulP,P,_[v]

for u € ny (MSp), vem,(MSp)(k, 1= 1) and Proposition 5.18, we see the following
equalities for k=0, where (a, b)=au(3)+ bv(3)+a torsion element:

a(y1y2k+1) — ((_ 1)k+18k . 4.(3k+5)’ (_ 1)k+18k+1 . 3)’
o(y5+?) = ((—1)*8%-4.(k+3), (—1)*8+*1),
o(sz) = (—1)F*18571-4-9-(k+2), (—1)*18.9),

o) = ((—vrm2-8- e+ 2)(F7), (~pemas(307)) G23),
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where ("l:"_‘12>=6ifi=3, —4.5if i=d, =2.5.7if i=5, =4.32.7if i=6.
Therefore, for ®1 in (5.21), we have the following equalities:
When n=2k—1 with k=2 and p#5,

(- Do ® 1{(1/8*72-4)y5 + (1/8*=2-5)y5~2y,} = (1, 0),
(=110 ® H{(k/81)yk + (k+1)/8%72-2-5)y572y,} = (0, 1);
when n=2k—1 with k>3 and p=S5,
(=1)%0 @ 1{(1/8*1)y5 — (1/8*73-2-7-9)y5 3y} = (1, 0),
(= 1410 ® 1{((k—1)/81-2)y% — ((k+1)/8+~3-4-7-9)y5=ys} = (0, 1);
when n=3 and p=35,
0 1{(1/Hy3+ 29z} =(1,0), 0@ 1{—-(1/4)y3—(1/3)z} = (0, 1);
when n=2k with k=2,
(=110 @ H{(1/8*1- )y, y5 + (1/872-4)y5 1 y3} = (1, 0),
(=10 ® H{((k+36)/8 )y, ¥4 + (k+24)/81)y5~ ys — (1/872)y5 2y} = (0, 1).
These equalities imply (5.22), and we have the desired result. q.e.d.
Now we prove Theorems 4.6 and 4.7.
Proor oF THEOREM 4.6. (i) In the above proof, we have seen that
Pyla,(2,2) ] = (=8)!(i21), Py+1[ay(2,2)"1ay(2, 3)] = (—1)'713-8i(iz1),
Pyiv[a,(2, 2)2a,(2, 5)] = (—1)!35. 8¢ 1(i=2).

Therefore the definition (4.3) of m(n) implies that m(2i)(i=1) is a power of 2 by
the first equality, and so is m(2i+ 1)(i=2) by the last two ones. m(1)=m(3)=3
follows from the result of [7], [6] on =,(MSp) and 7,,(MSp).

(i) The desired result for n=2%+4+2'—~1 (resp. 2¥+2!) follows immediately
from (i) and the fact that P [a,x,10] (resp. P,[a (2% +1, 2! +1)]) is not a multiple
of 16 by (5.10) and Proposition 5.12 (i) (resp. Corollary 5.19). qg.e.d.

REMARK 5.24. Let n#1,3. Then by Theorem 4.6 (ii), m(n)=1 if a(n)<2
or a(n+1)<2 («(t) is the number of I’s in the dyadic expansion of #). In general,
the exponent v,(m(n)) of m(n)=2v2("(») can be estimated by the inequality

Po(2n)—3 < vy(m(n)) < min {a(n), a(n+1)} -2 if a(n), e(n+1) = 3,

where po(2n)=min {r|2(2n+r)<2r} is the number given in [11; Th. A]. But
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this inequality does not determine v,(im(n)), since py(2n)<min {x(n), x(n+ 1)}
there.

In fact, the first inequality is seen by (x) in the proof of Corollary 4.5. We
note that for any ¢ with a(t)=2, a(f)<a(t,)+a(t,) if t=1,+¢, and there are
ty, t =1 with t=t, +t, and a(t)=a(t,) +a(t,). Thus we see the second inequality
by (*) in the proof of Corollary 4.5 and by the equality v,(|P,[a,(t,, t;)])=1+
ot +alty) (¢, +t,=n+1;t,,t,=2) for odd n, which follows from Remark 5.20
(ii). The last inequality is seen easily.

ProOF OF THEOREM 4.7. (i) By Proposition 3.5 (i) and Remark 3.7, n(F,)
has no p-torsion for i<8n+3if n=2and for i<9ifn=1. Furthermore 7, (MSp)
has no p-torsion. Thus (i) holds for i#8n—1, 81— 3 by the exact sequence (4.1).
For i=8n—1, (i) follows from Corollary 4.4. For i=8n+3, (i) is proved in
Theorem 5.21.

(ii) If n=1, then n,(MSp)=0 by [7], and (ii) is trivial. If n=2, then
Tgn+2(F,)=0 by Proposition 3.5 (i). Thus (ii) follows from the exact sequence
“.1).

(iii) Consider the exact sequence (4.1) for i=4n+4 and n=2¢r4+21—1
with k, I=>1:

Tansa(MSP) -2 Z®Z — s 1, (MSp(n)) £2%, 7y, (MSp) — 0,

where we identify ng,., 1(F,) with Z®Z by Proposition 3.5 (i). By Propositions
4.2 (i), 5.12 (ii) and Corollary 5.19, we have

azra1) =(x,0) and 0(a,2%+1, 2'+1)) = (x', y)

for some integer x' and some odd integers x and y. These imply that Coker 0
is a finite group and has no 2-torsion. By Theorem 5.21, Coker d has no p-
torsion for any odd prime p, hence Coker =0, and b, is isomorphic. q.e.d.
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