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Abstract—This paper studies convergence properties of the convergent to a solution t6 € T'(x) for any starting point
proximal point algorithm when applied to a certain class of 4, e H. WhenT is monotone, i.e.
nonmonotone set-valued mappings. We consider an algorithm for

solving an inclusion 0 € T'(x), where T is a metrically regular (x —y,u—v) >0,
set-valued mapping acting fromR" into R™. The algorithm is
given by the follwoing iteration: zo € R™ and for all xz,y € H, all uw € T(z) and allv € T'(y), and further-

more maximal monotone, i.& = 7" whenevell” : H — 2

is monotone and/(z) ¢ T'(z) for all z € H, it follows

where {ax} is a sequence in[0,1] such that o, < @ < 1, g from Minty’s theorem (see [13]) tha{/ + 4T') is onto and

is a Lipschitz mapping from R™ into R™ and y,. satisfies the (7 +~7)~! is single valued for all positive € R, so that the

following inclusion sequence defined by (1.2) is well defined.

0 € grlyr) — gr(zk) + T(ye). In the past three decades, a number of authors have consid-

ered generalizations and modifications of the proximal point

We prove that if the modulus of regularity of 7' is sufficiently  g190rithm and have also found applications of this method to

tsgn:llsctmi?ort]h% f)eguTe&C)e_ generated by our algorithm COnve'rgesspecific variational problems (see, for examples, [3], [14], [9],
[16], [8], [10], [11], [1], [2]). In particular, the convergence to

|. INTRODUCTION a zero point of a maximal monotone set-valued mapginof

the sequence
We deal in this paper with methods for finding zeroes of g

set-valued mappings in Euclidean spaces, i.e., given Euclidean ; = axz,+(1—ag)(I+7T) tzp for k=0,1,2,...,

Tr+1 = oz + (1 — ag)ye, for k=0,1,2,...,

spaceR” andR™ and a set-valued mappirg : R"* — 28", (1.3)

we study the convergence of iterative method for solving tiveas observed by Eckstein and Bertsekas [3] (see also [9]), who

inclusion showed that the sequenée;} generated by (1.3) converges
0€T(x). (1.1) weakly to a solutiord € T'(x) in the case thainfy oy, > —1,

sup,, o < 1 andinfy vy, > 0.
Our study is devoted to metrically regular mappings, and On the other hand, the situation becomes considerably
we present an algorithm to solve (I.1), which is constructagore complicated wherl” fails to be monotone. A new
on the basis of the classical proximal point algorithm [15hpproach to the subject was taken in [14], which deals with
The proximal point was first proposed by Martinet [12] angl class of nonmonotone mappings that, when restricted to
attained its current formulation in the works of Rockafellag neighborhood of the solution set, are not far from being
[15], where its connection with the augmented Lagrangigfionotone. More recently, Agon, Donchev and Geoffroy [1]

method for constrained nonlinear optimization. In particulagonsidered the following proximal point algorithm for a certain
Rockafellar studied the proximal point algorithm for the casglass of a nonmonotone set-valued mappings.

when H is a Hilbert space and” is a monotone set-valued
mapping fromH into itself and showed that when,; isan 0 € gk(zkt1 —xx) + T(ax), for k=0,1,2,.... (14)
approximate solution of the following proximal point iteration

o whereg;, is a sequence of functions. They proved that i

a solution of (1.1) and the mappirgj is metrically regular at
0€ u(trsr — 1) + Tlaps) for k=0,1,2,..., (12) for_() with locally closed graph nedfz, O)_, t_h_en th_ere exists
a neighborhood of z such that for each initial point, € O
andT is maximal monotone, then for a sequence of positivane can find a sequenag satisfying (1.4) that is convergent
scalarsyy, the iteration (1.2) produces a sequenggthat is to z.
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In this paper, motivated by (1.3) and (I.4), we will considef4] in a complete metric space that we employ to prove our
the following algorithm for finding zeroes of a metricallymain result (Theorem 3.2).
regular set-valued mapping. Givery € R”, find x; such Lemma 2.1: (Donchev and Hager [4]}et (X,p) be a
that complete metric space anét : X — 2% be a set-valued
mapping. Letz € X , a > 0 and0 < # < 1 such that
®(x) N B, (z) is closed for allz € B, (z) and the following

where {o;} is a sequence if0, 1] such thatay, < @ < 1, conditions hold:
gr is a sequence of Lipschitz mappings apd satisfies the (i) d(z, ®(z)) < a(l —0);
following inclusion (i) e(®(u) N Ba(z),®(v)) < Op(u,v) for all u,v € B, ().
Then there exists, € B, (z) such thatzy € ¢ .
0 € gulyr) — grlar) + T(yi). (1.6) 0 € Ba(@) 0 € B(0)

We show that ifz is a solution of (I.1) and the mappinf
is metrically regular atz for 0 with locally closed graph near First, we recall the algorithm we consider to solve (I.1).
(z,0), then there exists a neighborho6dof z such that for Given a starting poink, find a sequence;, by applying the
each initial pointzy € O one can find a sequeneg satisfying iteration

(1.5) that is convergent ta.

Tpt1 = o + (1 — o)y, for k=0,1,2,..., (1.5

I1l. CONVERGENCE THEOREM

Thot1 :(xkxk—k(l—ak)yk, for k‘:O,l,Q,...,

[I. PRELIMINARIES . .
where {ay} is a sequence if0, 1] such thata, < a < 1,

Let R" be a Euclidean space, I6tbe a set-valued mappingg, is a sequence of Lipschitz mappings apd satisfies the
from R”™ into the subsets dR™, denotedS : R* — 28" Let follwoing inclusion

(Z,9) € G(S). Here,G(S) = {(z,y) e R""xR™: y € S(x)}
is the graph ofS. Let A, B ¢ R™ andz € R". The distance 0 € gk (yx) — gr(wk) + T (k)

from a pointz to a setA is defined by The main result of this section reads as follows:

d(z, A) = inf p(z,y) Theorem 3.1: LetT : R® — 2R be a set-valued mapping
yea andz € T—1(0). Assume that(T) is locally closed at{z, 0)
and the Hausdorff semidistance frafhto A is defined by  and 7 is metrically regular atz for 0. Choose a sequence of
functionsg;, : R — R™ with ¢, (0) = 0 which are Lipschitz

e(B,A) = Sug d(x, A). continuous in a neighborhootl of 0 and Lipschitz constants
e A, satisfying
We denote byB,.(a) the closed ball of radius centered at, 1
and S~ is the inverse ofS defined asr € S~!(y) & y € b Ak < 2regT (z]0) (n.1)

S(x). We say that a sefl is locally closed at € A if there
existsy > 0 such that the set N B,(z) is closed.

Let L > 0. A mappingg : R™ — R™ is said to be Lipschitz
continuous if

Then there exists a neighborho@d of z such that for any
xo € O there exists a sequende} generated by (1.5) and
(1.6) is well-defined andz,} converges tar.

Proof: We first show that well-definedness of the se-
lg(z) —g(y)|| < Lllz —yl| forall =zyeR" quence generated by our algorithm.

) . ] ] Let A = supg Ak, then from (lll.1) there existsc >
In this case,L is called the Lipschitz constant af. The 07 (z|0) such thatk) < 1 and

mappingsS is said to bemetrically regularat z for y if there
exists a constant > 0 such that d(z, T (y)) < kd(y, T(x)) (n.2)

d(xz,S7(y)) < kd(y, S(x)), forall (z,y) close to (z,7). forall (z,y) close to(z,0). Lety > 0 be such thaf(x\)~* —

(1) 1)~ < < 1. From (111.2), there exists > 0 such that the
The infimum of x for which (ll.1) holds is theregularity mapping7 is metrically regular onB,(Z) x Bax.(0) with
modulusdenoted reg{z|y); the case whess' is not metrically constants and B, (0) C U.

regular atz for gy corresponds to ref(Z|y) = oo. The Let 2y € B,(z). For anyz € B,(z), we have
inequality (11.1) has direct use in providing an estimate for

how far a pointz is from being a solutionsh to the variational I = (90(z) = go(z0))ll = llgo(z0) = go(2)]
inclusiony € S(z); the expressioni(y, S(x)) measures the < Xollzo — 2|

residual wheny ¢ S(z). Smaller values ofx correspond < 2)\oa

to more favorable behavior. For recent advances on metric < 9\

regularity and applications to variational problems, see [7], -

[5] and [6]. We will show that the mappingo(y) = T (—(g0(y) —

We state the following set-valued generalization of the)(z¢))) satisfies the assumptions of the fixed point result
Banach fixed point theorem proved by Donchev and Hager Lemma 2.1. First, by using the assumptions tHatis
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metrically regular atz for 0, 0 € T'(z) and g;(0) = 0, we For u,v € B,,(Z), again by the metric regularity df’, we

have obtain
(7, 60(2) = 4@, T (~(50(2) — 90(2)) A Bal et
< kd(—(go(Z) — go(x0)), T(Z)) = weT—l(—(gl(u)bllfl(xl)))mBal(i-) (z, 77 (=(g1(u) — g1(z1))))
< kllg(xo) — g(z)|| < sup /‘fd(—(gl(u) —g1(x1)), T(x))

< kdollzo — | 2€T1(~(g1 (u)—91 (21)))Ba, (2)
< KXoa < gl = (g1(w) = g1(21)) = (=(91(v) = g1(21))) |
< a(l = kAo). < KAlju—|.

_ . . Becausegp, (y) N By, (Z) is closed for anyy € B,,(z), by
Further, for anyu,v € B,(z), by the metric regularity of’, Lemma 211( )there e(xiitgl € é1(y1) N Ba,(2), wrgic)h by

e(¢o(u) N Ba(T), do(v)) (111.3), satisfies
lyr — z|| < ylley — z|.

= sup d(z, T~ (~(g0(u) = go(0))))
RET 1 (~(90(u) ~00(0))) B () Let
< sup Kd(_(g()(u) - go(x())),T(ﬁ)) To = 121 + (1 — Oél)yl.

€T~ (=(g0(v)=g0(0)))NBa(Z)

< sl = (g0(u) = go(0)) ~ (~(g0(v) ~ g0 ()] 't follows that

< Khollu —wll. 22 = 2| = [leazy + (1 — ar)y — 2|
, , < anflzr =2+ (1 = ea)llyr — 7|
To apply Lemma 2.1, it remains to see that the ggtg/) N < _ 1 _
B.(z) are closed for ally € B,(z). Keeping in mind that < agflar =zl +( _al)J‘Il -7
T is locally closed graph, adjusting needed, this can be = (a1 +9(1 = a))lzy — 7|
easily shown. Hence by Lemma 2.1, there exists ¢o(yo)N <((IT=v)a+y) |z — |
Ba(@), that is The induction step is now clear. Let, € B,(z). Then
- for a, = ||z — Z||, by applying Lemma 2.1 top :
€ B, and 0 € - + T (yo). k 7Tk , :
vo @ 90(t0) ~ go(@0) (50) y — T Y(—(g9x(y) — gr(71))) we obtain the existence of
Let yr € By, (Z) such that0 € gr(yx) — gx(zr) + T(yx). And
hence,

xr1 = Qpxo + (1 — ao)yo.
lye — Z|| < 7yllxx — || forall k=1,2,....

For an B,(z), we have
yx € B, (T) Let

| = (91(2) = g1 (1))

Tr41 = QT + (1 — Ozk)yk.

Thus, we establish that

<Aifley — x|

=Ailleaozo + (1 — ao)yo — || [2p1 — 2l < (1 = )& +)[lxr — 2.

=A1llao(zo — @) + (1 — ao)(yo — Z) + & — | Since(1—7)a+~ < 1—y+v = 1, the sequence;, converges

<AM{aollzo — 2| + (1 — ao)llyo — 2| + |z — 2|/} to z. u

<2\a Note that if o = 0 for all £ = 0,1,2,..., then we can

;2/\a consider the follwoing particular case of (1.5) and (1.6).

- 0 € gu(wry1) — gr(zx) + T(xge1), for k=0,1,2,....
Let (1n.4)

a1 = 7|z, — . (11.3) Now, we are able to state thﬁjollowmg result. _
Theorem 3.2: LetT : R™ — 2¥  be a set-valued mapping

Sincey < 1, we havea; < a. We consider the mappingandz € T-'(0). Assume tha@(T) is locally closed a(z, 0)

p1(y) = T (—(g91(y) — g1(z1))). By (lll.3), the metric and T is metrically regular atz for 0. Choose a sequence of

regularity of T and the choice ofy functionsg;, : R™ — R™ with g;(0) = 0 which are Lipschitz
continuous in a neighborhood of 0 and Lipschitz constants

d(z,¢1(7)) < d(@, T (~(91(%) — g1(21)))) Ax satisfying )
< kd(—(g1(%) — g1(z1)), T(2)) Sup A\ < ——————.
< sl = ((2) ~ g1 (1) oo el
=" - - g Then there exists a neighborho@d of z such that for any
< il — 2| zo € O there exists a sequende;} generated by (l1.4) is
< ap(l— Ky). well-defined and{z} converges tae.
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