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Abstract—Recently, many researchers studied set containment Define
characterizations. In this paper, we introduce some set contain- I n
S . - o = o
ment characterizations for quasiconvex programming. Further- (fr0,0) ={z eR"[ f(z) 00}

more, we show a duality theorem for quasiconvex programming . .
by using set containment characterizations. Notions of quasicon- foranya € R. Symbolo represents any binary relation. Then

jugate for quasiconvex functions, especially, —1-quasiconjugate, ./ IS quasiconvex if and only if for any € R, L(f, <, a) =
1-semiconjugate, H-quasiconjugate and R-quasiconjugate, play {z € R™ | f(z) < a} is a convex set, or equivalently, for
important roles to derive characterizations of the set contain- anya € R, L(f,<,a) = {z € R" | f(z) < a} is a convex
ments. set. We know that any convex function is quasiconvex, but
the converse is not true. A subsgt of R" is said to be
evenly convex if it is the intersection of some family of open

Motivated by general nonpolyhedral knowledge-based ddtalfspaces. A subset of R™ is said to beH-evenly convex
classification, the containment problem which consists @fit is the intersection of some family of open halfspaces,
characterizing the inclusiod C B, whereA = {z € R" | and each open halfspace containiigNote that the whole
fi(z) < 0,ieI}andB = {z € R" | h;(z) < 0,5 € J}, space and the empty set afé-evenly convex. Also, any
was studied by many researchers. The first characterizatiopen convex set and any closed convex set are evenly convex.
were given by Mangasarian [5] for linear systems and félearly, every evenly convex set is convex and a nonempty
systems involving differentiable convex functions, and key tsubsetS of R™ is H-evenly convex if and only ifS is an
this approach was Farkas’ Lemma and the duality theoremseavenly convex set which contairis A function f is said to
convex programming, respectively. Jeyakumar [4] establishieed evenly quasiconvex if.(f, <,«) is evenly convex for all
dual characterizations of the set containment, assuming the R. A function f is said to be strictly evenly quasiconvex if
convexity of f;, i € I, and the convexity (the concavity) of L(f, <, «) is evenly convex for altx € R. A function f is said
h;, j € J, so thatA is a closed convex set arfél is a closed to be H-evenly quasiconvex il.(f, <, «) is H-evenly convex
convex set (a reverse convex set, respectively). for all & € R. A function f is said to be strictlyH-evenly

In this paper, we introduce some set containment charactguasiconvex ifL(f, <, a) is H-evenly convex for allx € R.
izations for quasiconvex programming in [9], [10], that is, w€&learly, every evenly quasiconvex function is quasiconvex,
show set containment characterizations, assuming thaf; allevery lower semicontinuous (Isc) quasiconvex function is
are quasiconvex, alb; are linear, or allf; are quasiconvex evenly quasiconvex, and every upper semicontinuous (usc)
and all »; are quasiconcave. These dual characterizatiopgasiconvex function is strictly evenly quasiconvex. It is easy
are provided in terms of level sets df-quasiconjugate, to show that every strictly evenly quasiconvex function is
R-quasiconjugate], —1-quasiconjugate antl-semiconjugate evenly quasiconvex, but the converse is not generally true,
functions. Furthermore, we show a duality theorem for quaee [9]. A functionf is said to achieve the minimum value
siconvex programming by using set containment characteakthe origin if f(z;) — inf{f(z) | « € R™\ {0}} for any
zations. In [12], Thach established the duality theorem feequence{z;} C R™\ {0} with z;, — 0. Let4° be the set
guasiconvex programming by usitd¢rquasiconjugate, but did of all functions that that achieve the minimum value at the
not give any specific conditions. In this paper, we give anotherigin.
proof of this duality theorem and give a specific condition for Next, we introduce notions of quasiconjugates.
the storong duality by using reverse convex set containm
characterization in [10].

I. INTRODUCTION

%]éfinition 1 ([3]). The A\-quasiconjugate of is the function
fX : R™ — R suchthat

[I. NOTATION AND PRELIMINARIES Fou) = A — inf{f(z) | (u,2) > A}, Vu € R™.
Throughout this paper, lef be a function fromR"™ to

R, where R = [—o00,00]. Remember thatf is said to be Definition 2 ([7]). The A-semiconjugate off is the function
quasiconvex if, for alkz;, 2, € R® anda € (0,1), f{ : R" — R suchthat
F((1 = a)xr + axe) < max{f(z1), f(z2)}. Ru) =X —inf{f(x) | (u,x) > A}, Vu € R™.
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Singer [7] defined the A-semiconjugate in the following i € I, g; be a strictly evenly quasiconvex function froRf
form, to R for eachj € J, v € R® anda, € (0,00) for each
0, \ . n s € S, andu, € R" and~,, € (0,00) for eachw € W.
fX(w) =A—1-inf{f(z) | {u,z) > A —1}, Vu €R", Assume thatf;(0) < 3 for eachi € I, g;(0) < (3 for each
but we redefine the\-semiconjugate to unify these abovel € J and inf{z € R" | fi(z) < B,i € I,g;(z) < B3,j €
conjugates. J} is nonempty. Then, following conditions (i) and (ii) are

L . . . equivalent.
Definition 3 ([11]). H-quasiconjugate off is the function

H . o™n () AcCB,
7 : R™ — R suchthat (i) Vs e S,
H _ —1Hf{f($)‘<§,l‘>21} If 67&0 vSeHec|:U. L .V<]__ U L AV <
f (@_{Sup{f(z)xew} Tty - ier L0 <01 = B Uses Ll(g)), <
Definition 4 ([12]). R-quasiconjugate off is the function 1=0)|
% :R" — R suchthat, for any¢ € R", Yw e W,
. Uy
FRE) = —inf{f(x) | (&2) > —1}. € CIHeC|:UieI L((f)}, <, 1=B) | JYjes L((9)), <
Clearly, f# +1 = f/ onR" \ {0} and ff — 1 = f“; on ~B)
R™. So, H-quasiconjugate and®-quasiconjugate are special ’ '
cases of\-quasiconjugate. where
Given a setS C R™, we shall denote by ist, clS and coS A = Viel fi(z) < B.VieJ ailx) <
the interior, the closure, and the convex hull generated by {z|Viel, filz) < B,Y) € J.9;(w) < B},
B = {z|Vs€S (vs2) < as,YVw € W, (Uy,x) < Y}

respectively. The evenly convex hull ¢f, denoted by ecS
is the smallest evenly convex set which contathsThe H- Next, we present characterizations of the containment of a
evenly convex hull of5, denoted by He§, is the smallesti- convex set, defined by infinite quasiconvex constraints, in a
evenly convex set which contairts Note that coSC ecS C  reverse convex set, defined by infinite quasiconvex constraint,
clcoS, and these differences are slight because cleaddecS. e, letl, J, W be arbitrary setsf; and g; be quasiconvex
Moreover if S is nonempty, then Hec& ed.S U {0}). functions fromR" to R for eachi € I and for eachj € J,

k., be a quasiconvex function froR" to R and~,, € R for

eachw € W, and 8 € R. Then, we show the characterization
In this section, we mention about set containment charactgf- 4 - B, where

izations by the authors. At first, we introduce characterizations ) ]

of the containment of a convex set, defined by infinite quasiA = {# € R" [Vie L, fi(z) < §,Vj € J,g;(x) < B},

convex constraints, in an evenly convex set, i.e.lleff, S, B = {zeR"|Ywe W, ky(z) > 70}

W be arbitrary setsf; andg; be quasiconvex functions from

R™ to R for eachi € T andj € J, v € R* anda, € R

for eachs € S, u,, € R™ and~,, € R for eachw € W, and

€ R. Then, we show the characterization 4fc B, where Theorem 3. [9] Let J and W be arbitrary setsg; be an
) ' usc quasiconvex function froR™ to R includedin ~° for

A = Afz|Viel, fi(z) <B,Vj € Jg;(x) <f}, eachj € J, k, be an usc quasiconvex function froRf* to

B = {z|VseS (vs,1) <, Yw €W, (uy, ) <y} R andw, € (0,00) for eachw € W. Assume that for all

n
In [9], we show the following set containment characteri- €R"\ {0} ?299-7("@) - §2§9j(0> and L (Fuw, <, ) # 0
zation by usingH -quasiconjugate. for eachw € W andsup,.,;g;(0) < 3 for somegs € R.
Then, the following conditions are equivalent.
() {z|Vj € Jgj(x) <B} C{x|Vwe W ky(z) = Y0}
(i) Yw e W,
0 € Hecl; e, L(g!, <, —B) \ {0} + L(KE, <, —).

In [10], we show the following set containment characteri-
zation by usingl-semiconjugate and-1-quasiconjugate.

[1l. SET CONTAINMENT CHARACTERIZATIONS

In [9], we show the following set containment characteri-
zation by usingH-quasiconjugate ané&-quasiconjugate.

Theorem 1. [9] Let J be a finite setS be an arbitrary sey;

be an usc quasiconvex function frdk¥ to R andincluded in

7° for eachi € I, v, € R™\ {0} anda, € (0,00) for each

se S.Ifforall z € R*\ {0} supg;(z) > supg,(0) then
jeJ jeJ

the following conditions (i) and J(|€|) are equi\J/aIent:

(i) {z |Vie J gj(x) < B} C{x|Vs€S, (vs,x) < as};

(i) Vs € S, s c Hch L(gJH, <,-A). Theorem 4. [10] Let I, J and W be arbitrary setsf; and
Qs jeJ g; be quasiconvex functions froR™ to R for eachi € I

y H 1 n
In [10], we show the following set containment characterf-:)nd—j € J, kw be a usc quasiconvex function from

zation by usingl-quasiconjugate R and T € R for eachw € W, and 8 € R. As-

' sume thao € int[(N;er L(fi, <,8)) N(NjesL(g,,<,5))] and
Theorem 2. [10] Let I, J, S andW be arbitrary setsf € R, Nyew L(kw, <,7w) IS nonempty. Then, following conditions
f; be a evenly quasiconvex function froRf* to R for each (i) and (i) are equivalent.
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() AcC B, [3]
(i) Yw e W,
0e ClHeC{UiejL((fi)g, <, 1—ﬁ) U UjeJL((gj)§7 <, 1- (41
6))
+I}’((kw)117§7_1 _'Vw) \{0} [5]
where [6]
A = {zeR"|Viel, fi(x) <p,VjeJygjx)<p} 71
B = {zeR"|VweWky(x)> vy}
IV. A DUALITY THEOREM FOR QUASICONVEX (8]
PROGRAMMING [9]

In [10], we show that set containment characterizationg
are useful to consider quasiconvex minimization problem. We
consider the following quasiconvex programming problem. L&
I be an arbitrary setf; be a Isc quasiconvex function from
R™ to R for eachi € I, A = {x € R" | Vi € I, fi(x) < 0},
and k be a usc quasiconvex function. Assume that intA,
and consider the following probleifP),

) {

In [12], a dual problem of P) is defined by

0){

and conditions for the strong duality are discussed, but specific
conditions are not given. In this paper, we show another proof
of this duality theorem and give a specific condition by using
reverse convex set containment characterization.

(12]

minimize k(x),
subject tox € A.

minimize k% (z2),
subject toz € —A*,

Theorem 5. Let I be an arbitrary setf; be a Isc quasiconvex
function fromR™ to R for eachi € I, A= {x € R" | Vi €

I, fi(x) < 0}, andk be a usc quasiconvex function. Assume
that 0 € intA. Then, the following equality holds.

. o R
D == B B,

where A* = {z e R" |Vx € A, (z,z) < 1}.

Proof: By using Theorem 4, for each € R, following
conditions (i) and (ii) are equivalent.
() MierL(fi, <,0) C L(k, >,7),
(i) 0€clHecU;er L((f:)4, <, 1)+ L(k" 1, <,—1—~)\ {0}.
Clearly, inf,c k() sup{y € R | NierL(fi, <,0) C
L(k,>,7)}. So, we can prove thatf,c 4 k() = sup{y | 0 €
clHecU;er L((f:)], <, 1) + L(k” 1, <, —1—~)\ {0}. Also, the
value in the right hand-side is equal toinf,cr (k¥ (z) +
1), whereT —clHec U;er L((f:)4,<,1). Furthermore,
A* = —T and k¥, + 1 = kf. Since, inf,ca k(z)
—inf.c_a- kT (2).
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