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Abstract We report a result of an experimental study on properties of pose representations
for 3 DOF linear pose estimations with 100 CG objects. We use linear regression as a pose
estimation method. First, we explain a method of linear pose estimation and two properties
of pose representations. Next, we use four pose representations (rotation matrix, ZYX Euler
angle, exponential map, and unit quaternions), for pose estimation experiments, and compare
estimation errors. We show that estimation error of rotation matrix is significantly smaller than
other representations by using pairwise t–test.

1 Introduction

In this paper we show experimental evaluation
of properties of representations of 3 degrees-of-
freedom (DOF) rotation for global appearance-
based (view-based) pose estimation, which estimate
a pose of a test image based on a training of re-
lations between training sample images and corre-
sponding pose parameters.

The pose parameters should be taken care [1] be-
cause the parameters should represent pose contin-
uously and bijectively as the change of views of an
object in an image. However, pose parameters have
been used carelessly for linear and non-linear 3 DOF
pose estimation methods.

In this paper, we focus how the representations
affect on results of a linear pose estimation method,
and experimentally evaluate the properties — con-
tinuity and bijection — of four major representa-
tions of 3 DOF rotation pose: a rotation matrix,
Euler angles (or roll–pitch–yaw), Exponential map
(or angle–axis) and unit quaternions. We show ex-
perimental results and comparisons of pose repre-
sentations by using 100 objects with a linear pose
estimation.

2 Properties of pose representations

In this section, we describe briefly a linear pose esti-
mation method with global appearance of an object
in an image, and then properties of pose represen-
tations that should be satisfied.

2.1 A linear pose estimation method

Linear pose estimation methods [7, 4, 8, 9] learn
relations between images and poses. Here we focus
on the most simple one; a liner regression method
[4]. Given a training sample set that consists of
images xj and poses pj . Then, the following linear
map (that is, a matrix) is estimated:

pj = Fxj , j = 1, 2, . . . , n. (1)

For a test image x, an estimate of its pose p is
obtained by p = Fx.

2.2 Pose estimate as approximation

The pose estimation described above can be seen
as an approximation with training poses. An image
x can be approximated with training images xj by
their linear combination

x ∼=
∑
j

bjxj , (2)

when x belongs to the same class that xj describe.
This linearity of images is well known and used for
many applications such as eigenfaces.

We can rewrite the equation above with Eq.(1)
as follows;

p = Fx ∼=
∑
j

bjFxj =
∑
j

bjpj . (3)

This means that a pose estimate p is represented
by a linear combination of training poses pj .
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Table 1: Pose representations and properties.

representation parameters bijection continuity

rotation matrix R =

 r11 r12 r13
r21 r22 r33
r31 r32 r33

 √ √

ZXY Euler angles [θx, θy, θz]
T
, −π ≤ θx,y,z < π × ×

Exponential map ω = [ω1, ω2, ω3]
T
, 0 ≤ ||ω|| ≤ π × ×

unit quaternions q = [q0, q1, q2, q3]
T ×

√

2.3 Continuity and bijection

Eq.(3) requires to pose representations two proper-
ties — continuity and bijection [1].
A representation of pose p should be continuous

with appearance. An example of a pose represen-
tation that is not continuous is an angle in radian;
there is a discontinuity at 2nπ for n = 0, 1, lodts..
This causes a problem because the pose change can
not be handled by the linear approximation of poses
at the discontinuity.
Also p should be bijective to images: a correspon-

dence between a pose and an image is a one-to-one
mapping. If two poses p1 and p2 could correspond
to an image x, then the following inconsistent equa-
tions might hold:

p1 = Fx, p2 = Fx. (4)

Even if we fix the equations by using one of them
(for example, use only p1 and discard p2), the linear
combination of poses may produce incorrect results
because of unbalanced training samples.

2.4 Pose representations and properties

Here we describe four major representations of 3
DOF pose and their properties from the view point
of continuity and bijection (see Tab. 1).
A rotation matrix R is an element of the special

orthogonal group SO(3) = {R ∈ R3×3 | RRT =
RTR = I, det(R) = 1}. R is continuous and bijec-
tive because SO(3) is a smooth closed manifold.
ZYX Euler angles are one of famous representa-

tion in vision and robotics. θx, θy and θz are angles
about x, y and z axes. They are sometimes called
fixed angles (but with a definition different fro Eu-
ler angles) or roll–pitch–yaw angles, and have sev-
eral variants: the order of angles matters and we
can use other orders such as ZYX, XYZ, and so on.
Euler angles are frequently used, however, they are
not continuous nor bijective because of the gimbal
lock problem [5]: angles suddenly change as a pose
changes smoothly.
Exponential map is a mapping from a rotation to

an exponential form with an axis and angle of the

Fig. 1: Exponential map. ω and −ω are the same
pose.

rotation. A three-dimensional vector ω represents
the rotation axis by its direction and the angle by
its norm. This means that a negative direction with
a negative angle of ω coincides to ω itself (see fig.
1), and then it is not bijective.

Unit quaternions are widely used for graphics, vi-
sion and robotics. A quaternion has one real part
and three different imaginary parts, and operations
are defined on a quaternion field. However, a unit
quaternion can be seen as an four-dimensional vec-
tor q = (q0, q1, q2, q3)

T with a unit norm, and its
components correspond to real and imaginary parts.
Usually, the first element q0 is cos of a rotation an-
gle and the other elements q1, q2, q3 are the direc-
tion of the rotation axis. This results in two unit
quaternions with opposite signs, q and −q, repre-
sent the same pose, hence not bijective. If we use
positive unit quaternions (that is, discard −p), then
discontinuity arises around the edge of the hyper-
hemisphere (as shown in fig. 2).

3 Experiments

To see how representations affect the accuracy of
pose estimation, we compared estimation errors of
a linear regression method with four pose represen-
tations: rotation matrix, Euler angles, Exponential
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Fig. 2: Unit quaternions.

map, and unit quaternions.

3.1 Estimation method

First, we describe how we estimate a pose by using
a linear regression.
Given a training image xj , a pose parameter is

also given in a vector form. For a rotation ma-
trix, p = (r11, . . . , r33)

T is a nine-dimensional vec-
tor consisting of nine elements in a rotation matrix.
For Euler angles we use p = (θx, θy, θz)

T , for Expo-
nential map p = ω, and for unit quaternions p = q.
Then equations pj = Fxj are stacked to con-

struct a system of equations. Usually this system
is under-determined because the number of samples
are smaller than the number of unknowns (that is,
the same with the dimensionality of x). Therefore,
a pseudo-inverse is used to solve the system and
obtain F .
A pose of an image x is then estimated by p =

Fx. However, p should be corrected to ensure that
it is actually 3 DOF pose. For rotation matrix,
first p is rearranged to a 3 × 3 matrix. Then, it
is converted to a rotation matrix that is the most
closest to it by using the polar decomposition [6].
For unit quaternions, p is normalized to have norm
1.

3.2 Experimental setup

We used 100 different 3D objects (Fig. 7) from
a commercial dataset of 3D models with complex
textures [10]. Because appearances of objects affect
directly estimation results, we evaluated estimation
errors for many objects and averaged them.
2500 images were created for training each object

by specifying rotation matrices for a OpenGL ren-
derer. Some images are shown in Fig. 3; 128×128 in
size, gray background, and auto-adjustment of scale
of an object. 100 images were created for testing.
Errors are averaged for each object, and each pose
representation. Note that 2500 training images and
100 test images are common for four representations
in order to compare their errors.

Fig. 3: Sample images used for training and testing.

We focused poses around discontinuity: some
pose representations have discontinuity at a rota-
tion angle of π. Training and test images were cre-
ated around the pose of π rotation as follows:

• Create a rotation matrix Rz with a rotation
about z axis by π.

• Create a small random rotation Rs with a rota-
tion about a random axis (a spherical random
generator is used) by an angle uniformly dis-
tributed in [0, π/6] [rad].

• Combine them: a (true) rotation matrix is
Rt = RsRz.

3.3 Error metric

We evaluated errors of estimated poses.

Normalization As described in section 3.1, esti-
mated poses of each representation were normalized
to represent actually 3 DOF pose.

Conversion to rotation matrix Normalized
poses are then converted to corresponding rotation
matrix denoted by R̃.

Error as distance between rotation matrices
We used a distance between rotation matrix [11]
to evaluate errors between true and estimated rota-
tions.
Let Rt be a true rotation matrix and R̃ an es-

timated rotation matrix. The distance dF (Rt, R̃)
between Rt and R̃ is defined as follows:

dF (Rt, R̃) =
1√
2
∥ logRtR̃

T ∥, (5)

logR =

{
0, (θ = 0)

θ
2 sin θ (R−Rt), (θ ̸= 0)

(6)

16th Korea-Japan Joint Workshop on Frontiers of Computer VisionP2-20

410



where θ = cos−1( trR−1
2 ).

Note that this error dF is actually the angle of
a rotation between two rotation matrices. Suppose
Rd satisfies Rt = RdR̃, then dF is an angle of the
rotation of Rd in radian.

3.4 Comparison of estimation errors

Figure 4 shows estimation error of each object with
each representation of pose. Each bar shows an
average of 100 estimation errors with standard de-
viations: for each representation, poses of 100 test
images of each object were estimated.

Figure 5 shows estimation error of all objects with
each representation of pose. Each bar shows an
average of 10,000 estimation errors with standard
deviations: for each representation, poses of 100
test images of 100 objects were estimated. The re-
sult shows that the error of rotation matrix is small
rather than their other representations. Average er-
rors of Euler angles and Exponential map is about
1.5 radian (85 degrees) which means that they are
not appropriate for the use of this kind of applica-
tions. Examples of images are shown in Fig. 6 in
which such representations have failed to estimate
poses.

To see the difference of errors statistically, we per-
formed pairwise t-test between rotation matrix and
the others. There are 10,000 pairs for each test.
This test showed significant differences for all test
(p < 0.01).

4 Conclusions

We have shown experimental results of comparison
of pose representations for global appearance-based
pose estimation of an object. We used rotation
matrix, Euler angles, Exponential map, and unit
quaternions as representations of pose of 3 DOF ro-
tation. Experiments with 100 objects demonstrated
that the error with the use of rotation matrix is sig-
nificantly smaller than the errors of other represen-
tations.
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Fig. 4: Errors for each object with (a) rotation ma-
trix, (b) Euler angles, (c) Exponential map, and (d)
unit quaternions. Horizontal axis is object numbers
shown in Fig. 7.
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Fig. 5: Average errors of pose estimations. Vertical
axis is the distance dF (in radian) between true and
estimated rotations.

(a) (b)

Fig. 6: Examples of erroneous estimation with (a)
Euler angles and (b) Exponential map. Top row
shows images of true poses and bottom row shows
images of estimated poses.
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Fig. 7: 100 objects from a 3D model dataset [10] used in the experiment.
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