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Introduction 

The dihedral group Dn (n ~ 3) of symmetries of the n-sided regular polygon 
is generated by two elements a and b with relations an =b2 =abab = 1. Consi­
der the unit spheres S2m+ 1 and S' in the complex (m + l)-space and the real (I + 1)­
space. Then Dn operates freely on the product space S2m+l X S' by 

a-(z, x) = (z exp (2n J -l/n), x), b'(z, x) = (tz, -x), 

where t is the conjugation, and the orbit manifold 

is defined, where Lm(n) =S2m+l /Zn is the standard lens space. The bordism group 
of Dn is studied by considering this manifold in [9]. 

The purpose of this note is to study the complex K-ring K(D(m, I; n)) (m>O, 
1>0) for odd n. 

Let 

v, a E K(D(I1l, I; n)) and Y E K(D(m, 21; n)) 

be the elements defined as follows: v + 1 is the induced bundle of the canonical 
complex line bundle over the real projective space RP(I) by the natural projection 
D(m,l;n)-+S'/Z2=RP(l). a+v+2 is the associated complex 2-plane bundle 
of the principal U(2)-bundle induced from the principal Dn-bundle S2m+l X S'-+ 
D(m, I; n) by the natural inclusion DncO(2)c U(2). y is the image of u@gl by 
the induced homomorphism of the projection 

h 
D(m, 21; 11) ~ D(I1l, 21; n)/D(m, 21-1; n) ----;;;;-> (Lm(n) x S21)/(Lm(n) x *), 

where u E K(Lm(n)) is the stable class of the canonical complex line bundle over 
Lm(n), and gIEK(S21)=Z is the canonical generator. 

Denote the natural inclusions by 

i: Lm(l1) C D(I1l, I; 11), k: RP(l) C D(m, I; 11). 
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Also, consider the 2m-skeleton L'8(n) of the cell complex Lm(n) = Vt:'ci 1 C/, 
and set 

Do(m, 1; n) = (L'8(n) x S')jZ2 c D(m, 1; n). 

Denote the projection and the homeomorphism by 

D(m, 1; n)~ D(m, 1; n)jDo(m, 1; n)---.!......sm !\ (RP(m + 1 + l)jRP(m)), 
'" 

where the last term is the suspension of the stunted real projective space. 
By these notations, our result (Theorem 3.9) is stated by 

THEOREM. Assume that n is odd, m>O and 1>0. Then we have the 
direct sum decomposition 

K(D(m, 1; n)) = Am./EBBm.IEBZ2[1/2JEB Z 

o 

if m is even, 

if m and 1 are odd, 

otherwise, 

where Am.IEBBm •1 is the odd component and the summands are given as follows: 
(i) Am.1 is the subring generated by a, and is isomorplJic to the image of 

the complexijication c: KO(Lm(n))-+ K(Lm(n)) by the induced homomorphism il. 
(ii) Bm• 21+1 =0 and Bnr • 21 is the ideal generated by y which satisfies 

y2 =0, and the subgroup Am.2IEBBm.21 is isomorphic to K(Lm(n)). 
(iii) The third cyclic summand Z2[1/2J is generated by v, and is isomor­

phic to K(RP(l)) by the induced homomorphism kl. 
(iv) The rest is the image of K(Sm!\RP(m+l+1)jRP(m))) by the induced 

homomorphism q'oP, which is monomorphic. Its generator vm satisfies 
v; =0 and VV2m = - 2v2m, VV 2m + 1 =0. 

The partial result for odd m, 1 and odd prime n is obtained in [8]. 
In § 1, we prepare some preliminary results on the cell structures and the 

integral cohomology groups of D(m, 1; n), Do(m, I; n), and on the homeomor­
phisms h,fand the double covering n:Lm(n)xSI-+D(m,l;n). In §2, we are 
concerned with (iii), and notice that the order of K(Do(m, 1; n)jRP(l)) is a divisor 
of n[m/2] or nm -according as 1 is odd or even. Also, we consider the above 
elements rx and y, and study their images by i l and nl. Using these results and the 
known results for K(Lm(n)), we study Am. l of (i) by jl and Bm•21 of (ii) by nl, and 
prove the theorem by the exact sequence of (D(m, 1; n), Do(m, 1; n), RP(l)) in § 3. 
Finally, we are concerned with the special case that n is an odd prime p (Corollary 
3.14), using the known results for K(Lm(p)) in [10]. 
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§ 1. Preliminaries 

The dihedral group Dn (n ~ 3) of order 2n is the subgroup of the orthogonal 

group 0(2) generated by 

( 

cos(2n/n) 

a = -sin (2n/n) 

sin (2n/n) ) and b = ( 0

1

- 0
1 

) 

cos (2n/n) 

with relations an = b2 = abab = 1. These elements a and b generate the cyclic 

subgroups Zn and Z2 of order nand 2, respectively, and Dn is a split extension of 

Zn by Z2. 
Let S2m+l and SI be the unit spheres in the complex (m+1)-space cm+l and 

real (l + 1 )-space R 1+ 1, respectively. Then Dn operates freely on the product 
space S2m+ 1 X SI by 

a·(z, x) = (z exp (2n.J -l/n), x), b·(z, x) = (tz, ox) 

for (z, X)ES2m+1 X SI, where tz is the conjugation of z and ox= -x is the anti­
podal point of x. In this note, we study the orbit manifold 

D(m, 1; n) = (S2m+l X SI)/Dn. 

Since Zn operates triviaIly on the second factor SI, we have 

(Ll) D(m, 1; /1) = (U'(/1) X SI)/Z2, 

where Lm(n) =S2m+ l/Zn is the standard lens space mod n, and the action of Z2 

is given by b·([zJ, x)=([tzJ, ox). Therefore, we have the fibering 

(1.2) Lm(n).--L.D(IIl, 1; /1) ...E.....RP(l), 

where RP(l) =SljZ2 is the real I-dimensional projective space, i is the inclusion 
and p is the projection. Also, we have the double covering 

(1.3) n: Lm(n) x SI~D(m, 1; /1). 

The lens space Lm(n) has the ceIl decomposition 

Lm(n) = Co U Cl U ... U C2m U C2m+l, O(C2i+l) =0, MC2i) =nC2i-t, 

which is invariant under the conjugation t. Also, SI has the ceIl decomposition 
{D~ 10 ~j ~ I} such that Sj =15~ u 15~:::> 15~ n 15~ = Sj-l, and 

LEM~IA 1.4. [9, p. 338J D(IlI, 1; /1) is the cell complex with the cells defined 
by 

for 0~i~211l+1, O~j~l, 
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which have the boundary relations 

D(C2i+i, Di) = (( _1)i + (-1)i+ i )(C2i+i, Di- i ), 

iJ(C2i, Dj) = n(C2i-l, Dj) + (( -I)' + ( _l)j)(C2i, Dj-i). 

We consider the 2m-skeleton 

(1.5) L'8(n) = Co U Ci U ... U c2m 

of Lm(n) of the above, and the subcomplex 

(1.6) Do(m, 1; 11) = (L'8(n) x S')/Z2 c D(m, 1; /I) 

with cells {(Ci, Di)IO~ i~211l, O~j~ l}, and we consider naturally 

D(i,j; 11) c Do(m,j; 11) C D(m, l; /I) for i < Ill, j ~ 1, 

by Li(n) C L'8(n) c Lm(n) and Si c S'. It is clear that 

LEMMA. 1.7. Do(O, 1; n)=RP(l), and the inclusion 

k: RP(l)-----+D(m, 1; n) 

is a right inverse of p in (1.2). 

By the cell structure of Lemma 1.4, the subcomplex 

Xi,i = Do(i-t, 1; 11) UDo(i,j; /I) 

of Do(m, I; /I) has the following cell structure: 

(i ~ m, j ~ l) 

Xi,j = X i,i-2 U (C2i-i, Di- i ) U (C2i, Di- i ) U (C2i-!, Dj) U (C21, Dj) 

for j ~ 1 and even i + j, with the bounday relations 

D(C2i-!,Di- 1 )=O, (B=±I); 

X/,j = X i ,j-i U (C2i-i, Di) U (C2i, Di) 

for j = ° and even i or j = I and odd i + I, with the boundary relations 

Therefore, it is easy to see that the reduced integral cohomology groups Fi* are 

Ji*(X . . ) = Fi*(X- '-2) 1,1 t, J for j ~ 1, even i+ j and odd n; 
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if k = 2i+ j 

otherwise 

for j=O and even i or j= 1 and odd i +1. Also, we have 

D(m, I; n) = Do(m, I; n) U V}=O(C2m+ 1 , Dj), 

8(C2m+l,Dj) =±2(C2m+l, Dj-l) ifj~1 and m+j is odd, =0 otherwise. 

Using these facts, we have easily 

LEMMA. 1.8. Assume that n is odd. 

(i) 
J (Z )al 

fji(Do(m, I; 11), RP(l» = 1 0 n 

if 0 < i ~ 2m + I, 

otherwise, 

where (Zn)a means the direct sum of a copies of Zm and 

(1.9) 

(ii) fj2i(D(2m + 1, 21+ 1; n), RP(2I + 1» = Z 

= fj2i(Do(2m + 1, 21+ 1; n), RP(2I+ 1» 

if I is odd, 

if I is even. 

if 2i = 4m +21 +4, 

if 2i * 4m+2I+4. 

The projection re of (1.3) defines naturally the homeomorphism 

h: D(m, I; Il)/D(III, 1-1; II) ..2- (L"'(II) X 15~) / (L"'(n) x SI-l) 
'" 

We consider the diagram 

57 

Lx S=Lm(n) x S21--,"--> D(m, 21; n)~ D(m, 21; n)/ D(m, 2/-1; n) . 

(l.l0) lq, "'lh 
X=(LxS)/(Lx*) -L. XVX ~ XVX -Y... X 

where re, q and q 1 are the projections, II is the one of (1.9), 

p: (L x S)/(L x *)->(Lx (S V S»/(L x *) = X V X 

is the map induced from id x p: Lx S -+ Lx (S V S) of the co multiplication p: S-+ 
S/S21-1 =Sv S, and \l is the folding map. 

LEMMA. 1.1l. There exists slich a homeomorphism }. that the diagram 
(l.IO) is COl1lllllltatice alld }. =id V (t x T 1), where tXT 1 is the induced map of 

tXT 1: L"'(II) x S21-> L"'(II) X S21 
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(t is the conjugation) and the degree of ' 1 is equal to -1. 

PROOF. Consider the commutative diagram 

L x S~(L x S)/(L x S')= y+ V y 

1ql 

x p -- 1'1'+Y'I'- 1'1'+Y'I'+ 1'1'+ 
xv X ~yCtxrl» xv x~ x, 

where S::;D±=J5?;t~S'=S21-1, Y±=(LxD±)f(LxS'), and the maps are as 

follows: ql' q2 are projections, and so±, t x" t x 'I are the maps induced from 

idx SO±: L xD±-+Lx S, tXT: LxD_-+Lx D+, tX'I: L xS-+L x S, 

respectively, where so± is the restriction of the relative homeomorphism SO±: 

(S, D~:)-+(S, *) of degree 1, t is the conjugation, ' is the antipodal map and 'I 
=SO+TSO:I. 

Then we have the lemma, since 10+ \l (id v (t x ,»q2 =hqn by the definition 
of It of (1.9) and the degree of '1=10+'10: 1 is (_1)21+1=_1. 

q.e.d. 
We have also the following 

LEMMA 1.12. There is a homeomorphism 

f: D(m, I; n)/Do(m, I; n) ::::! (S'" x RP(m + 1+ 1»/( * x RP(m + 1+ 1) u SIn X RP(I/l» 

= SIll /\ (RP(m + 1+ l)/RP(m», 

where the last term is the suspellsion of the stUll ted real projective space. 

PROOF. Consider the relative homeomorphisms and homeomorphisms 

defined as follows: D;m+ 1 is the upper hemi-sphere of S2m+ 1 and 

SO(Zo, .. ·, Zm-I, r exp(ns J -1» = [zo, ... , Zm-I' r exp(2ns J -l/n)]; 

Di is the unit disc in R i and p + is the projection; 

g(v, x) = (v, (1_[V[2)I/2X). 

Then, it is easy to see that the homeomorphism 
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is obtained by the composition (id xg)«O-lP+¥J-1)xid), and J is equivariant 
with respect to the Zz-actions, where Zz acts on Lm(n) x Sf by (1.1) and on Dm 
x sm+l+ 1 by b·(u, y) =(u, - y). Therefore J induces the desired homeomorphism 

J. q.e.d. 
Finally, we consider the diagram 

D(m, I; n)~ D(llz, I; n) x D(m, I; n) Jqoxp) «S x RP)/ Z) x RP(l) 

(1.13) lqO lidxidxi o 

J idXd 
D(m, I; 11)/ Do(m, I; n)-;;;->(SxRP)/ Z~(Sx RPxRP)/(ZxRP) 

where s=sm, RP=RP(m+l+1), Z=*xRPUSxRP(m), and qo is the projec­
tion, J is the homeomorphism of the above lemma, d means the diagonal map, 
p is the projection in (1.2) and io: RP(l)--+ RP is the inclusion given by io[xJ = 

[0, xJ. 

LEMMA 1.14. The diagram (1.13) is homotopy commutative. 

PROOF. For the map g of the above proof, the diagram 

sm+l+1 

lid X io 

sm+l+1 X sm+l+1 

(p is the projection and io is the inclusion given by io(x) = (0, x» is homotopy 
commutative by the homotopy H. given by 

H.(v, x) = (g(v, x), (sv, (1-lsvI Z)1/2 X». 
Since H.(sm x SI)CSm X sm+l+1 and H.( -v, -x)= -Hiv, x), we see easily by 
the above proof that H. induces the desired homotopy of (1.13). q.e.d. 

REMARK 1.15. The orthogonal group 0(2) acts freely on S2m+1 X Sf by 

(

cosO SinO) 
'(z, x) =(z exp(0J=!), x), 

-sin 0 cosO 

Therefore, there is the natural projection 

(~ : }(Z, x) = (tz, rx). 

p': D(m, I; 1I)->(S2m+ 1 x SI)/0(2) =D(I1l, l) 

to the Dold manifold D(Ill, I). The homeomorphisms h of (1.9) and J of Lemma 
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1.12 are analogous to those for the Dold manifold of [7, Prop. 2], and Lemma 
1.14 is similar to [7, Lemma 1]. 

§ 2. Some elements of K (D(m, I; n» for odd n 

In the rest of this note, we assume that n is odd, and study the complex 
K-group of the manifold D(m,l;n) (m>O, 1>0) of (Ll). 

Let K(X) be the K-ring of the complex vector bundles over a finite CW­
complex X, and K(X) be the reduced K -ring. It is well known that a map f: X -+ 

Y induces naturally the ring homomorphisms 

1': K(Y)----+K(X), jI: K(Y)----+K(X) 

and the Puppe exact sequence 

K(x)LK(Y) <---K(Cf ) <---Kl(X)LK1(Y) 

where Cf is the mapping cone of f and Kl(X) =K-l(X) =K(Sl 1\ X). Also, 
there is the Atiyah-Hirzebruch spectral sequence {E~·q} for K(X), such that 
E~·q=i1P(X; Kq(*»(K2i(*)=Z, K2i-l(*) =0) and E~q is the graded group 
associated to Kp+q(X) =K(Sp+q II X) (cf. [4, § 2]). 

Consider the induced homomorphisms 

(2.1) K(RP(l»L K(D(m, I; n» LK(Do(m, I; n» 

of p in (1.2) and the inclusion j of (1.6). It is proved in [1, Th. 7.3] that 

(2.2) K(RP(l) = Z2[l/2] is generated by v, 

and v is the stable class of the complexification of the canonical real line bundle 
over RP(l). Define 

(2.3) v = p'v E K(D(m, I; n», v =j'v E K(Do(m, 1; n». 

Then, by Lemma 1.7 and (2.2), we have immediately 

PROPOSITION 2.4. There is the commutative diagram 

- - kl -0----+ K(D(m,l;n)/RP(l» ----+ K(D(m,l;n» ----+K(RP(l»----+O 

k k II 
- - kl -

0----+ K (Do(m, I; n) / RP(l»----+ K(Do(m, I; n»----+K(RP(l»----+O 

of the split exact sequences, where j, k are the inclusions. The subrings of 

K(D(m, 1; n» and K(Do(m, 1; n» generated by ~ of (2.3) are ZZ[I/2] mapped 
isomorphically onto K(RP(I» by k', and they are isomorphic by j'. 
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\... 

The following lemma is proved easily by using the Atiyah-Hirzebruch spectral 
sequence and Lemma 1.8; where #G means the number of elements of G. 

LEMMA 2.5. (i) #Ki(Do(m, I; n)IRP(l)) (i=O, 1) is a divisor of n[m/2] or 
nm according as I is odd or even. 

(ii) #(the torsion part of K(D(2m + 1, 21 + 1; n)IRP(21 + 1») is a divisor of 

Now, we consider the (unitary) representation ring R(Dn) of Dn. It is well 
known that Dn (n: odd) has two representations 1 and XO of degree 1 and (n -1)/2 
representations XI (1;:;i; i ;:;i;(n -1)/2) of degree 2, which are given by 

Xo(a) = 1, Xo(b) = -1; 

(2.6) 

(

exp (2rri ~ -lIn) 0) 
Xi(a) = 

o exp( -2rri FIln) , 

(cf. [5, p. 339J). We notice that the following is proved easily. 

(2.7) Tire inclusion Dn C 0(2) C U(2) is equivalent to Xl in R(Dn). 

REMARK 2.8. It is easy to see that the multiplication is given by 

XoXo = 1, XOXi = Xi' Xi Xi = X2I+ Xo + 1, XiXj = Xi+ j+ Xi- j 

for i~ 1, j~ 1 and i *- j, where X-I =Xn- i =Xi. Therefore, we see that the reduced 
representation ring R(Dn) is generated by Xo -1 and Xl - Xo-1. 

Consider the inclusions 

and the representations X, X' of Zm Z2 defined by 

x(a) =exp(2rrFI/II), X'(b) = -1, 

respectively. Then, for the induced homomorphisms 

(2.9) 

of the above inclusions, we have the following by definition. 

LEMMA 2.10. i*Xo=l, i*Xl=X+tX, k*Xo=X', k*Xl=X'+l, 
where t is the conjugation. 

In general, a principal G-bundle 

X---+XIG 
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defines the natural ring homomorphisms 

~: R(G)---+K(X/G), ~: R(G)---+K(X/G) 

(R( G) is the reduced representation ring) as follows (cf. [4, § 4.5]) : For a re­
presentation OJ of G of degree n, ~(OJ) is the associated complex n-plane bundle 
of the principal U(n)-bundle induced from the given principal G-bundle X -+X/G 
by the group homomorphism OJ: G-+U(n). 

Taking the principal Dm Zm Zn-bundles 

we have the commutative diagram 

(2.11) 

K(Lm(n»~K(Lm(n) x SI)d-K(D(m, I; n» 

by the naturality of ~, where i* is the one in (2.9), i: Lm(n) c Lm(n) x SI and 1t is 
the projection of (1.3). Therefore, we have the following commutative diagram, 
by taking also the principal Z2-bundle SI-+RP(l): 

(2.12) 

where the upper homomorphisms are the reduced ones of (2.9), i is the inclusion 
of (1.2) and k' is the one in Proposition 2.4. 

Now, we consider the elements 

(2.13) ex = ~(XI - XO -1) E K(D(m, 1; n», ex = j'ex E K(Do(m, 1; n», 

where Xl and XO are the ones of (2.6) and j' is in (2.1). Let 

(2.14) 

be the stable class of the canonical complex line bundle over Lm(n) whose first 
Chern class is the generator of H2(Lm(n» =Zn. 

LEMMA 2.15. For the lower homomorphisms of (2.12), we have i'ex = 

a+ta (t: K-+K is the conjugation), k'ex=O. 

PROOF. The desired results follow from the commutativity of (2.12), Lemma 
2.10 and the equality ~(X) =a+ 1 which is proved easily by definition (cf. [3, § 2 . 
and Appendix (3)]). q.e.d. 
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The equality ~(X') = v + 1 E K(RP(l) holds by the same way as the one of the 
above proof, and so we see that 

v = ~(Xo-l) E K(D(m, I; n» for the element v of (2.3), 

considering the projections p: Dn-+Z2 and p in (1.2). Therefore, (2.7) shows that 

(2.16) O:+V+2EK(D(m, I; n» is the associated complex 2-plane bundle of 
the principal U(2)-bundle induced from the principal Dn-bundle S2m+l X SI-+ 

D(m, I; n) by the natural inclusion DncO(2)c U(2). 

The following is an immediate consequence of the naturality of ~. 

LEMMA 2.17. The elements 0: of (2.13) are natural with respect to the 
inclusions D(m', I'; n) C Do(m, I'; n) c D(m, I; n) for m' < m, I' ~ I. 

Let 

(2.18) Am.1 C K(D(m, /; n)), Am. l • o C K(Do(m, /; n» 

be the subrings generated by a of (2.13). Then 

LEMMA 2.19. #Am.1 and #Am.,.O are divisors of n[m!2]. 

PROOF. In the lower exact sequence in Proposition 2.4, we see that k'a =0 
by Lemma 2.15, and that #Am.21 + 1.0 is a divisor of n[m/2] by Lemma 2.5 (i). 
Therefore, since Am ,21+ 1 is the image of Am+ 1.21+ 1.0 by the above lemma, #Am.21 + 1 

is a divisor of n[(m+I)/2], and so of n[m/2] by using Lemma 2.5 (ii) if m is odd. 
These and the naturality of the above lemma show the desired results for even I. 

q.e.d. 

We consider the induced homomorphisms 

hi - ql -
-->K(D(m, 2/; n)/ D(m, 2/-1; n»-->K(D(m, 2/; n» 

of the homeomorphism h of (1.9) and the projection q, where the first equality 
is obtained by the Kiinneth formula 

Consider the elements 

(2.21) y = q'lz'( a0g') E K (D(m, 2/; n», y = py E K (Do(m, 2/; n», 

where aEK(Lm(n» is the one of (2.14), gIEK(S21)=Z is the canonical 
generator, and P is the one in (2.1). 
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LEMMA 2.22. (i) Y is the element of odd order and y2 =0. 

(ii) The elements yare natllralwith respect to the inclusions D(I1l', 2/; n) 
cDo(m, 21; n)cD(m, 21; n)/or 11l' <m. 

(iii) i'y =0, k'y=O, 

for the lower homomorphisms of (2.12). 

PROOF. (i) is easy to see since a is of odd order (cf. [11, Prop. 2.6 (i)]) and 
(gl)2 =0 (1)0), and the others are seen easily. q.e.d. 

Let 

(2.23) Bm ,21 c K(D(m, 21; n», Bm,21,O c K(Do(m, 21; n» 

be the subgroups generated by the elements ya i - l (i;;;; 1), where a and yare the 
ones of (2.13) and (2.21). To study these subgroups, we use the induced 
homomorphism 

(2.24) 

of the double covering n of (1.3), where the range is given by (2.20). 

LEMMA 2.25. (i) n' is monomorphic on Bm ,21' 

PROOF. (i) The desired result follows immediately from Lemma 2.22 (i) 
and the fact that the order of Ker n ' is a power of 2 by [3, Prop. 2.11]. 

(ii) n'y = n'q'h'(a(8)gl) = q~p'A' \l'(a(8)gl) 

= qip'(a(8)gl, ta@(-gl» = (a-ta)(8)gl, 

by (2.21), Lemma 1.11 and the definition of p in (LlO). Also, we have n'a = 

(a+ ta)(8) 1 using the right square in (2.11) where the equality ~(X) =(a+ 1)(8)1 
holds by the same way as the equality in the proof of Lemma 2.15. Therefore, 
we have the desired equality by the product formula in (2.20). q.e.d. 

REMARK 2.26. The K-ring of the Dold manifold D(m, 1), stated in Remark 
1.15, is studied in [6, 7], by considering the generators 

VI' IXEK(D(m, I», Y E K(D(m, 21». 

We notice that the equalities P"VI =V, p"a=a, p"y=y are proved easily by 
definition, where p' is the projection in Remark 1.15. 

l.. 
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§ 3. Proof of the main theorem 

The following are known for the K-rings of the lens space Lm(n) and its 
subcomplex L'o(n) of (1.5) (cf. [11, Lemma 2.4 (i), Prop. 2.6, 2.11]). 

(3.1) The ring K(Lm(n» is generated by (1' of(2.14) with relations (1 + (1')" = 1, 
(1'rn+l =0, and contains exactly nm elements. Also, K(Lm(n» =K(L'o(n» by the 
isomorphism induced by the inclusion j: L'o(n) c Lm(n). 

(3.2) The complexification 

......... - -c: KO(L'8(n»--->K(L'o(n» = K(Lm(n» 

is monomorphic, and its image 

......... ......... 
Cm = c(KO(L'o(n» = c(KO(Lm(n» 

is the subring of K(Lm(n» generated by (1' + t(1', and contains exactly n[m/2] 
elements. 

LEMMA 3.3. 

where Dm is the subgroup of K(Lm(n» generated by the elements 

«(1' - t (1') ( (1' + t(1')I-l (i~ 1). 

PROOF. Consider the real restriction r: K(L'8(n»--+KO(L'8(n». Since 

cr«(1'- t(1')«(1'+ t(1')I-l) = (1 + t)«(1'- t(1')«(1'+ t(1')I-l) = 0 

and c is monomorphic, we see that r(Dm) =0. This shows that 2a = rca =0 if 
ca E Cm n Dm, and so we have Cm n Dm =0. Since 1 + t(1' =(1 + (1')-1 by definition, 
we have /(1'=-(1'(1+(1')-1 and so «(1'-t(1')2=«(1'+t(1')2+4«(1'+t(1'). This shows 

that CnlBDm is a subring of K(Lm(n», and we have the desired result by (3.1) since 
(1' =«(1'+ t(1') + «(1'- t(1'»/2E CmEBDm. q.e.d. 

For the canonical generator gl E K(S21) =Z, we denote by 

(3.4) 

the image of Dm in the above lemma by the isomorphism 

To prove our main theorem, we study more precisely Am,l' Am,l,O of (2,18) 
and Bm,21' Bm,21,O of (2.23), using the above facts and the commutative diagram 
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- it - 1[1 -K(Lm(n»+---- K(D(m, I; n» -->K(Lm(n) X S/) 

(3.5) =1]' 11' =l(]Xid)' 
- i I - 1t I -
K(L'8(n»~ K(Do{m, I; n»~K{L'8{n) X S/), 

where i and n are the maps of (1.2) and (1.3), io and no are their restrictions, 
j's are the inclusions, and the right square is used for even 1. 

PROPOSITION 3.6. (i) The subrings Am,l and Am,l,O of (2.18), generated by 
rx, are mapped isomorphically by the above i' and ib onto the subring Cm of 
(3.2), generated by u+tu, where i'rx=ibrx=u+tu. 

(ii) Am,l and Am,l,O are isomorphic by j' in (3.5). 

(iii) K(Do(m, 21+ 1; n» = Am,2/+1,OEBZ21, 

where Z2' is the subring generated by v given in Proposition 2.4. 

PROOF. (i) and (ii) Since the equalities of (i) hold by Lemma 2.15, we have 

the epimorphisms Am,/~Am",o~Cm' Therefore, we have the desired results 
by (3.2) and Lemma 2.19. 

(iii) The result follows from (i), Proposition 2.4 and Lemma 2.5 (i). q.e.d. 

PROPOSITION 3.7. (i) Bm,21 and Bm,2/,O of (2.23), generated by {yrxl-lli~ I}, 
are mapped isomorphically onto the subgroup Dm(?)g' of (3.4) by n' and nb in 
(3.5), where n'(yrxl-l) = nb(yrxi-l) = (u-tu)(u+tU)I-l(?)g'. 

(ii) They are isomorphic by j' in (3.5). 

(iii) Am,21 n Bm,21 = 0, Am,2/,O n Bm,2/,O = 0, 

where Am,21 and Am,2/,O are the ones of the above proposition. 

(iv) K(Do(m, 21; n» = Am,2/,oEBBm,2I,oEBZ21, 

where Z2' is the subring generated by v given in Proposition 2.4. 

PROOF. (i) and (ii) follow from Lemma 2.25, the definition of Dm in Lemma 
3.3 and the right commutative square of (3.5). 

(iii) follows from (i) of the above proposition and i'y =0 of Lemma 2.22 (iii). 
(iv) By (i), (iii), Proposition 3.6 (i) and Lemma 3.3, we have 

K(Do(m, 21; n»:::lAm,2I,oEBBm,2/,O ~ CmEBDm = K(Lm(n». 

Since k'rx = k'y =0 by Lemmas 2.15 and 2.22 (iii), we have the desired result by 
Proposition 2.4, Lemma 2.5 (i) and (3.1). q.e.d. 

The following for the stunted real projective space is known [1, Th. 7.3]. 



On the K-Ring of the Orbit Manifold (S'm+! XS')jDn 

(3.8) 1
Z2[(I+ 1)/2] 

K(RP(m+l+1)/RP(m» = 
. ZEBZ2 [1/2] 

if m is even, 

if m is odd, 

Kl(RP(m+l+l)/RP(m» =Z ifm+1 is even, =0 ifm+1 is odd. 

(The results for Kl are seen by the Atiyah-Hirzeburch spectral sequence.) 
Now, we are ready to prove our main theorem. 

67 

THEOREM 3.9. Suppose that n is odd. Then the reduced K-ring of 
D(m, 1; n) (m>O, 1>0) of (Ll) is given by the direct sum decomposition 

Z2[(I+ 1)/2] if m is even, 

if m and I are odd, 

o otherwise, 

where Am.IEBBm•1 is the odd component and the summands are given as follows: 
(i) Am.l is the subring generated by the element a of (2.13), and is given 

in Proposition 3.6 (i). 
(ii) Bm.2l+ 1 =0, and Bm.21 is the ideal generated by the element y of (2.21) 

which satisfies y2 =0, and is given in Proposition 3.7 (i). Also the subgroup 
Am.2IEBBm.21 is isomorphic to K(Lm(n». 

(iii) The third summand Z2[1/2] is the subring generated by v of (2.3) and 
is given in Proposition 2.4. 

(iv) The rest is the monomorphic image of 

K(sm /\ (RP(m + 1 + l)/RP(m») 

qo / by qh!', where D(m, 1; n) ---'--> D(m, 1; n)/Do(m, 1; n) --;;;;-> sm /\ (RP(m+l+1)/ 
RP(m» are the projection and the homeomorphism of Lemma 1.12. Its 
generator Vm satisfies v~=O, v2mv=-2v2m and V2m+lV=0. 

PROOF. Consider the exact sequence of (D, Do, RP(l»: 

Kl(Do/RP(l»~K(D/Do)~K(D/RP(l)~K(Do/RP(l»~Kl(D/Do), 

where D =D(m, 1; n), Do =Do(m, 1; n). By (3.8) and the isomorphism f', we 
see that K(D/Do) is given by the last summand of the theorem and that the order 
of the torsion of Kl(D/Do) is a power of 2. By these facts and Lemma 2.5 (i), 
we have the exact sequence 

Therefore, we have the desired direct sum decomposition by Propositions 3.6, 
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3.7 and 2.4, where Bm.21 is the one of (2.23) and Am.2IffiBm.21~K(Lm(n» is seen 
by the proof of Proposition 3.7 (iv). We see that Bm•21 is equal to the ideal generat­
ed by y, since Am.2IffiBm.21 is the odd component. 

y2 =0 is seen in Lemma 2.22 (i). Also, v~ =0 and vV2m+ 1 =0 are clear. 
v2mv= -2V2m is seen as follows: By definition and [I, Th. 7.3], 

where V(2m+I) EK(RP(2m+ 1+ 1)/RP(2m» is mapped to v2m+I EK(RP(2m+l+ 
1». Using the induced diagram for the K-rings of (1.13), which is commutative 
by Lemma 1.14, we have 

v 2mv = d '(v2m(8)v) = d'(/qo X iop) I (gm(8) V 2m+1 (8) V) 

= (fqO)'(gm(8)d l (V 2m+ I (8)V» = - 2V 2m, 

as desired, since plv=v, ibv=v and V2m+2 = _2v 2m+I by [1, Th 7.3]. q.e.d. 

Finally, we are concerned with the special case that n is an odd prime. 
Let p =2q + 1 be an odd prime. The following is proved in [10, Th. 1, 2]: 

(m = s(p-1)+ r, ° ~ r<p-1) 

and the summands are generated by (J, (J2, ... , (Jp-I, respectively; 

(3.11) 

and the summands are generated by (J+t(J, «(J+t(J)2, ... , «(J+t(J)q, respectively; 

(Jm+l = (1 + (J)P-l = 0, (0"+tO")[m/2]+1 = 0, 

(3.12) 

LEMMA 3.13. The direct sum decomposition of (3.10) can be so taken that 
the summands are generated by 

0"- to", (J+ to", «(J- to")(O" + to"), «(J+ to")2, ... , «(J- to")(O" + to")q-l, (0"+ to")q, 

respectively. Also, we have 

«(J-t(J)(0"+tO")[m/2) = 0, «(J-t(J)(O"+tO")q = ~l=lai«(J-t(J)(O"+tO")i-l. 

PROOF. Since O"i(1+(J)k=O"i(I+O")k-l+O"i+I(1+O")k-l and O"P(1+O")k-l 

=- I:f.:-Ie)O"i(I+(Jjk-l by (1+O")P-l=O, we can take the summands of 

(3.10) so that they are generated by the elements 
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respectively, by the induction on k. Hence we can also take the summands of 
13.10) generated by the elements 

respectively, obtained from the above generators for k=q+1=p-q by adding 
repeatedly the neighboring generators. On the other hand, 

since 1+ta=(1+a)-1 by definition and (l +a)P=1 by (3.1). Therefore, we 
have the first desired result from the last set of generators. The equalities in the 
lemma are proved by the same way as the proof of the last two equalities of (3.12) 
in [10, pp. 143-144]. q.e.d. 

By these results and Theorem 3.9, we have immediately the following 

COROLLARY 3.14. Let p=2q+1 be all odd prime, alld set m=s(p-1)+r, 
O~r<p-1. Then K(D(m, I; p» (m>O, 1>0) is given by Theorem 3.9 for 

n = p, where the summands Am" and Bm" are given more precisely as follows: 

(i) 

«Zk)t means the direct sum of t copies of Zk) and the summands are generated 
by the elements (I., 1X2, ..• , IXq, respectively. 

(ii) 

and the sllmmands are generated by y, IX, YIX, 1X2, ••. , YlXq- 1, IXq, respectively. 
Furthermore, lX[m/2]+1 =YIX[m/2]=0 and 

We notice that a similar result for n = p2 is obtained by using the known result 
for K(Lm(p2» [11, Th. 1.4, 1.7]. 
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