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Abstract—This paper studies convergence properties of the
proximal point algorithm when applied to a certain class of
nonmonotone set-valued mappings. We consider an algorithm for
solving an inclusion 0 ∈ T (x), where T is a metrically regular
set-valued mapping acting fromRn into Rm. The algorithm is
given by the follwoing iteration: x0 ∈ Rn and

xk+1 = αkxk + (1− αk)yk, for k = 0, 1, 2, . . . ,

where {αk} is a sequence in[0, 1] such that αk ≤ ᾱ < 1, gk

is a Lipschitz mapping from Rn into Rm and yk satisfies the
following inclusion

0 ∈ gk(yk)− gk(xk) + T (yk).

We prove that if the modulus of regularity of T is sufficiently
small then the sequence generated by our algorithm converges
to a solution to 0 ∈ T (x).

I. I NTRODUCTION

We deal in this paper with methods for finding zeroes of
set-valued mappings in Euclidean spaces, i.e., given Euclidean
spacesRn andRm and a set-valued mappingT : Rn → 2R

m

,
we study the convergence of iterative method for solving the
inclusion

0 ∈ T (x). (I.1)

Our study is devoted to metrically regular mappings, and
we present an algorithm to solve (I.1), which is constructed
on the basis of the classical proximal point algorithm [15].
The proximal point was first proposed by Martinet [12] and
attained its current formulation in the works of Rockafellar
[15], where its connection with the augmented Lagrangian
method for constrained nonlinear optimization. In particular,
Rockafellar studied the proximal point algorithm for the case
when H is a Hilbert space andT is a monotone set-valued
mapping fromH into itself and showed that whenxk+1 is an
approximate solution of the following proximal point iteration,
i.e.,

0 ∈ µk(xk+1 − xk) + T (xk+1) for k = 0, 1, 2, . . . , (I.2)

andT is maximal monotone, then for a sequence of positive
scalarsµk the iteration (I.2) produces a sequencexk that is

convergent to a solution to0 ∈ T (x) for any starting point
x0 ∈ H. WhenT is monotone, i.e.

〈x− y, u− v〉 ≥ 0,

for all x, y ∈ H, all u ∈ T (x) and allv ∈ T (y), and further-
more maximal monotone, i.e.T = T

′
wheneverT

′
: H → 2H

is monotone andT (x) ⊂ T
′
(x) for all x ∈ H, it follows

from Minty’s theorem (see [13]) that(I + γT ) is onto and
(I +γT )−1 is single valued for all positiveγ ∈ R, so that the
sequence defined by (I.2) is well defined.

In the past three decades, a number of authors have consid-
ered generalizations and modifications of the proximal point
algorithm and have also found applications of this method to
specific variational problems (see, for examples, [3], [14], [9],
[16], [8], [10], [11], [1], [2]). In particular, the convergence to
a zero point of a maximal monotone set-valued mappingT of
the sequence

xk+1 = αkxk +(1−αk)(I+γkT )−1xk for k = 0, 1, 2, . . . ,
(I.3)

was observed by Eckstein and Bertsekas [3] (see also [9]), who
showed that the sequence{xk} generated by (I.3) converges
weakly to a solution0 ∈ T (x) in the case thatinfk αk > −1,
supk αk < 1 and infk γk > 0.

On the other hand, the situation becomes considerably
more complicated whenT fails to be monotone. A new
approach to the subject was taken in [14], which deals with
a class of nonmonotone mappings that, when restricted to
a neighborhood of the solution set, are not far from being
monotone. More recently, Arágon, Donchev and Geoffroy [1]
considered the following proximal point algorithm for a certain
class of a nonmonotone set-valued mappings.

0 ∈ gk(xk+1 − xk) + T (xk), for k = 0, 1, 2, . . . , (I.4)

wheregk is a sequence of functions. They proved that ifx̄ is
a solution of (I.1) and the mappingT is metrically regular at
x̄ for 0 with locally closed graph near(x̄, 0), then there exists
a neighborhoodO of x̄ such that for each initial pointx0 ∈ O
one can find a sequencexk satisfying (I.4) that is convergent
to x̄.
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In this paper, motivated by (I.3) and (I.4), we will consider
the following algorithm for finding zeroes of a metrically
regular set-valued mapping. Givenx0 ∈ Rn, find xk such
that

xk+1 = αkxk + (1− αk)yk, for k = 0, 1, 2, . . . , (I.5)

where {αk} is a sequence in[0, 1] such thatαk ≤ ᾱ < 1,
gk is a sequence of Lipschitz mappings andyk satisfies the
following inclusion

0 ∈ gk(yk)− gk(xk) + T (yk). (I.6)

We show that ifx̄ is a solution of (I.1) and the mappingT
is metrically regular at̄x for 0 with locally closed graph near
(x̄, 0), then there exists a neighborhoodO of x̄ such that for
each initial pointx0 ∈ O one can find a sequencexk satisfying
(I.5) that is convergent tōx.

II. PRELIMINARIES

Let Rn be a Euclidean space, letS be a set-valued mapping
from Rn into the subsets ofRm, denotedS : Rn → 2R

m

. Let
(x̄, ȳ) ∈ G(S). Here,G(S) = {(x, y) ∈ Rn×Rm : y ∈ S(x)}
is the graph ofS. Let A, B ⊂ Rn andx ∈ Rn. The distance
from a pointx to a setA is defined by

d(x,A) = inf
y∈A

ρ(x, y)

and the Hausdorff semidistance fromB to A is defined by

e(B,A) = sup
x∈B

d(x,A).

We denote byBr(a) the closed ball of radiusr centered ata,
and S−1 is the inverse ofS defined asx ∈ S−1(y) ⇔ y ∈
S(x). We say that a setA is locally closed atz ∈ A if there
existsγ > 0 such that the setA ∩Bγ(z) is closed.

Let L > 0. A mappingg : Rn → Rm is said to be Lipschitz
continuous if

‖g(x)− g(y)‖ ≤ L‖x− y‖ for all x, y ∈ Rn.

In this case,L is called the Lipschitz constant ofg. The
mappingS is said to bemetrically regularat x̄ for ȳ if there
exists a constantκ > 0 such that

d(x, S−1(y)) ≤ κd(y, S(x)), for all (x, y) close to (x̄, ȳ).
(II.1)

The infimum of κ for which (II.1) holds is theregularity
modulusdenoted regS(x̄|ȳ); the case whenS is not metrically
regular at x̄ for ȳ corresponds to regS(x̄|ȳ) = ∞. The
inequality (II.1) has direct use in providing an estimate for
how far a pointx is from being a solutionsh to the variational
inclusion y ∈ S(x); the expressiond(y, S(x)) measures the
residual wheny /∈ S(x). Smaller values ofκ correspond
to more favorable behavior. For recent advances on metric
regularity and applications to variational problems, see [7],
[5] and [6].

We state the following set-valued generalization of the
Banach fixed point theorem proved by Donchev and Hager

[4] in a complete metric space that we employ to prove our
main result (Theorem 3.2).

Lemma 2.1: (Donchev and Hager [4])Let (X, ρ) be a
complete metric space andΦ : X → 2X be a set-valued
mapping. Letx̄ ∈ X , α > 0 and 0 ≤ θ < 1 such that
Φ(x) ∩ Bα(x̄) is closed for allx ∈ Bα(x̄) and the following
conditions hold:

(i) d(x̄, Φ(x̄)) ≤ α(1− θ);
(ii) e(Φ(u) ∩Bα(x̄),Φ(v)) ≤ θρ(u, v) for all u, v ∈ Bα(x̄).
Then there existsx0 ∈ Bα(x̄) such thatx0 ∈ Φ(x0).

III. C ONVERGENCE THEOREM

First, we recall the algorithm we consider to solve (I.1).
Given a starting pointx0, find a sequencexk by applying the
iteration

xk+1 = αkxk + (1− αk)yk, for k = 0, 1, 2, . . . ,

where {αk} is a sequence in[0, 1] such thatαk ≤ ᾱ < 1,
gk is a sequence of Lipschitz mappings andyk satisfies the
follwoing inclusion

0 ∈ gk(yk)− gk(xk) + T (yk).

The main result of this section reads as follows:
Theorem 3.1: Let T : Rn → 2R

m

be a set-valued mapping
and x̄ ∈ T−1(0). Assume thatG(T ) is locally closed at(x̄, 0)
and T is metrically regular atx̄ for 0. Choose a sequence of
functionsgk : Rn → Rm with gk(0) = 0 which are Lipschitz
continuous in a neighborhoodU of 0 and Lipschitz constants
λk satisfying

sup
k

λk <
1

2regT (x̄|0)
. (III.1)

Then there exists a neighborhoodO of x̄ such that for any
x0 ∈ O there exists a sequence{xk} generated by (I.5) and
(I.6) is well-defined and{xk} converges tōx.

Proof: We first show that well-definedness of the se-
quence generated by our algorithm.

Let λ = supk λk, then from (III.1) there existsκ >
regT (x̄|0) such thatκλ < 1

2 and

d(x, T−1(y)) ≤ κd(y, T (x)) (III.2)

for all (x, y) close to(x̄, 0). Let γ > 0 be such that((κλ)−1−
1)−1 < γ < 1. From (III.2), there existsa > 0 such that the
mappingT is metrically regular onBa(x̄) × B2λa(0) with
constantκ andB2a(0) ⊂ U .

Let x0 ∈ Ba(x̄). For anyx ∈ Ba(x̄), we have

‖ − (g0(x)− g0(x0))‖ = ‖g0(x0)− g0(x)‖
≤ λ0‖x0 − x‖
≤ 2λ0a

≤ 2λa.

We will show that the mappingφ0(y) = T−1(−(g0(y) −
g0(x0))) satisfies the assumptions of the fixed point result
in Lemma 2.1. First, by using the assumptions thatT is
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metrically regular atx̄ for 0, 0 ∈ T (x̄) and gk(0) = 0, we
have

d(x̄, φ0(x̄)) = d(x̄, T−1(−(g0(x̄)− g0(x))))
≤ κd(−(g0(x̄)− g0(x0)), T (x̄))
≤ κ‖g(x0)− g(x̄)‖
≤ κλ0‖x0 − x̄‖
≤ κλ0a

< a(1− κλ0).

Further, for anyu, v ∈ Ba(x̄), by the metric regularity ofT ,

e(φ0(u) ∩Ba(x̄), φ0(v))

= sup
x∈T−1(−(g0(u)−g0(x0)))∩Ba(x̄)

d(x, T−1(−(g0(u)− g0(x0))))

≤ sup
x∈T−1(−(g0(u)−g0(x0)))∩Ba(x̄)

κd(−(g0(u)− g0(x0)), T (x))

≤ κ‖ − (g0(u)− g0(x0))− (−(g0(v)− g0(x0)))‖
≤ κλ0‖u− v‖.

To apply Lemma 2.1, it remains to see that the setsφ0(y) ∩
Ba(x̄) are closed for ally ∈ Ba(x̄). Keeping in mind that
T is locally closed graph, adjustinga needed, this can be
easily shown. Hence by Lemma 2.1, there existsy0 ∈ φ0(y0)∩
Ba(x̄), that is

y0 ∈ Ba(x̄) and 0 ∈ g0(y0)− g0(x0) + T (y0).

Let

x1 = α0x0 + (1− α0)y0.

For anyx ∈ Ba(x̄), we have

‖ − (g1(x)− g1(x1))‖
≤λ1‖x1 − x‖
=λ1‖α0x0 + (1− α0)y0 − x‖
=λ1‖α0(x0 − x̄) + (1− α0)(y0 − x̄) + x̄− x‖
≤λ1{α0‖x0 − x̄‖+ (1− α0)‖y0 − x̄‖+ ‖x̄− x‖}
≤2λ1a

≤2λa.

Let

a1 = γ‖x1 − x̄‖. (III.3)

Since γ < 1, we havea1 < a. We consider the mapping
φ1(y) = T−1(−(g1(y) − g1(x1))). By (III.3), the metric
regularity ofT and the choice ofγ

d(x̄, φ1(x̄)) ≤ d(x̄, T−1(−(g1(x̄)− g1(x1))))
≤ κd(−(g1(x̄)− g1(x1)), T (x̄))
≤ κ‖ − (g1(x̄)− g1(x1))‖
≤ κλ1‖x1 − x̄‖
≤ a1(1− κγ).

For u, v ∈ Ba1(x̄), again by the metric regularity ofT , we
obtain

e(φ1(u) ∩Ba1(x̄), φ1(v))

= sup
x∈T−1(−(g1(u)−g1(x1)))∩Ba1 (x̄)

d(x, T−1(−(g1(u)− g1(x1))))

≤ sup
x∈T−1(−(g1(u)−g1(x1)))∩Ba1 (x̄)

κd(−(g1(u)− g1(x1)), T (x))

≤ κ‖ − (g1(u)− g1(x1))− (−(g1(v)− g1(x1)))‖
≤ κλ1‖u− v‖.
Becauseφ1(y) ∩ Ba1(x̄) is closed for anyy ∈ Ba1(x̄), by
Lemma 2.1, there existsy1 ∈ φ1(y1) ∩ Ba1(x̄), which by
(III.3), satisfies

‖y1 − x̄‖ ≤ γ‖x1 − x̄‖.
Let

x2 = α1x1 + (1− α1)y1.

It follows that

‖x2 − x̄‖ = ‖α1x1 + (1− α1)y1 − x̄‖
≤ α1‖x1 − x̄‖+ (1− α1)‖y1 − x̄‖
≤ α1‖x1 − x̄‖+ γ(1− α1)‖x1 − x̄‖
= (α1 + γ(1− α1))‖x1 − x̄‖
≤ ((1− γ)ᾱ + γ)‖x1 − x̄‖

The induction step is now clear. Letxk ∈ Ba(x̄). Then
for αk = γ‖xk − x̄‖, by applying Lemma 2.1 toφk :
y → T−1(−(gk(y) − gk(xk))) we obtain the existence of
yk ∈ Bak

(x̄) such that0 ∈ gk(yk) − gk(xk) + T (yk). And
hence,

‖yk − x̄‖ ≤ γ‖xk − x̄‖ for all k = 1, 2, . . . .

Let
xk+1 = αkxk + (1− αk)yk.

Thus, we establish that

‖xk+1 − x̄‖ ≤ ((1− γ)ᾱ + γ)‖xk − x̄‖.
Since(1−γ)ᾱ+γ < 1−γ+γ = 1, the sequencexk converges
to x̄.

Note that if αk = 0 for all k = 0, 1, 2, . . . , then we can
consider the follwoing particular case of (I.5) and (I.6).

0 ∈ gk(xk+1)− gk(xk) + T (xk+1), for k = 0, 1, 2, . . . .
(III.4)

Now, we are able to state the following result.
Theorem 3.2: Let T : Rn → 2R

m

be a set-valued mapping
and x̄ ∈ T−1(0). Assume thatG(T ) is locally closed at(x̄, 0)
and T is metrically regular atx̄ for 0. Choose a sequence of
functionsgk : Rn → Rm with gk(0) = 0 which are Lipschitz
continuous in a neighborhoodU of 0 and Lipschitz constants
λk satisfying

sup
k

λk <
1

2regT (x̄|0)
.

Then there exists a neighborhoodO of x̄ such that for any
x0 ∈ O there exists a sequence{xk} generated by (III.4) is
well-defined and{xk} converges tōx.
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