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Introduction

The dihedral group D, (n=3) of symmetries of the n-sided regular polygon
is generated by two elements a and b with relations a®"=b?=abab=1. Consi-
der the unit spheres S2"*! and S* in the complex (m + 1)-space and the real (I+1)-
space. Then D, operates freely on the product space S2m+!x S by

a‘(z, X) = (Z exp (27'5\/——1/'1), X), b'(Z, x) = (tZ, —x)a
where ¢ is the conjugation, and the orbit manifold
D(m, I;n) = (S?™1 x 89D, = (L"(n) x §) | Z,

is defined, where L™(n)=S?m*1/Z_ is the standard lens space. The bordism group
of D, is studied by considering this manifold in [9].

The purpose of this note is to study the complex K-ring K(D(m, I; n)) (im>0,
1>0) for odd n.

Let

v,ae R(D(m,1;n)) and  ye K(D(m,2l;n)

be the elements defined as follows: v+1 is the induced bundle of the canonical
complex line bundle over the real projective space RP(I) by the natural projection
D(m,l;n)-»S'Z,=RP(l). «+v+2 is the associated complex 2-plane bundle
of the principal U(2)-bundle induced from the principal D,-bundle S2"+! x S'—
D(m, I; n) by the natural inclusion D,c 0(2)c U(2). 7y is the image of c®g' by
the induced homomorphism of the projection

D(m, 215 m) = D(m, 21; n)/D(m, 21— 1; n) ——> (L7(n) x S2Y)[(L™(n) X ),

where o K(L™(n)) is the stable class of the canonical complex line bundle over
L™(n), and g'e K(S2")=2Z is the canonical generator.
Denote the natural inclusions by

i: L™(n) c D(m, 1; n), k: RP(l) c D(m, I; n).
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Also, consider the 2m-skeleton L%(n) of the cell complex L™(n)=\UZ%'C,
and set

Do(m, I;n) = (LE(n)x SH/Z, < D(m, I; n).
Denote the projection and the homeomorphism by

D(m, I; n)—>> D(m, I; n)|Do(m, I; m)— S™ A (RP(m+ 1+ 1) RP(m)),

where the last term is the suspension of the stunted real projective space.
By these notations, our result (Theorem 3.9) is stated by

THEOREM. Assume that n is odd, m>0 and 1>0. Then we have the
direct sum decomposition

Zyta+ if mis even,
R(D(m, 1; n)) =Apn 1 ®B,,  DZyuD Z if m and 1 are odd,

0 otherwise,

where A,, P B,,  is the odd component and the summands are given as follows:
(i) A, is the subring generated by o, and is isomorphic to the image of

the complexification c: Kf\é(L"'(n))—J?(L"’(n)) by the induced homomorphism i'.

(i) B, 21+1=0 and B, ,, is the ideal generated by y which satisfies
y2=0, and the subgroup A, ,/®B, ;, is isomorphic to R(Lm(n)).

(iii) The third cyclic summand Z 112 is generated by v, and is isomor-
phic to R(RP(D)) by the induced homomorphism k'.

(iv) The rest is the image of K(S™ A RP(m+1+41)/RP(m))) by the induced
homomorphism g4 f', which is monomorphic. Its generator v, satisfies
v2=0 and w,,=—2V3,, Wiy, =0.

The partial result for odd m, I and odd prime n is obtained in [8].

In §1, we prepare some preliminary results on the cell structures and the
integral cohomology groups of D(m,l;n), Dyo(m,l;n), and on the homeomor-
phisms h, f and the double covering n: L"(n)x S'>D(m, l;n). In §2, we are
concerned with (iii), and notice that the order of K(Dy(m, I; n)/RP(D)) is a divisor
of nlm/2] or nm-according as I is odd or even. Also, we consider the above
elements « and 7y, and study their images by i' and #'. Using these results and the
known results for K(L™(n)), we study A4,,, of (i) by i' and B,, ,, of (ii) by ', and
prove the theorem by the exact sequence of (D(m, I; n), Do(m, I; n), RP(I)) in §3.
Finally, we are concerned with the special case that » is an odd prime p (Corollary
3.14), using the known results for K(L"(p)) in [10].
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§1. Preliminaries

The dihedral group D, (n=3) of order 2n is the subgroup of the orthogonal
group O(2) generated by

cos(2n/n) sin (27t/n) 0_1
a= and b=
<—sin(2n/n) cos (2n/n) > < 1 0 >

with relations a®=b%?=abab=1. These elements a and b generate the cyclic
subgroups Z, and Z, of order »n and 2, respectively, and D, is a split extension of
Z, by Z,. ,

Let S2m*1 and S* be the unit spheres in the complex (m+1)-space C*! and
real (I+1)-space R!*!, respectively. Then D, operates freely on the product
space S2m+1x §! by

a(z, x) =(z exp(2n/=1/n), x), b(z, x) =(tz, x)

for (z, x)eS2m*1 x S*, where tz is the conjugation of z and tx= —x is the anti-
- podal point of x. In this note, we study the orbit manifold

D(m,l;n) =(S*"*1 x SYH/D,,.
Since Z, operates trivially on the second factor S%, we have
(1.1) D(m, l; n) = (L"(n) x SH/Z,,

where L™(n)=S2?"*1/Z is the standard lens space mod n, and the action of Z,
is given by b-([z], x)=([¢z], 7x). Therefore, we have the fibering

(1.2) _ L™(n)—— D(m, I; n) -2 RP(]),

where RP(I)=S!/Z, is the real I-dimensional projective space, i is the inclusion
and p is the projection. Also, we have the double covering

(1.3) n: L™(n) x S'——>D(m, 1; n).
The lens space L™(n) has the cell decomposition
L"(n) =COUC'Y---UC* U C?m¥l,  9(C?*+1)=0, J(C?*)=nC? 1,

which is invariant under the conjugation f. Also, S* has the cell decomposition
{D{|0<j<I} such that Si=DJuDi>DinDi=S8i"1, and
Lemna 1.4.[9, p. 338] D(m, I; n) is the cell complex with the cells defined
by
(Ci, Diy=n(C'x D)  for 0Zi<2m+1, 0Zj<l,
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which have the boundary relations
8(C*1, Di) = ((= D!+ (=1)I*1) (€21, DI,
0(C¥, DJ) = n(C*1, D)) +((-=1)' +(=1)I)(C*, DiH).
We consider the 2m-skeleton
(1.5) mn)=CoUCty-.-yC
of L™(n) of the above, and the subcomplex
(1.6) Do(m, I; n) = (L3(n) x SY/Z, < D(m, I; n)
with cells {(C}, D})|0<i<2m, 0< j<I}, and we consider naturally
D(i, j; n) € Dy(m,j; n) < D(n, 1; n) for i<m, j<I,
by Li(myc L(m)c L(n) and S/cS. Tt is clear that '
LeMMA. 1.7. Dy, 1; n)=RP(l), and the inclusion
k: RP(ly——D(m,l; n)
is a right inverse of p in (1.2).
By the cell structure of Lemma 1.4, the subcomplex
Xi,;=Do(i—1,1;n)UD, j;n) ism, j<)
of Dy(m, l;n) has the following cell structure:
X ;=X j-2U(C*-1, DI~y y(C?, Di~t)y(C?*-1, Di)u(C?, DY)
for j=1 and even i+j, with the bounday relations
0(C%, D) = n(C?i-1, Di)~2¢(C?, Di1),
0(C?*-1, DJ) =2¢(C?1, Di~l),  9(C?*, Di~1) =pn(C?1, DI-1),
o(C* L, DIty =0, . (e=£1);

X,

LiT

X;, ;-1 U(C*-t, Diyy(C?, DY)
for j=0and even i or j=/ and odd i +/, with the boundary relations
0(C*, Dy =n(C?-1, DJ), 0(C*-1, Di)=0.

Therefore, it is easy to see that the reduced integral cohomology groups H* are

fi*(x, )= *(X;;-,) for j=1,eveni+j and odd n;
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_ _ Z, ifk=2i+j
Hk(Xi,j> = Hk(Xi,j—l)(‘D
0 otherwise
for j=0andevenior j=/and oddi+/. Also, we have
D(m, 1;n) = Do(m, I; n) U \J}=o(C*™*1, DY),

o(C3m+1 DIy =+2(C?*1 DI-1) if j=1 and m+j is odd, =0 otherwise.
Using these facts, we have easily :

LemMA. 1.8. Assume that n is odd.
_ (Z,)* fo<ig2m+1,
) H(Do(m, I; n), RP()) =
0 otherwise,
where (Z,)® means the direct sum of a copies of Z,,, and
0sa; =1, Xa;=2a,_-,1=[m2] if lis odd,
0<a;<2, ay;_-1=0, 2 a;=m if 1 is even.
(i) H2(D@m+1,21+1;n), RPQI+1)=Z if 2i =4m+2144,
= H2(Do(2m+1, 21+1; n), RP(21+1)) if 2i #4m+21+4.
The projection = of (1.3) defines naturally the homeomorphism
(1.9 h: D(m, I; m)[D(n, I—=1;n) «Z—(L"(n) x D})[(L"(n) x S*~1)
= (L™(n) x S/ (L™(n) x ).
We consider the diagram
LxS=L"(n)xS* =, D(m,2l;n)—% D(m,2l;n)[D(m,2]—1;n)

(1.10) [ =
X=(Lx8S)/(Lxx) -£5 XVX 4 XvX L X

where 7, g and ¢, are the projections, I is the one of (1.9),
p: LxS)/(Lx+)—(Lx(SVI))/(Lx*x)=XVX

is the map induced from id X p: Lx S—L x (S V S) of the comultiplication p: S—
S§/S21-1=8v S, and v is the folding map.

LemMA. 1.11, There exists such a homeomorphism J that the diagram
(1.10) is commutative and 2=id V(t x t,), where txz, is the induced map of

txty: L"(n) x §2'— L™(n) x §?!
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(t is the conjugation) and the degree of 7, is equal to —1.
Proor. Consider the commutative diagram

LxS %2, (LxS)[(LxS)=Y, vY_ idvtxd,y vy, _Y,y,

l‘h : l¢+v¢- l¢+V¢+ J'¢+

X LIS Xvy devbxa), yyxy_v, X,

where SO D, =D3ID8'=8%"1,Y,=(LxD,)/(LxS"), and the maps are as
follows: q,, ¢, are projections, and ¢., tx 1, t X 7, are the maps induced from

idxegi:LxDy—>LxS, txt:LxD_—-LxD,, txt:LxS->LxS,

respectively, where ¢, is the restriction of the relative homeomorphism ¢, :
(S, Dz)—(S, #) of degree 1, t is the conjugation, t is the antipodal map and 1,
=¢,Tp-1.
Then we have the lemma, since ¢,V (id V (¢ X 1))q, =hgn by the definition
of h of (1.9) and the degree of 7, =¢, 19! is (—1)2"*1=—1.
q.e.d.
We have also the following

LEMMA 1.12. There is a homeomorphism
fr D(m, 1; n)[Do(m, l; n) = (S"™ x RP(m+141))/(x x RP(m -+ 1+ 1) U S™ x RP(m))
= S" A(RP(m+1+ 1)/ RP(m)),
where the last term is the suspension of the stunted real projective space.

Proor. Consider the relative homeomorphisms and homeomorphisms

o: (D31 S§2my_ (Lm(n), L%(n)), Dmem+1%>D2m+1 «:—*Di"‘“,
g: (D™ x !, 8™ x §1)— (SmHi+1, §m),
defined as follows: D3m*! is the upper hemi-sphere of S2™+! and
@(Zosres Zm—1> ¥ EXP(AS /= 1)) =[Z0y-ees Zp— 1, ¥ €xp(2ns/—1/n)1;
D7 is the unit disc in R? and p is the projection;
O(u, v) = max(ful, [v])(u]?+[0]2) Y2y, Ugseees Ups Vs Vs 1)
where u=(uy, ..., U,), V=04, +evs Up> Upys1); and
g9(v, x) = (v, (1 —[0]?)!/2x).

Then, it is easy to see that the homeomorphism
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f: (Lm(n) XS’)/(L'(')'(”) XSI) ~ (DmxSm+l+1)/(Sm—1 xSm+l+1 UDmxsm)
~ (Sm XSm+l+1)/(* XSm+l+1 USm X Sm)

is obtained by the composition (id x g)}((6~'p,¢~1)xid), and f is equivariant
with respect to the Z,-actions, where Z, acts on L™(n)x S' by (1.1) and on D™
x S"HHL by be(u, y)=(u, —y). Therefore f induces the desired homeomorphism

£ ‘ g.e.d.
Finally, we consider the diagram

D(m,l;n)—%> D(m,1;n)x D(m,!;n) Sdoxp, ((SxRP)]Z)xRP(])
(1.13) lqo idxidxig
S idx
D(m,1;n)|Do(m,l;n)—> (SXRP)| Z—%5(Sx RPx RP)[(Z x RP)
where S=S", RP=RP(m+1+1), Z=+x RPUS x RP(in), and g, is the projec-
tion, f is the homeomorphism of the above lemma, d means the diagonal map,

p is the projection in (1.2) and iy: RP(I)> RP is the inclusion given by iy[x]=
[0, x].

LeEmMMA 1.14. The diagram (1.13) is homotopy commutative.
Proor. For the map g of the above proof, the diagram

Dl x §E_4, pmtl x Sl pmtl i §LEXP gmtl+l o gl

; o

Sm+i+1 N N SmHIHL 5 gmtltt

(p is the projection and i, is the inclusion given by ig(x)=(0, x)) is homotopy
commutative by the homotopy H, given by

Hs(v’ X) = (g(v, X), (SU, (1 _15012)1/2x))_
Since H(S™x SHcSmx Sm**1 and H(—v, —x)=—H(v, x), we see easily by
the above proof that H, induces the desired homotopy of (1.13). q.e.d.
REMARK 1.15. The orthogonal group O(2) acts freely on S2m+1x S? by

< cos @ sinf 01

>-(z, x) =(z exp(0/ 1), x), < >-(z, x) ={(tz, tx).

—sin 0 cosf Lo
Therefore, there is the natural projection
p': D(m, I; n)—(S2™+1 x SH/0(2) =D(m, 1)

to the Dold manifold D(m, ). The homeomorphisms i1 of (1.9) and f of Lemma
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1.12 are analogous to those for the Dold manifold of [7, Prop. 2], and Lemma
1.14 is similar to [7, Lemma 1].

§2. Some elements of K (D(m, [;n)) for odd n

In the rest of this note, we assume that n is odd, and study the complex
K-group of the manifold D(m,I;n) (m>0, I>0) of (1.1).

Let K(X) be the K-ring of the complex vector bundles over a finite CW-
complex X, and K(X) be the reduced K-ring. It is well known that a map f: X —
Y induces naturally the ring homomorphisms

11 K(N)—K(X), f': R(Y)—RK(X)
and the Puppe exact sequence
R(x)L=R(¥)—R(Cp)—R'(X)L=R'(¥)

where C; is the mapping cone of f and K!(X)=K-1(X)=K(S!AX). Also,
there is the Atiyah-Hirzebruch spectral sequence {EP4} for K(X), such that
EBa=Hr(X; K1(x))(K?i(+)=Z, K?"1(x) =0) and EZ? is the graded group
associated to K#+9(X)=K(SP*1 A X) (cf. [4, §2]).

Consider the induced homomorphisms
2.1 R(RP(1)-25 R(D(m, ;1)) =5 R(Do(m, ;)
of p in (1.2) and the inclusion j of (1.6). It is proved in [1, Th. 7.3] that

2.2) R(RPW) = Z,u2 is generated by v,

and v is the stable class of the complexification of the canonical real line bundle
over RP(l). Define

@.3) v=p've R(D(m,I;n)), v=j've R(Dym,I;n)).
Then, by Lemma 1.7 and (2.2), we have immediately

ProOPOSITION 2.4. There is the commutative diagram

0—> R(D(m, I;n)|RP(I)) —> R(D(m,1;n)) -5 R(RP(I))—>0

it !

0~ R(Do(m, I;m)| RP(1))— R(Do(m, I; )2 R(RP(1)—0

of the split exact sequences, where j, k are the inclusions. The subrings of
R(D(m, 1;n) and K(Dy(m,1;n)) generated by v of (2.3) are Zjuy2 mapped
isomorphically onto K(RP(l)) by k', and they are isomorphic by j'.
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«
The following lemma is proved easily by using the Atiyah-Hirzebruch spectral
sequence and Lemma 1.8, where £G means the number of elements of G.

LEmMMA 2.5. (i) #Ki(Do(m, I; n)/RP(D) (i=0, 1) is a divisor of nt™21 or
n™ according as 1 is odd or even.

(ii) #(the torsion part of K(D(2m+-1,21+1;n)[RPQ21+1))) is a divisor of
n".

Now, we consider the (unitary) representation ring R(D,) of D,. It is well
known that D, (n: odd) has two representations 1 and y, of degree 1 and (n—1)/2
representations y; (1<i<(n—1)/2) of degree 2, which are given by

xo(@) =1, xo(b) =—1;
2.6) exp (2ni/—1/n) 0 01
Xi(a) = ’ Xl(b) = ’
0 exp(—2ni/—1/n) 10
(cf. [5, p. 339]). We notice that the following is proved easily.
(2.7) The inclusion D,cO0(2)cU(2) is equivalent to y; in R(D,).
ReMmARk 2.8. It is easy to see that the multiplication is given by
XoXo =1, XoXi =X Xiki=XautXotl, XiXy=Ii+itXi-j

fori=1, j=1and i+ j, where x_;=y,~;=yx. Therefore, we see that the reduced
representation ring R(D,) is generated by yo—1 and x; —xo—1.
Consider the inclusions

Z,—D,*2Z,
and the representations y, y’ of Z,, Z, defined by
x@) =expQuy/=1fn), 7(b)=—1,
respectively. Then, for the induced homomorphisms
@9 R(Z.)<"~R(D)~">R(Zy)
of the above inclusions, we have the following by definition.

LEMMA 2.10. i*yo =1, i*y, =x+tx, K*po=y, k¥, =y +1,
where t is the conjugation.

In general, a principal G-bundle

X—X/G
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defines the natural ring homomorphisms
&: R(G)— K(X/G), &: R(G)— R(X/G)

(R(G) is the reduced representation ring) as follows (cf. [4, §4.5]): For a re-
presentation « of G of degree n, &(w) is the associated complex n-plane bundle
of the principal U(n)-bundle induced from the given principal G-bundle X— X/G
by the group homomorphism w: G- U(n).

Taking the principal D,, Z,, Z,-bundles

S2mt+1 S’—»D(m, l;n), SZm+1 xsl_,Lm(n) X Sl, S2m+l_,Lm(n)’
we have the commutative diagram

@2.11) l“ 1“ l‘
R(L(m)) =R (L"(n) x §) == R (D(m, 15 m)
by the naturality of £, where i* is the one in (2.9), i: L™(n)c L™(n) x S* and = is

the projection of (1.3). Therefore, we have the following commutative diagram,
by taking also the principal Z,-bundle S'—RP(]):

i*

Rz,) <~ Rw) 5 Kz
(2.12) l“ F l“
R{Lm(m)) =R (D(m, 15 m)) -+ R(RP()),
where the upper homomorphisms are the reduced ones of (2.9), i is the inclusion
of (1.2) and k' is the one in Proposition 2.4.
Now, we consider the elements

(2.13) a=&u—x—1)€ RO, ;n), a=jaec RDo(m,I;n),
where x, and y, are the ones of (2.6) and j' is in (2.1). Let
(2.149) o € K(L™(n))

be the stable class of the canonical complex line bundle over L™(n) whose first
Chern class is the generator of H2(L™(n))=Z,.

LeMMA 2.15. For the lower homomorphisms of (2.12), we have i'a=
o+to (t: K- K is the conjugation), k'a=0.

ProoF. The desired results follow from the commutativity of (2.12), Lemma
2.10 and the equality &(x)=0+1 which is proved easily by definition (cf. [3, §2
and Appendix (3)]). q.ed.
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The equality &(y')=v+ 1< K(RP(I)) holds by the same way as the one of the
above proof, and so we see that
v=_Exo—1)€ K(D(m,1;n)) for the element v of (2.3),
considering the projections p: D,—Z, and p in (1.2). Therefore, (2.7) shows that

(2.16) a+v+2eK(D(m,1;n)) is the associated complex 2-plane bundle of
the principal U(2)-bundle induced from the principal D,bundle S?m+1 x §i—
D(m,l;n) by the natural inclusion D,c 0(2)c U(2).

The following is an immediate consequence of the naturality of &,

LemMA 2.17. The elements a of (2.13) are natural with respect to the
inclusions D(im', I’y nyc Do(m, I’ ; n) c D(im, I; n) for m"<m, I'< 1.
Let

(2.18) Ay C K(D(m, 151)),  Ap1,0 C R(Do(m, 1;n))
be the subrings generated by « of (2.13). Then
Lemma 2.19. %4, and £4,,, ¢ are divisors of nt™/2],

Proor. In the lower exact sequence in Proposition 2.4, we see that k'a=0

by Lemma 2.15, and that 4, 5,4, is a divisor of al"/2) by Lemma 2.5 (j).
Therefore, since A, 5,4 is the image of A4,,, 1,214 1,0 by the above lemma, $4,, 5,4,
is a divisor of nlm*t1)/2] and so of nl™/21 by using Lemma 2.5 (ii) if m is odd.
These and the naturality of the above lemma show the desired results for even /.
q.e.d.

We consider the induced homomorphisms
K(Lm(m)@K(S*!) = K((L"(n) x S21) [ (L™(n) X ¥))
X R(D(m, 21;n)] D(m, 21 — 1; n)) =2 R(D(m, 21 ; n))

of the homeomorphism £ of (1.9) and the projection ¢, where the first equality
is obtained by the Kiinneth formula

(2.20)  R(L™(n) x 8%') = K(L"(n)) QR (S?YOR(L"(n))QZ  (cf. [2]).
Consider the elements
(2.21) y=g'h"(6®g") € K(D(m,2I;n)), y=j'y € K(Do(m,2I;n)),

where o K(L™(n)) is the one of (2.14), g'e K(S?!)=2Z is the canonical
generator, and j' is the one in (2.1).
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LeMMmA 2.22. (i) v is the element of odd order and y2 =0,

(ii) The elements y are natural with respect to the inclusions D(m’,2l;n)
cDy(m, 21; n)c D(m, 21; n) for m’<m.

(iii) i'y =0, k'y =0,
for the lower homomorphisms of (2.12).

ProoF. (i) is easy to see since o is of odd order (cf. [11, Prop. 2.6 (i)]) and
(g92%=0 (I>0), and the others are seen easily. q.e.d.
Let

(2.23) B, c R(D(m,2l;n)), B, a0 < K(Do(m,21;n))

be the subgroups generated by the elements yai~! (i=1), where « and y are the
ones of (2.13) and (2.21). To study these subgroups, we use the induced
homomorphism

(2.29) n': K(D(m, 21; n))— R(L"(n) x S2!)

of the double covering 7 of (1.3), where the range is given by (2.20).
LemmA 2.25. (i) =' is monomorphic on B, ,,.
(i) n'(yai~t) =(c—to)(o +10) "' ®g'.

Proor. (i) The desired result follows immediately from Lemma 2.22 (i)
and the fact that the order of Ker ' is a power of 2 by [3, Prop. 2.11].

(ii) n'y =n'qg'h(6®g') = q1p'A'V'(6®g')
=q1p'(c®g", te®(—g") = (6-10)®g",

by (2.21), Lemma 1.11 and the definition of p in (1.10).  Also, we have n'a=
(c+1t0)®1 using the right square in (2.11) where the equality £(y)=(c+1)®1
holds by the same way as the equality in the proof of Lemma 2.15. Therefore,
we have the desired equality by the product formula in (2.20). q.ed.

REMARK 2.26. The K-ring of the Dold manifold D(m, I), stated in Remark
1.15, is studied in [6, 7], by considering the generators

vy, acK(D(m, 1), yeR(D(m,2])).

We notice that the equalities p''vy=v, p''a=a, p''y=y are proved easily by
definition, where p’ is the projection in Remark 1.15.
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§3. Proof of the main theorem

The following are known for the K-rings of the lens space L™(n) and its
subcomplex L7(n) of (1.5) (cf. [11, Lemma 2.4 (i), Prop. 2.6, 2.11]).

(3.1) Thering K(L™(n)) is generated by a of (2.14) with relations (1 +o)* =1,
™1 =0, and contains exactly n™ elements. Also, R(Lm(n)) =RK(Lm(n)) by the
isomorphism induced by the inclusion j: L(n) c L™(n).

(3.2) The complexification
c: KO(Lg(m)— K(Lg(n)) = R(Lm(n))
is monomorphic, and its image
Con = (KO(LY(m)) = o(KO(L"(n))

is the subring of K(L™(n)) generated by o+ta, and contains exactly nim/2]
elements.

LEMMA 3.3. R(L"(n)) =C,,®D,,
where D,, is the subgroup of R(L™(n)) generated by the elements
(c—1o)(o+1o)i"1 @izl).
Proof. Consider the real restriction 7: K(L'g(n))—»f(\b(L'g(n)). Since
cr((c—to)o+to)" ) =1+ ){(c—to)o+1to) 1) =0

and ¢ is monomorphic, we see that r(D,)=0. This shows that 2a=rca=0 if

caeC,nD,, and so we have C,,Nn D, =0. Since 1+tc=(1+0)"! by definition,

we have to=—0(1+0)"! and so (6—to)2=(6+16)?+4(c+1t5). This shows

that C,,®D,, is a subring of K(L™(n)), and we have the desired result by (3.1) since

oc=((o+to)+(c—10)))2€C,DD,, q.e.d.
For the canonical generator g'e K(52")=Z, we denote by

(3.4) D,®g' < R(L"(n) x S?')
the image of D,, in the above lemma by the isomorphism
®g': K(L™(n)) = K(L"(m))Q@K(5?") (c K(L™(n) x §21)).

To prove our main theorem, we study more precisely A,,;, A0 of (2.18)
and B,, 2;, By, 210 Of (2.23), using the above facts and the commutative diagram
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R(L™(n)) <~ R(D(m, I;n)) = R(L™(n) x S
(3.5) = |7 =i
R(L3(n) <22 R(Do(m, 1;n)) =25 R (L5(n) x SY),

where i and 7 are the maps of (1.2) and (1.3), i, and 7, are their restrictions,
j’s are the inclusions, and the right square is used for even I.

ProrosiTION 3.6. (i) The subrings A,; and A, ,, of (2.18), generated by
o, are mapped isomorphically by the above i' and iy onto the subring C,, of
(3.2), generated by o+1to, where i'a =ija =o+1to.

(i) A,,;and A, are isomorphic by j' in (3.5).
(iii) R(Do(m, 21+ 1; 1)) = Ay 2141,0D Z31,
where Z,1 is the subring generated by v given in Proposition 2.4.

Proor. (i) and (ii) Since the equalities of (i) hold by Lemma 2.15, we have

the epimorphisms A,,,,,—’—I>Am,,,o—i'i+cm. Therefore, we have the desired results
by (3.2) and Lemma 2.19.
(iii) The result follows from (i), Proposition 2.4 and Lemma 2.5 (i). q.e.d.

PropoSITION 3.7. (i) B, 5 and B, ;0 of (2.23), generated by {yai~1|i= 1},
are mapped isomorphically onto the subgroup D,®g' of (3.4) by n' and n}) in
(3.5), where w'(yat~1) = nh(yai~1) = (6—t6) (0 +10)" "1 Rg’.

(i) They are isomorphic by j' in (3.5).

(iii) Am2N B2 =0,  Ap21,00 By 2o =0,
where A, 5 and A, 5, o are the ones of the above proposition.

(iv) R(Do(m, 215 1)) = A, 21,0®B 210D Z31,
where Z,: is the subring generated by v given in Proposition 2.4,

Proor. (i) and (ii) follow from Lemma 2.25, the definition of D,, in Lemma
3.3 and the right commutative square of (3.5).

(iii) follows from (i) of the above proposition and i'y=0 of Lemma 2.22 (iit).

(iv) By (i), (iii), Proposition 3.6 (i) and Lemma 3.3, we have

R(Do(m, 21; 1)) D Ay 21,0DBn,21,0 = C®D,, = K(L™(n)).

Since k'a=k'y=0 by Lemmas 2.15 and 2.22 (iii), we have the desired result by
Proposition 2.4, Lemma 2.5 (i) and (3.1). q.e.d.
The following for the stunted real projective space is known [1, Th. 7.3].
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~ Zz[(l+ 1)/21 lfm is even,
R(RP(m+1+1)/RP(m)) = ~
(38) ) Z@Zz[t/z] lfm is Odd,

KIRPm+14+1D/RP(m))=Z if m+liseven, =0 if m+1 isodd.

(The results for K! are seen by the Atiyah-Hirzeburch spectral sequence.)
Now, we are ready to prove our main theorem.

THEOREM 3.9. Suppose that n is odd. Then the reduced K-ring of
D(m, I;n) (m>0, 1>0) of (1.1) is given by the direct sum decomposition

Zyta+ 1y if m is even,
R(D(m, 1;n)) = A,y BBy ®Zrtn® (Z if m and | are odd,
0 otherwise,

where A, ®B,,, is the odd component and the summands are given as follows:
(i) A, is the subring generated by the element o of (2.13), and is given

in Proposition 3.6 (i).

(ii) B, 21+1=0, and B, ,, is the ideal generated by the element y of (2.21)
which satisfies y2=0, and is given in Proposition 3.7 (i). Also the subgroup

Ay 21® B, 21 is isomorphic to K(L™(n)).

(iii) The third summand Z,uyz is the subring generated by v of (2.3) and
is given in Proposition 2.4.

(iv) The rest is the monomorphic image of

K(S™ A (RP(m+141)/RP(m)))

by gqbf', where D(m,l;n) % D(m, l n)/Dy(m, I; n)—»S'"/\(RP(m+l+1)/
RP(m)) are the projection and the homeomorphism of Lemma 1.12. Its
generator v, satisfies v2i=0, v,,v=—2v,, and v,,,,v=0.

Proor. Consider the exact sequence of (D, Do, RP(I)):
R1(Dy/RP(I))—> R(D|Do)-22% R(DRP(I)) - R(Do/RP(l))— R(D/Dy),

where D=D(m,l;n), Do=Dy(m,l;n). By (3.8) and the isomorphism f', we
see that K(D/D,) is given by the last summand of the theorem and that the order
of the torsion of K1(D/Dy) is a power of 2. By these facts and Lemma 2.5 (i),
we have the exact sequence

0—> R(D/Do) <25 R(DIRP(I) 5 R(Do/RP(1)) —>0.

Therefore, we have the desired direct sum decomposition by Propositions 3.6,
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3.7 and 2.4, where B,, 5, is the one of (2.23) and Am,z,@Bm,z,sK(L"‘(n)) is seen
by the proof of Proposition 3.7 (iv). We see that B,, 5, is equal to the ideal generat-
ed by y, since A4, ,,®B,, ,; is the odd component.

=0 is seen in Lemma 2.22 (i). Also, v2=0 and vv,, ., =0 are clear.
VaV=—2v,, is seen as follows: By definition and [1, Th. 7.3],

Vam = go S (g"@vE™HD)

where v2m*1) & R(RPQ2m+ 1+ 1)/RP(2m)) is mapped to vZmt1c K(RPQm+1+
1)). Using the induced diagram for the K-rings of (1.13), which is commutative
by Lemma 1.14, we have

VomV =d'(V2,@V) = d'(fq0 Xiop)' (g"RV" 1 QV)
= (f40)'(g"®d' (V2" ®V)) = ~ 2,
as desired, since p'v=v, ipy=v and v2"*2=—2y2n+1 by [1, Th 7.3]. g.ed.

Finally, we are concerned with the special case that n is an odd prime.
Let p=2g+1 be an odd prime. The following is proved in [10, Th, 1, 2]:

(3.10) R(L™(p)) = (Zpur )'®(Zp )Pt (m=s(p—1)+r, 0<r<p—1)

and the summands are generated by o, 62, ..., 6P"!, respectively;

(3.11) Cpp = c(KO(L™()) = (Zor ) ID(Z,,e) 4717121
and the summands are generated by o+to, (6+4106)2, ..., (¢ +10)9, respectively;
o™l =(140)?—1=0, (c+10)"21*1 =0,

(3.12) —P q+1—1

+1 _ g i —
(6+to)it! = 2 1 a;(a +1t0)), a;= T\ 2i=2

LEMMA 3.13. The direct sum decomposition of (3.10) can be so taken that
the summands are generated by

o—to, o+to, (oc—to)o+to), (c+10)?,...,(c—to)o+to)i~ L, (c+1to)d,
respectively. Also, we have

(o—to)(o+to)21=0, (oc—to)(o+t0)?= 2} 1a,(c—tc)(c+1ta)'~1,

ProoOF. Since c¢i(1+0)r=0i(1+0)*"1+0i*1(1+06)* 1 and oP(14+0)F 1

=— ! (‘?)a"(l +ad) 1 by (1+0)?—~1=0, we can take the summands of
(3.10) so that they are generated by the elements
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o1+ o)k (I1=izp-1),

respectively, by the induction on k. Hence we can also take the summands of
13.10) generated by the elements

o(l+0)P"1, o2(1+o0)P1,.., @297 1(1+0)P"9, o29(1+0)P 9,

respectively, obtained from the above generators for k=g+1=p—gq by adding
repeatedly the neighboring generators. On the other hand,

(6—to)(o+t6) ' =202 +62))(1+0)*"¢, (0+to) =0%i(140)P7,

since 1+to=(1+0)"! by definition and (14+0)?=1 by (3.1). Therefore, we

have the first desired result from the last set of generators. The equalities in the

lemma are proved by the same way as the proof of the last two equalities of (3.12)

in [10, pp. 143-144]. g.e.d.
By these results and Theorem 3.9, we have immediately the following

CoOROLLARY 3.14, Let p=2q+1 be an odd prime, and set m=s(p—1)+r,
0<r<p—1. Then R(D(m,l;p)) (m>0,1>0) is given by Theorem 3.9 for
n=p, where the summands A,,, and B, , are given more precisely as follows:

(1) Ay = (Z e YAP(Z,,) 071012

((Z,) means the direct sum of t copies of Z;) and the summands are generated
by the elements a, a?,..., a4, respectively.

(ii) Am,2l®Bm,21 = (Zps+l)'®(zps)p_r_l

and the summands are generated by vy, o, yo, a2,...,ya9"1, a9, respectively.
Furthermore, o™/ 21t1 = yglmi21=0 gnd

; - —p (q+i-1

aitt =i a0t, yat= 3L ,ay0i7t, =57 q2i—-2 .

We notice that a similar result for n= p? is obtained by using the known result
for R(Lm(p?)) [11, Th. 1.4, 1.7].
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