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Abstract—In this paper, we focus on multiobjective 0-1 pro- In section Il, we formulate fuzzy random multiobjective O-
gramming problems under the situation where stochastic uncer- 1 programming problems. In section I, we introduce fuzzy
tainty and vagueness exist at the same time. We formulate them asgoa|S to objective functions in the problems. In section IV, we

fuzzy random multiobjective 0-1 programming problems where . . . N
coefficients of objective functions are fuzzy random variables. discuss the formulation through the probability maximization

For the formulated problem, we propose an interactive fuzzy Model using possibility and propose an interactive fuzzy sat-
satisficing method through probability maximization using of isficing method. In section V, to demonstrate the usefulness of

possibility. the proposed method, we apply it into an illustrative numerical
example. Finally, in section VI, we conclude this paper and
|. INTRODUCTION refer to further research.

In the contemporary society, the case that we have to make a Il. Fuzzy RANDOM MULTIOBJECTIVE 0-1
decision based on uncertain data or information is increasing. PROGRAMMING PROBLEMS

The stochastic programming [3], [2], [4], [21] and the fuzzy Fyzzy random variables have been mathematically defined
programming [24], [14], [20], [19], [18] have developed SO, various ways before now [12], [17], [11], [13]. For example,
far. Kruse and Meyer [11] defined a fuzzy random variable as
In these researches, the randomness and fuzziness Haugws.
been treated separately. But, in the real decision makingDefinition 1 (Fuzzy random variable).et (2, B, P) be a
prOblem, there are many situations inClUding two kinds (Hrobab"ny SpaceF(R) the set of fuzzy numbers with com-
uncertainty at the same time. For example, we can thi@lﬁct supports and a measurable mapping — F(R). Then
the situation that the parameters included in a formulated is a fuzzy random variable if and only if given € (2,
problem are given by uncertain numbers. As a concept %0 () is a random interval for ang € (0, 1], where X, (w)
express such a situation, the concept of fuzzy random variabigan o-level set of the fuzzy sek (w).
was proposed [12], [17], [11], [13] and its application tq\though there exist some minor differences in several defini-
the mathematical programming have been done, e.g., ling@hs of fuzzy random variables, fuzzy random variables could
programming involving fuzzy random variable coefficients bye roughly understood to be a random variable whose observed
Wang and Qiao [22], interactive fuzzy random multiobjectivga|ues are fuzzy sets. In this paper, we consider the following

mathematical programming by Katagiri et al. [7], [6], [8], [9]fuzzy random multiobjective 0-1 programming problem:
[10], fuzzy random multiobjective quadratic programming in

portfolio problem by Ammar [1], multi-objective inventory minimize élw, 1=1,2,...,k
problems under fuzzy random environment by Xu and Liu subjectto Az < b ; (1)
[23] and the survey of fuzzy stochastic linear programming x € {0,1}"

by Luhandjula [15]. where z is ann dimensional 0-1 decision variable column

In particular, for multiobjective 0-1 programming problemge tor, 4 is anm xn coefficient matrixp is anm dimensional
including fuzzy random variables in the coefficients of 0bsgnstant column vector. Each eleme’i’)y of vectorél [ =

jective functions, Katagiri et al. [9] proposed an interactiv .2,....k is a fuzzy random variable characterized by the
method based on the expectation optimization model and %ﬂowing membership function:

variance minimization model using possibility and necessity.

In this paper, for fuzzy random multiobjective 0-1 program- I diy — it < d
ming problems, we propose an interactive fuzzy satisficing - () = B )’ = )
method based on the probability maximization model using He, \T) = T — dy; .

. R[—— otherwise
possibility. 7 ) )
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Fig. 3. An example of the membership functiqub’ (y) of a fuzzy goalG;.

Fig. 1. An example of the membership functiqua (+) of a fuzzy random
J

variable Cy;. 1 1é, (U) Mé,m(v)
uax(u)l\
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or equal to a certain value” characterized by the following

Fig. 2. An example of the membershlpfuncthnb (-) of thelth objective membership function for each objective function:
function.

1, ify<g
ne () =q aly), if gl <y<g (4)
where the functionL(t) = max{0,\(¢)} is a real-valued 0, if y>gP,

continuous function from[0,oc0) to [0,1], and A(¢) is a h . wictly d ing funcii
strictly decreasing continuous function satisfyingd) = 1. whereg,(-) is a strictly decreasing function.

Also, R(t) = max{O p(t)} satisfies the same conditions. IV. PROBABILITY MAXIMIZATION MODEL USING

Furthermored,, 3, and¥,, | = 1,2,....k aren dimensional POSSIBILITY

random variable row vectors defined ds = dll + 4d?, S

B, =Bl + 1,82 and, = ~! +~2 by a random variablé, If we regarduc (-) as a possibility distribution, the degree
whose mean is\/;. Hé (G)) of the possibility satisfying the fuzzy goél; under

Since each coefficient of objective functions is a fuzz;he distribution is given by the follows using the possibility:
random variable whose observed values &+& fuzzy num- ~
bers, each objective function becomes a fuzzy random variable Il¢ (Gi) = supmin {Nélm(v)v e, (U)} ‘ (5)
characterized by the following membership function by the N

calculation of L-R fuzzy numbers based on the extension . . .
y In this research, we consider the following problem to

principle: B maximize the degree of possibility that each fuzzy goal is
I (dzg - v> Cifu<de fulfilled in place of (1):
Heye(V) = v —l:flla: _ 3 maximize Tl (Gi), 1=1,2,...,k
R ( - ) , otherwise. subject to Az < b )
Vi
x e {0,1}"
[I1. INTRODUCTION OFFUZZY GOALS Since possibilitied] (G‘l) in (6) vary at random because

Now, in order to consider the vagueness of the decisiafthe randomness Qil, 51 and+,;, problem (6) is a stochastic
maker's judgments as human, we introduce fuzzy gG3ls multiobjective 0-1 programming problem. Here, the maximiza-
l=1,2,...,k such as €,z should be substantially less thartion of g (Gl) in (6) is replaced with the maximization of



Pr[
model to maximize the probability thalg,
than or equal to a certain permissible Ie%@i

L(Gy) is greater

maximize PI’[Hélw(él) > hl} L 1=1,2,.
subjectto Az <b
x e {0,1}"
)

For any elementary event, mequaht[ﬁ% Gl >h, =

& (G)) > hl} based onthe probability maximization Then, problem (8) is reformulated as the following problem:

maximize  (p1(p1(x)), ...
subjectto Ax <b
xz e {0,1}"

In order to derive a satisficing solution to (9), we develop
an interactive fuzzy satisficing method that the decision maker
interactively updates the reference membership leyels
Il = 1,2,...,k reflecting his aspiration level to each fuzzy

s 1k (pr()))
-9

1,2,....% can be transformed as: goal considering the optimal solution to the following minimax
o problem
g, (G1) = minimize  max {ju — u(pi(x))}
< sup min {Mé 2(V)s b, (v } subject to Aa;é b (10)
& Ev:,ué’()>hl,uG()Zh x e {0,1}"
’dl:c _ Introducing an auxiliary variable, (10) is rewritten as:
& 3U:L< — )Zhl, )Zhl, .
Bix minimize v
%% (U) Zhl SUbjeCt to /j‘l_,ul(pl(x)) S’U, l:1a27"'akj
o 3 - Az <b » (11)
& Fv:{d— L (h)B}x < v < {dy + R* ()}, @ € {0,1}"
v = g () equivalentl |
& {d—L (B < i, () auvereny
_ _ minimize v
where L*(-), R*(-) and “G (-) are pseudo-inverse functions subject to p(x) > pf(—v), 1=1,2,...,k (12)
defined asL*(h;) = sup{r | L(r) > h;}, R*(h;) = sup{r | Ax <b
R(r) > i}, “G,(hl) =sup{r | pg,(r) >}, 0 <h < 1. xz e {0,1}"

In addition, if we assumdd; — L*(h)B}x > 0, | =
1,2,...,k forall x € {x € {0,1}" | Az < b} and we
denote the distribution function of the random variabldy
T,(-), we obtain

_Hélm

{di— L*()BiY < i, ()]
{(d} +0d?) — L ()(8] + 08} b <
{L*(h)B1 — dy Yo + g, ()

{d} — L*(h)Bi} ]

Pr (él) > hl:|

P

-

Pr

Prit;, <

|

{L*(m)B; — dj}z + pg, (ha)
{d} — L* ()8}

where i (-) is a pseudo-inverse function defined g9 s)
inf{r | w(r) >s}, 0<s <1
Then, problem (12) can be rewritten as:

minimize v
_ {L*(m)B] — d}}a + i, (M)
subject to 5 "
{d; — L*(h)B; }x
> Ty (uf (i —v)), [ (13)
1=1,2,....k
Az <b
x e {0,1}"

whereT}*(-) is a pseudo-inverse function defined B5(s) =
inf{r | T;(r) > s}, 0< s <L

We consider the method to obtain the solution for the
problem (13) using branch-and-bound method. When we solve

Then, problem(7) is transformed into the following equiv- Py Pranch-and-bound method, we consider the following con-
alent deterministic multiobjective 0-1 programming problemtinuous relaxed problem:

maximize p(z) =
. {L*(m)B) — dy Y + pg, ()
A -
subjectto Ax <b

1=1,2,...
xz e {0,1}"

)

K

8)

We introduce fuzzy goals like ) should be substantially

greater than or equal to a certain value” to consider theHere,

vagueness of the decision maker’s judgmenteq®) in (8).

minimize

v
. {L*(m)B] — dj}a + g (M)
subject to 5 G
(& — L (m)Bz
> Ty (py (= v)), (14)
1=1,2,....k

Ax <b
0<z; <1, j=1,2,...,n
x e R"”

it is equivalent to obtaining minimum existing
feasible solutions to obtain minimum of the problem. It



. . .. .. H 1 2
is equizalent to obtaining minimum where an executable maximize (d; + M, - dj )z

solution exists to obtain minimum of problem(14). Note that subjectto Az < 2 =12,k
the following inequalities hold z € {0,1} 18)
fmax — 1 < v < fimax Since these problems are linear 0-1 programming

problems, they can be solved by the branch and

where fimayx is the maximal value of alfi;, I =1,2,... k. bound method using linear programming. On the

Obtaining the optimal value of to problem (14) is equiv- basis of optimal values to these problems, ask the de-
alent to finding the minimum of so that the set of feasible cision maker to determine the membership functions
solutions to (14) is not empty. Although (14) is a nonlinear ue () and permissible levels;, [ = 1,2, ... k.
programming problem, we can easily find the minimum of giep 2: In order to specify membership functiops(-)

v by the algorithm based on the bisection method and the of fuzzy goals forp,(-), the following optimization
simplex method since the constraints of (14) are linearig problems to minimize and maximize each mf-)
fixed. are solved.

After the minimum valuev* of v is obtained, in order to
determinex* corresponding ta* uniquely, we substitute* minimize  p;(x)
for the constrains of problem (14) and solve the following subjectto Az <b =12,k (19)
linear fractional programming problem: z € {0,1}"

minimize _{L* (hl)ﬁ% - d%}m - :u*(;l (h’l) maximize pl(m)

nimiz {dfl_ L*(h1) B3} subjectto Az <b J1=1,2,...,k (20)
, {L*(h)B; — dj}e + pg, (h) z € {0,1}"
subject to 5 5

{di - L*(hl)ﬁl*}”’* B . Since these problems are reduced to linear fractional
> Ty (i (= 07)), ' 0-1 programming problems, they can be solved by
I=1....k the branch and bound method using the variable
Az <b , transformation by Charnes and Cooper [3] and linear
Owi *’%ﬂ'ﬂg L, j=12...,n programming. On the basis of optimal values to these

problems, ask the decision maker to determine the
membership functiong,(-), 1 =1,2,... k.

Step 3: Set the initial reference membership leyelsi =
1,2,...,k to 1.0.

(15)
Since (15) is a linear fractional programming problem, using
the variable transformation by Charnes and Cooper [3]

1 Step 4: For the reference membership levals | =

= {d? — L*(h)) 33}z’ y=t-zt>0 1,2,...,k, solve the corresponding minimax prob-
lem:
and lettingr; = T;* (1 (fu — v*)), (15) is transformed into the
following equivalent linear programming problem: minimize lErllan{ﬂl — (pi(2))}
minimize  —{L*(h1)B} — di}y — %, (h) -t subject to Az <b - ()
subject to  [r{d} — L*(h;)B}} z € {0,1}"
1 * 1
+d, _*L (h)Bi1 Yy This problem can be solved by the branch and bound
“Heé, (h) - <0, method using the bisection method, the variable
) ) l=1,...,k - (16) transformation by Charnes and Cooper [3] and linear
{di — L*(m)Bily =1 programming.
Ay—t-b<0 Step 5: If the decision maker is satisfied with the current
0<y; <t j=12,....,n solution obtained in step 4, the algorithm is termi-
t>0 nated. Otherwise, update the reference membership

[Interactive Fuzzy Satisficing Method] levelsfi, 1 =1,2,..., k and return to Step 4.

Step 1: In order to specify membership fUﬂCtiQQ%(') of In Step 4, we can use a branch-and-bound method bg§ed on
fuzzy goalsG, for objective functions, the following bisection method and simplex method to solve the minimax

optimization problems to minimize and maximize th@roplem (13).

expectation of each objective function are solved.
V. NUMERICAL EXAMPLE
minimize  (d; + M; - d} )=
subjectto Az < b 1=1,2,...k To demonstrate the effectiveness of the proposed interactive
x € {0,1}" satisficing method for fuzzy random multiobjective 0-1 pro-

(17) gramming problem, we consider the following problem (22)



as anumerical example:

minimize 6:’11371 + 512332 + 513$3 + 514.%’4
+C_'159€5~+ 616$6~+ Cirxr
+Cisxs + Cromg
+C'110£L’10; 3
minimize Cglxl + CQQZQ + CQng + CQ4(£4
+C125$5~+ C26$q+ C’27$7
+C_'28$s + Cagmg
+C2101‘10> y
minimize 0311‘1 —|— 032132 —|— 033333 —|— 034.134
+C35l‘5~+ 0361‘6~+ 037337
+C’381’8~+ 6’39179
+C310710,
SUbjeCt 10 21+ 22+ 23+ 0.324 + 0.325 + x¢
+2x7 + x5+ 0.1x9 + 1.5219
<5,
20021 4+ 600z5 + 30023 4 20024
+200z5 4+ 2000xg + 100027
+700xg + 100xg
+700z19 < 2500,
X1+ To+2x3+ 24+ x5+ 26+ T7
+x8 + w9 + 119 < 6,
T1+ T2+ T3+ Tq4+Ts + T + X7
+zs + 29 + 210 > 1,
xj € {0,1}, j=1,...,10

(22)

TABLE |
PROCESS OF INTERACTION

1st 2nd 3rd
i1 1.0 1.0 1.0
fin 1.0 1.0 0.8
n3 1.0 0.7 0.7
u1(pi(x)) | 0.506 | 0.664 | 0.608
ua(p2(x)) | 0.575| 0.618 | 0.417
u3(ps(x)) | 0.539 | 0.298 | 0.329
T 0 0 1
To 1 1 0
x3 0 0 0
x4 0 1 0
5 0 0 1
z6 0 0 0
x7 0 0 0
z8 1 1 1
z9 0 1 1
x10 0 0 0

For this numerical example, we apply the interactive fuzzy
satisficing method proposed in the previous section and the
result is summarized in Table |.

After solving all of (17) and (18) by the branch and
bound method using and linear programming, ask the decision
maker to determine the membership functjog (-) for each

objective functionC;z in (1) and permissible levels; = 0.6,
ho = 0.6, hs = 0.6.

For these permissible levels, all of (19) and (20) are solved
by the branch and bound method using the variable transfor-
mation [3] and linear programming, ask the decision maker

In the problem (22), each parameters for each objectiug determine the membership functipp(-) for each objective

function is given as the following numbers:

di =(-2,-3,-2,-1,-1.5,-2.5, —4, -3, —0.5, —3),

d2 (6,5,3,2,4,8, 12, -5, -3, -5),

d: = (5,6,4,3,3,6,10,6,1,7),

d: =(0.3,0.5,0.2,0.1,0.2,0.5,0.8,0.7,0.05,0.8),

ol2 (0.4,0.5,0.2,0.2,0.3,0.6,1.1,0.4,0.2,0.4),

d3 (060702030105100500103)

,6'1 (0.1,0.2,0.1,0.1,0.1,0.2,0.3,0.2,0.1,0.1),

52 (0.1,0.2,0.1,0.2,0.2,0.3,0.4,0.2,0.2,0.2),

B3 = (0.2,0.2,0.1,0.1,0.1,0.2,0.1,0.1,0.1,0.1),

1 =(0.01,0.02,0.01,0.01,0.01,0.02,0.03,0.02, 0.01,

0.01),

B2 = (0.01,0.02,0.01,0.02,0.02, 0.03,0.04, 0.02, 0.02,
0.02),

B2 = (0.02,0.02,0.01,0.01,0.01,0.02,0.01,0.01, 0.01,
0.01),

~1=1(0.2,0.4,0.2,0.2,0.2,0.4,0.6,0.4,0.2,0.2),

~1=1(0.2,0.4,0.2,0.4,0.4,0.6,0.8,0.4,0.4,0.4),

1 =1(0.4,0.4,0.2,0.2,0.2,0.4,0.2,0.2,0.2,0.2),

~3 = (0.02,0.04,0.02,0.02, 0.02,0.04, 0.06, 0.04, 0.02,

0.02),

= (0.02,0.04,0.02,0.04,0.04,0.06,0.08,0.04, 0.04,

0.04),

~2 = (0.04,0.04, 0.02,0.02,0.02, 0.04, 0.02, 0.02, 0.02,

0.02),

function p;(+) in (8).

Then, the initial reference membership levelsi =1,2,3
are set tol.0 and the corresponding minimax problem (21) is
solved. The result is shown in the second column of Table I.
Since the decision maker prefers to improwep; (x)) at the
sacrifice ofus(ps(x)), he updates the reference membership
levels to; = 1.0, fip = 1.0, a3 = 0.7.

Again the minimax problem for the updated reference
membership levels is solved and the result is shown in the
third column of Table I. Since the decision maker feels that
us(ps(x)) is too low, he updates the reference membership
levels tofi; = 1.0, iz = 0.8, i3 = 0.7 to enlargeus(ps(x))
even if uo(p2(x)) decreases.

After the corresponding minimax problem is solved, the
result is obtained shown in the fourth column of Table I. Since
the decision maker is satisfied with the result, the algorithm
is terminated.

VI.

In this paper, we focused on multiobjective 0-1 program-
ming problems whose coefficients of objective functions are
fuzzy random variables. After introducing fuzzy goals for
objective functions to reflect the vagueness of the decision
maker’'s judgment as human, we regarded the minimization
of objective functions as the maximization the degree of

CONCLUSION

and random variables, I = 1,2, 3 are assumed to be Gaussiaipossibility that each objective function fulfills the correspond-

random variables with meah and variances?.

ing fuzzy goal. Since the degree of possibility is a random



variable,we adopted the probability maximization model as g0] M. Sakawa, H. Yano and T. Yuminédn interactive fuzzy satisficing
decision making model. Then, we reduced the fuzzy random
multiobjective 0-1 programming problem to a deterministic
multiobjective 0-1 programming problem and discussed &)
interactive fuzzy satisficing method to derive a satisficing?!
solution for the decision maker. In the discussion, we showed
that all problems in the proposed interactive method can (2]
solved by the branch and bound based on linear programming.
In the future, we will discuss the case based on the degr[gﬁ
of necessity and other stochastic programming models, an
consider fuzzy random multiobjective integer programming
problems.
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