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CHAPTER 1

INTRODUCTION

1.1 Coastal acoustic tomography - new approach to the coastal

sea monitoring

Monitoring current �elds in the coastal seas can produce basic information in pre-

dicting disasters caused by ship traÆc, oil spill, red tide, water pollution and so on.

The conventional point measurement techniques for coastal currents possess an ability

to measure current �elds when the suÆcient number of currentmeters are distributed

inside the observation region. However, such arrangements of currentmeters are some-

times inhibited by heavy ship traÆc and �shing activities. Those instruments may

be usually very diÆcult to be placed for long-term use in the interior of the coastal

regions such as channels or bays since such operations could damage the ships or

the instruments themselves. There is also large possibility for the instruments to be

caught accidentally by �shing nets. Furthermore, moored currentmeters deployed in

the interior of the observation region with strong tidal currents are diÆcult to be

�xed to the bottom. Mooring observation in the ship traÆc route is strictly inhibited

by the Japan Maritime Safety Agency and coast guard. Therefore, new approaches

to continuous current �eld measurement in the coastal seas have attracted increased

attention. The coastal acoustic tomography (CAT), which has a sampling strategy

di�erent from the conventional measurements, i.e., spatially averaged evaluation and

remote sensing, is one of the promising approaches. The CAT ,which measures cur-

rent �elds by means of a multiple set of acoustic stations arrayed in the periphery
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of the observation region, can improve drastically the capability of monitoring the

structures of coastal currents.

Although a series of experiments have been conducted in the open ocean to vali-

date the scheme of the ocean acoustic tomography since the �rst proposal by Munk

and Wunsch [39], its application to the coastal seas has been done for only a few

of cases because major interest of acoustic oceanographers has been concentrated on

the open ocean. Unlike the open ocean, sound transmission in the coastal seas is

much complicated due to the interference and scattering of sound waves with the sea

surface and bottom. The phenomena causes a signi�cant damping of sound waves

which reduces largely the range of tomography experiments. Furthermore, the ambi-

ent noise level in the coastal seas is higher than that in the open ocean due to various

man-made noises.

Variable tidal currents have recently been measured in a challenging way by a re-

ciprocal sound transmission between two shipboard-type acoustic stations by Zheng et

al. [51, 52]. A good agreement between the range-averaged current velocity measured

by the reciprocal acoustic transmission and the shipboard ADCP (Acoustic Doppler

current pro�ler) data obtained along the sound transmission line provided strong mo-

tivation for conducting the multi-station tomography experiment in the coastal seas.

They used the GPS (global positioning system) clock signal to synchronize the timing

of sound transmission and reception for all the acoustic stations. Precise measure-

ment of travel time di�erences between paired acoustic stations was also performed

by using the GPS clock signal.

In 1998, the CAT design was shifted from the shipboard to moored (self-contained)

type, and �ve sets of the moored CATs were constructed at the beginning of 1999. In

March 1999, the �rst CAT experiment was successfully carried out in the Neko-Seto

Channel of the Seto Inland Sea, Japan. A target for this experiment was the current

�eld measurement through reciprocal sound transmission between each station pair.

Now a next important work for the CAT is shifted to seek the inversion scheme
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suitable for coastal-sea application.

The inversion scheme for the open ocean tomography which has been developed

well is not directly applied to the coastal seas because of the complicated bottom

topography and coastline. Also the di�erent strategy of inversion is needed for the

coastal region with so variable velocity �elds due to strong tidal currents.

1.2 Data analysis for the coastal acoustic tomography - in-

version and data assimilation

There are two important points to be noti�ed in the inversion for the coastal tomog-

raphy. One is that current �elds so variable with tidal phases and this situation make

it diÆcult to retrieve a priori statistical information on current �elds while most in-

version schemes proposed previously for the open ocean tomography are based on a

priori statistical information. The other is how to include the inuence of coastlines

into the inversion scheme. In the coastal tomography, the tomography region might

be bounded by semi-enclosed and enclosed coastlines. At some cases, the coastlines

are located on the both sides of the tomography region or either side of it. Until now,

no inversions are constructed to consider the complicated coastlines.

The ocean acoustic tomography has attracted the attention of oceanographers

because of its potential ability of serving the data assimilation, a methodology in

which the observation data are combined optimally with a dynamical ocean model

[38, 49]. In the CAT experiment, acoustic stations are generally placed near the

coastlines, regarded as external boundaries of the observation region. However, the

CAT experiment can produce data in the interior of the region, where data so useful

for the data assimilation are obtained. Though several attempts have been made for

the data assimilation related to the ocean acoustic tomography (e.g., [15, 43, 6, 11,

35]), real tomographic data acquired in the ocean are rarely used. The assimilation

of the real tomography data into a ocean model is still at a standing phase. The
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algorithm for the assimilation of the CAT data is also a time to be developed because

the CATs start to be operated in the sea.

In this thesis, two kinds of optimal inversions to process CAT data are proposed.

The feasibility test of them are done through computer experiments in which various

vortex �elds are constructed by a spectral ocean model and the inversions are applied

to the data analyses for the CAT �eld experiments.

Two kinds of data assimilation techniques, a time-invariant Kalman gain �lter

method based on the Chandrasekhar-type algorithm and a ensemble Kalman �lter

method based on the Monte Carlo method, are proposed for the analysis of the CAT

data.

1.3 Overview

The contents of this thesis can be divided roughly into two parts. In the �rst part,

composed of Chapters 2, 3, and 4, inversion and data assimilation methods for the

CAT are introduced. Chapter 2 starts with a brief introduction of forward and inverse

problems and it is followed by the inversion schemes for the ocean acoustic tomogra-

phy. Chapter 3 is reserved for the data assimilation. The Kalman �lter algorithm and

its approximation methods, applicable to the CAT, are described. This is followed by

an inversion which does not require the a priori statistical information as presented

in Chapter 4. The optimal inversion for the CAT are examined through computer

experiments.Two methods to include the inuence of coastlines in the inversion are

proposed.

The second part, Chapter 5, deals with two kinds of data analyses, namely the

inversion and data assimilation. Finally, general discussion and conclusions are given

in Chapters 6 and 7, respectively.
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CHAPTER 2

FORWARD AND INVERSE PROBLEMS

2.1 Basic concepts of the ocean acoustic tomography

The ocean acoustic tomography is a scheme to infer sound speed or current velocity

�elds of the intervening ocean from the travel time of sound, which is the function

of sound speed and current velocity. It has special advantage to get the snapshots of

small scale to large scale phenomena in the ocean, which is so diÆcult to be done by

conventional shipboard and mooring techniques. The speed of sound in the ocean is

as fast as 1.5kms�1 which permits the reconstruction of synoptic �elds of mesoscale or

even large scale. In case of conventional moorings the number of data is equal to that

of one-point measurement stations, while N tomography stations produce the data

number of NC2. With increasing number of the stations, the spatial resolution for

the acoustic tomography becomes much better in comparison with the conventional

method. There is also a proper aspect of the acoustic tomography such that all data

are path-averaged ones along the ray and no point-measurement data are acquired.

Another aspect of the acoustic tomography is that it is one of the remote sensing

techniques. Ocean interiors, where the direct observation is diÆcult due to ship

traÆc, �shing grounds, military training areas, etc, become targets to be measured

continuously by the tomography stations arrayed at the periphery of the observation

region.
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2.2 Forward problem

Sound waves which propagate from the source to receiver are inuenced by the sound

speed C(x; y; z) and current velocity u(x; y; z) in the intervening water. This is called

the forward problem and the detailed properties of received signals can be calculated

by solving the sound wave equation with the given values of C and u. To understand

the forward problem is so important to solve optimally the inverse problem because

received acoustic signals have to be identi�ed for making the inversion accurate and

successful. As for the ocean acoustic tomography, the forward problem is solved by the

computer simulation in which a priori sound speed data obtained in the observation

region are used. The received signals can be identi�ed by comparing the simulated

results with observed ones.

The observable data for the ocean acoustic tomography are travel times and inten-

sities of received signals while the latter are out of scope in this study. Early arrival

rays and lately arrival rays take di�erent ray paths and thus experience di�erent

sound speed and current velocity �elds.

The travel times of sound between two acoustic transceivers along the reciprocal

ray paths can be formulated

t� =

I
��

ds

C(x; y; z) + u(x; y; z) � n
(2.1)

where +/- represents the positive/negative direction from one transceiver to another,

n the unit vector tangent to the ray path and s the arc length measured along the ray

path. �� are the positive and negative paths refracted by C(x; y; z) and u(x; y; z) �n.

The ray paths are generally not coincident for two ways in the reciprocal transmission,

but we can approximate �+ ' �� � �0 when u � n=C �1. The mean travel time

perturbation Æt and the di�erential travel time �t are expressed by

Æt =
1

2
(t+ + t�)� t0 ' �

I
�0

ÆC(x; y; z)

C0(z)2
ds (2.2)
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�t =
1

2
(t+ � t�) ' �

I
�0

u(x; y; z) � n
C0(z)2

ds (2.3)

where t0 is the travel time along the ray path �0 associated with a reference sound

speed C0(z) and ÆC(x; y; z)
�
= C(x; y; z)� C0(z)

�
is the sound speed perturbation.

We also assume ÆC=C �1. These are the linearized formulations for the acoustic

travel times obtained in the oceanic environment with C and u. Equations (2.2) and

(2.3) are kinds of integral equations with the unknown variables ÆC and u.

2.3 Inverse problem

Suppose that there are M numbers of rays and N numbers of discrete segments with

the unknown values ÆC(x; y; z) and u(x; y; z). Then equations (2.2) and (2.3) can be

rewritten

Æti =
NX
j

EijÆCj + Æ�i (2.4)

�ti =
NX
j

Eijuj +��i for i = 1; : : : ;M (2.5)

where Æ�i and ��i are introduced to represent the noise contributions to Æti and �ti,

respectively. Eij can be evaluated

Eij = �
I
�0ij

1

Cj(z)2
ds (2.6)

where �0ij is the distance traveled by the i-th ray in the j-th segment and Cj(z) the

reference sound speed in the same area j. Equation (2.4)/(2.5) is a set of M -order

coupled equations with the N unknown values ÆCj/uj. Both the equations can be

written with a compact matrix notation

y = Ex+ e (2.7)
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with

y = [Æt1; : : : ; ÆtM ] or [�t1; : : : ;�tM ]

E =

0
BBBBBB@

E11 � � � E1N

...
. . .

...

EM1 � � � EMN

1
CCCCCCA

x = [ÆC1; : : : ; ÆCN ] or [u1; : : : ;uN ]

e = [Æ�1; : : : ; Æ�M ] or [��1; : : : ;��M ] (2.8)

The inverse problem is to determine the unknown variable x which �ts optimally to

the observational data y under the presence of noise e.

2.4 Inversion schemes

2.4.1 Lease squares method

The least squares method is a classical method which can be applied to the overde-

termined case, i.e., M > N . The best �tted solution that makes the noise as small

as possible is obtained by minimizing the "objective function" (J)

J = eTe = (y � Ex)T (y � Ex)

= xTETEx� xTETy � yTEx+ yTy (2.9)

Di�erentiating equation (2.9) with respect to x in consideration of the following re-

lations

@(xTy)

@x
=
@(yTx)

@x
= y (2.10)

@(xTETEx)

@x
=
�
ETE+ (ETE)T

�
x (2.11)
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and setting
@J

@x
= 0 (2.12)

lead to the equation

ETEx = ETy (2.13)

When (ETE)�1 exists, the expected value x̂ for x reduces to

x̂ = (ETE)�1ETy (2.14)

ê = y �Ex̂ = (I� E(ETE)�1ET )y (2.15)

The solution based on equation (2.14) has serious shortcomings; (i)for the under-

determined case, i.e., M < N , the inverse matrix (ETE)�1 never exists, and (ii)the

solution may have an error of unacceptable magnitude due to the less independency

of data and the existence of signi�cant noises.

The characteristic properties of the least squares method can be illustrated by

using the singular value decomposition (SVD) of the matrix E. We shall put

E =
NX
i=1

�iuiv
T
i (2.16)

where ui and vi are the orthonormal eigenvectors for the data and model spaces,

respectively. The eigenvalues �i are non-negative and ordered with decreasing mag-

nitudes, i.e., �1 � �2 � � � � � �N � 0. By substituting equation (2.16) into (2.14), x̂

reduces to

x̂ =
NX
i=1

uTi y

�i
vi (2.17)

In equation (2.17), the divergence problem of the solution occurs when quite small

eigenvalues are included and the resulting solution becomes dominated by only the

terms which correspond to the small eigenvalues. This problem may be relaxed by
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multiplying the �lter factor fi to equation (2.17) as follows:

x̂f =
NX
i=1

fi
uTi y

�i
vi (2.18)

where 0 � fi � 1. For fi = 1, solution (2.18) reduces to the least squares solution

(2.17).

One of the well-known methods which consider the �lter factors is the damped

least squares method that starts from modifying the objective function (2.9) with an

additional term as

J = eTe+ �2xTx = (y �Ex)T (y �Ex) + �2xTx (2.19)

where �2 is a weighting factor to change the ratio of the variance of the error to that

of the solution. This method is sometimes called the tapered least squares method.

By setting the derivative of equation (2.19) with respect to x to zero as done in (2.12),

the solution and error result in

x̂ = (ETE+ �2I)�1ETy (2.20)

ê = y �Ex̂ = (I� E(ETE+ �2I)�1ET )y (2.21)

Here, the solution is also rewritten by using the equation (2.16)

x̂ =
NrX
i=1

�i(u
T
i y)

�2i + �2
vi (2.22)

and the �lter factors fi are expressed by

fi =
�2i

�2i + �2
(2.23)

The role of fi is to damp or �lter out the contribution of eigenvalues smaller than � on

10



the solution x̂. As the largest errors of the least squares solution are associated with

the smallest eigenvalues, it is clear that the damped least squares method is so useful

when the quite small eigenvalues appear in the solution (2.22). Another important

point for the damped least squares method is that the inverse matrix (ETE+ �2I)�1

always exists even for the underdetermined problem, M < N , as long as �2 > 0.

The best optimal value of �2 had been discussed by Hoerl and Kennard [25] and

Lawson and Hanson [31]. Recently, Hansen [20] and Hansen and O'leary [21] devel-

oped the L-curve method, proposed originally by Lawson and Hanson [31]. The

scheme of the L-curve method and its application to the analysis of the tomogra-

phy �eld data are presented in Chapter 4.

2.4.2 Gauss-Markov estimate

A quite di�erent approach of inversion, called the Gauss-Markov estimate, starts from

attempting to minimize the expected uncertainty, a di�erence between the true value

of x and its estimate x̂,

P =< (x̂� x)(x̂� x)T > (2.24)

where the individual diagonal elements, not the sum of their squares, are to be mini-

mized. The di�erence may be understood in comparison with equation (2.9), in which

the sum of the squared residuals
P
e2i is required to be minimized.

The x̂ may be described as a linear combination of data

x̂ = By (2.25)

In the method called the Gauss-Markov estimate, theM �N matrix B is determined

to minimize the diagonal components of P. Substituting (2.25) into (2.24) yields the
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expected uncertainty as

P = < (By� x)(By� x)T >

= B < yyT > BT� < xyT > BT �B < yxT > + < xxT > (2.26)

By using the following notations

Rxx =< xxT >; Ryx =< yxT >= RT
xy; Ryy =< yyT > (2.27)

equation (2.26) becomes

P = BRyyB
T �RxyB

T �BRT
xy +Rxx (2.28)

By use of the matrix inversion identity derived by Liebelt [32], equation (2.28) be-

comes

P = (B�RxyR
�1
yy )Ryy(B�RxyR

�1
yy )

T �RxyR
�1
yyR

T
xy +Rxx (2.29)

Since Rxx, Ryy and R
�1
yy are positive, the diagonal components of all three terms on

the right-hand side of equation (2.29) are positive. Therefore, the matrix B which

minimizes the diagonals of P must be chosen to vanish the �rst term of (2.29) as

B = RxyR
�1
yy (2.30)

The estimate x̂ obtained through B is called the Gauss-Markov estimate, and also

called the stochastic inverse estimate.

When using equation (2.7), Rxy is determined

Rxy =< x(Ex+ e)T >= RxxE
T (2.31)
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under the assumption that there is no correlation between x and e. Ryy is also

determined similarly

Ryy =< (Ex+ e)(Ex+ e)T >= ERxxE
T +Ree (2.32)

As a result, the solution x̂ and residual ê reduce to

x̂ = RxxE
T (ERxxE

T +Ree)
�1y (2.33)

ê = (I� ERxxE
T (ERxxE

T +Ree)
�1)y (2.34)

The Gauss-Markov estimate (2.33) is here compared with the damped least squares

estimate (2.20). When �2 is chosen to be the ratio of the covariance matrix of x to

that of e, the both equations become coincident.

A priori statistical information is needed to estimate Rxx and Rnn. The accurate

estimate is not obtained without suÆcient a priori information, but such information

is usually lacked especially for the current velocity. This is a limitation of the Gauss-

Markov estimate.

2.5 Summary and discussion

In this chapter, the method of data analysis associated with the ocean acoustic to-

mography have been investigated. In the forward problem, the travel times of sound

from one acoustic station to another are simulated by a computer, using the given

sound speed data. Comparison of the simulated and observed travel time patterns is

so useful in ray identi�cation which leads us to solve the inverse problem. The �elds

of temperature and current velocity are reconstructed by the inverse analyses which

use the identi�ed travel time data.

The least squares method, damped least squares method and Gauss-Markov method

are introduced as suitable inversion techniques for the ocean acoustic tomography.
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The Gauss-Markov method has been used as the most familiar technique. However,

in the case with lacked statistical information, the least squares method may be an

alternative to be selected. When the least squares method has problems related to

smaller eigenvalues for the matrix E, it should be replaced by the damped least

squares method.

14



CHAPTER 3

DATA ASSIMILATION

3.1 Introduction

The ocean model is capable of simulating the circulation at various scales with a

high spatial resolution. However, the accuracy of the ocean model must be validated

because of selectable, unknown parameters and open boundary conditions. On the

other hand, the observation can provide actual information on the ocean, but the

spatial resolution is usually so limited. The spatial resolution of the CAT is not

dramatically improved because there are special characteristics that the CAT deals

with the path-averaged information and has the limited number of acoustic stations.

This provides a strong motivation for assimilating of the CAT data into the ocean

model of a �ne spatial resolution.

Data assimilation is an intelligent technique to incorporate the measured data into

the numerical ocean model in an optimal way. An overview of the data assimilation

method is presented by Ghil and Malanotte-Rizzoli [18]. It may be separated into two

categories of sequential and variational assimilation methods. The Kalman �lter [28,

29] is one of the most well-known and widely used sequential assimilation methods.

The Kalman �lter algorithm uses a two-step procedure. First, the model is integrated

from the previous state to the present one at which the new observational data are

available. Second, this model prediction is corrected in comparison with the new

data.
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Recently, a �eld experiment was carried out by Elissee� et al. [11] who assimilated

the acoustic tomography and point-measurement data into the coastal ocean model.

They used the melding scheme in which the modeling result are merged with the

tomography and point measurement data. However, this melding scheme is based

on the statistical properties of model prediction and measurement errors which is

independent of time. It is likely that the statistical properties of the prediction and

measurement errors evolve with time in the coastal environments. The Kalman �lter

scheme, in which the prediction errors change with time through the model, may be

a more suitable assimilation technique than the melding scheme in the CAT.

In this chapter the basic Kalman �lter theory and two simpli�ed Kalman gain

�lters applicable to the CAT are introduced.

3.2 Kalman �lter theory

Propagation of the state vector in a linear stochastic discretized model may be rep-

resented by

xk+1 = Akxk +Bkwk + �kqk (3.1)

where xk is the state vector at time tk with length n, which corresponds to the

number of grid points multiplied by the number of prognostic variables. Ak is the

n� n state transition matrix that represents the ocean model dynamics. The matrix

Bk distributes the external forcing, represented by wk, over the whole ocean model

grid. The qk represents the model errors which include the uncertainty of the external

forcing and qk is assumed to have a zero mean and known covariance matrix Qk. �k

for qk plays the same role as Bk for wk

Under the assumption that measurements yk available for the data assimilation

are linearly related to the state vector xk, the observation equation is written

yk = Ekxk + ek (3.2)
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where Ek is the observation matrix which contains a relation between the prognostic

model variables and measurements and ek the measurement error assumed to have a

zero mean and known covariance matrix Rk.

The optimal state estimate and the model errors are propagated from tk to tk+1

in the following forms:

x
f
k+1 = Akx

a
k +Bkwk (3.3)

and

P
f
k+1 = AkP

a
kA

T
k + �kQk�

T
k (3.4)

respectively, where the superscripts f and a represent the forecasted value and an-

alyzed value, respectively. Pk is the error covariance matrix for the state vector

variables xk

The optimal estimate of the ocean state for the system at time tk+1 is obtained

xak+1 = x
f
k+1 +Kk+1(yk+1 � Ek+1x

f
k+1) (3.5)

where Kk+1 is the Kalman gain, the weighting factor added to the innovation vector

which is a di�erence between the observed and forecasted variables. The Kalman

gain is expressed by

Kk+1 = P
f
k+1E

T
k+1(Ek+1P

f
k+1E

T
k+1 +Rk+1)

�1 (3.6)

The Kalman gain is dependent on both the error covariance matrix P
f
k+1 and mea-

surement error Rk+1. The analyzed value of the error covariance matrix are given

as

Pa
k+1 = P

f
k+1 �Kk+1Ek+1P

f
k+1 (3.7)

The process described in equations (3.3) - (3.7) is the optimal estimate procedures

of the Kalman �lter. In principle, the Kalman �lter procedures are applicable to solve
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various data assimilation problems. However, if these procedures are used as it is,

computational and memory requirements increase rapidly with the dimension of state

vector x. Particularly, estimating the error covariance matrix Pk by equation (3.4)

is the most time consuming part because it takes 2n times the model computational

time needed for proceeding one time step. Moreover, it requires n�n memory spaces.

Another diÆculty in the application of the Kalman �lter to the data assimilation is the

appropriateness to use the linear model. Of course the Kalman �lter can be applied to

the nonlinear case, but more computational times in use of this algorithm are needed.

Therefore, a lot of e�ort has been devoted to �nd computationally e�ective Kalman

�lters, which may be separated into two groups of the time-invariant and time-variant

Kalman gain �lters.

3.3 Time-invariant Kalman gain �lter

The Kalman gain Kk+1 is independent of the measurements y as seen in the equation

(3.6), so it can be calculated in advance and stored for the following computation.

The Kalman gain stored is used during the subsequent �lterings. An noticeable

approach to the time-invariant Kalman gain �lter was proposed by Fukumori and

Malanotte-Rizzoli [15], who assimilated the simulated altimeter data and the simu-

lated path-averaged acoustic tomography data into the nonlinear, primitive equation

model of the Gulf Stream. They reduced remarkably the computational time by us-

ing the Kalman �lter state space with grid sizes much coarser than the original ones.

However, no applications of this assimilation technique to the coastal seas with com-

plicated coastlines and bottom topographies are attempted because of the diÆcult

interpolation method to simulate the land-sea boundary.

In this section, an approach based on the Chandrasekhar-type �lter algorithm is

introduced because this algorithm has no limitation in application to the coastal seas.

When the dimension of system noise process p is much less than that of system states

n, i.e., p << n, the Chandrasekhar-type algorithm provides a signi�cant reduction
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of computational time. The major aspect of this algorithm is that the incremental

covariance is factorized by eigendecomposition as

Pa
k+1 �P

a
k = Sk+1Lk+1S

T
k+1

P
f
k+1 �P

f
k = YkLkY

T
k (3.8)

where Sk+1 and Yk are n� p matrices and Lk+1 is a p� p matrix. For the state vec-

tor propagation equation (3.1) and the observation equation (3.2) the time-invariant

Kalman gain K are formulated as follows:

Gn+1 = Gn +YnLnY
T
nE

T

Rn+1 = Rn +EYnLnY
T
nE

T

Kn+1 = Gn+1R
�1
n+1

Sn+1 = Yn �Kn+1EYn

Ln+1 = Ln + LnY
T
nE

TR�1
n EYnLn

Yn+1 = ASn+1 (3.9)

where n denotes the number of iteration. The initial conditions are

Y0 = �; G0 = 0; R0 = R; L0 = Q

Equations (3.9) are iterated until

kKn+1 �Knk < �kKnk

where � is a predetermined constant. The time-invariant Kalman gain determined by

this procedure is substituted into the optimal estimate equation (3.5) directly. Thus

most time-consuming processes for equations (3.6) and (3.7) are not necessary to be
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conducted.

The system matrices A and �, used to determine the time-invariant Kalman gain

in equation (3.9), can be constructed numerically as follows. When using the time-

invariant model under no external forcing and noises, the model equation (3.1) reduces

to xk+1 = Axk. To know the matrix form of A may be a diÆcult task especially for

the nonlinear case. IF xk is replaced by the j-th column of the identity matrix, A is

determined from the model equation through the following steps:

(1) xk is replaced by the m-th column Ii;m of the identity matrix I.

(2) xk+1 is replaced by the m-th column Ai;m of A, and as a result, equation is

changed to

Ai;m = Ai;j � Ii;m

(3) By shifting m in Ii;m, we can determine the matrix form of Ai;j numerically.

Note that the time step to construct A is equal to not the model time step but the

measurement time interval because the model state is estimated every measurement

cycle or assimilation cycle. The model is evolved during the period between two

successive data assimilations.

The forcing matrix B can be constructed numerically in a manner similar to A. If

the model errors are assumed to be caused by only the external forcing, � is equivalent

to B. By assuming the state vector and noises are zero, the model equation (3.1)

reduces to xk+1 = Bwk. If wk is replaced by the j-th column of the identity matrix,

B is determined from the model equation through the following steps:

(1) wk is replaced by the m-th column Ii;m of the identity matrix I.

(2) xk+1 is replaced by the m-th column Bi;m of B, and as a result, equation is

changed to

Bi;m = Bi;j � Ii;m
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(3) By shifting m in Ii;m, we can determine the matrix form of Bi;j numerically.

This Chandrasekhar-type �lter approach has been developed by Heemink [22, 23]

to predict the coastal sea storm surge. This approach has also been operated success-

fully in combination with nonlinear tidal models [24]. However, the limitation due

to the time-invariant Kalman gain produces a diÆculty in application of this �lter to

variable coastal seas with strong tidal currents.

3.4 Ensemble Kalman �lter

New algorithms to relax the computational burden associated with the time evolution

of the error statistics have been developed in a more eÆcient manner. These are the

so called suboptimal schemes or SOS's. An approach of the SOS proposed by Todling

and Cohn [47] uses a station transition matrix of low rank to simplify the model

dynamics. The reduced rank square root (RRSQRT) �lter which approximates the

error covariance matrix at a lower rank is introduced by Verlaan and Heemink [48].

Another approach for solving this problem is the ensemble Kalman �lter (EnKF),

proposed by Evensen [14]. In this section, the EnKF is focused on because it deals

with the primitive equation models and as a result its computational burden is reduced

drastically. The EnKF is accompanied by the Monte Carlo method which takes

an ensemble of state vectors to determine the forecast state vector and the error

covariance matrix. The EnKF is here described briey, following Evensen [14] and

Madsen and Can~nizares [33].

When an N -size ensemble of initial states x
f
i;k+1 (i = 1; : : : ; N) are generated with

random errors, the updating of every ensemble member may be done by using the

following equation:

x
f
i;k+1 = F(xai;k;wk + qi;k) for i = 1; : : : ; N (3.10)
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where the model error qi;k is generated from a set of random number with zero mean

and covariance matrix Qk.

Evensen [14] used the ensemble mean of the state vector

�x
f
k+1 =

1

N

NX
i=1

x
f
i;k+1 (3.11)

as its forecast. The forecast of the vector covariance matrix is obtained by using every

member of the ensemble as

P
f
k+1 = S

f
k+1[S

f
k+1]

T (3.12)

when the i-th column of S
f
k+1 is expressed by

s
f
i;k+1 =

1p
N � 1

(x
f
i;k+1 � �x

f
k+1) (3.13)

In the EnKF algorithm, the measurement data should be regarded as random

variables, so it is reasonable to add random errors to the measurement data. In

no addition of random errors to the measurement data, the error covariance matrix

described by equation (3.13) becomes very small with only numerical errors [2]. The

ensemble of measurement data is obtained from

yi;k+1 = yk+1 + �i;k+1 for i = 1; : : : ; N (3.14)

where �i;k+1 is the measurement error which has a zero mean and known covariance

matrix Rk+1.

All ensemble members of the state vector are updated through the following equa-

tion:

xai;k+1 = x
f
i;k+1 +Kk+1(yi;k+1 � Ek+1x

f
i;k+1) for i = 1; : : : ; N (3.15)

22



The Kalman gain Kk+1 is determined by substituting the error covariance matrix of

equation (3.12) into equation (3.6).

3.5 Summary and discussion

The Kalman �lter technique is an intelligent method which can consider the time

evolution by the dynamic model and the optimal �tting between the model and

measurement over the observation domain. However, huge computational time is

needed to estimate the error covariance matrix included in the calculation of the

Kalman gain. Two kinds of the approximated Kalman gain �lters, proposed to reduce

the computational time, are discussed in this chapter. As for the time-invariant

Kalman gain based on the Chandrasekhar-type algorithm, computational time is

saved so much, but not applicable to the coastal seas with variable temperature and

current velocity �elds generated by strong tidal currents. Strong nonlinearity in the

current velocity �elds is not well described by this technique. The EnKF technique is

proposed as the best method of data assimilation applicable to the coastal seas with

strong nonlinearities.
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CHAPTER 4

COMPUTER SIMULATION OF THE CAT

4.1 Introduction

The ocean acoustic tomography is separated into two parts as temperature and ve-

locity tomographies according to the object of observation. The temperature tomog-

raphy converts the measured travel times of one-way transmitted sounds or the mean

of travel times for the reciprocally transmitted sounds into temperature �elds. The

di�erential travel times between the reciprocally transmitted sounds, inverted into

current �elds, are used for velocity tomography. In contrast to temperature tomogra-

phy, which needs precise positioning accuracy, precise clock accuracy is required for

the velocity tomography [38].

After the �rst proposition of acoustic tomography scheme for oceanic measurement

by Munk and Wunsch [39] the ocean acoustic tomography has taken rapid develop-

ment as a modern technology to monitor three-dimensional mesoscale temperature

structures in the ocean (e.g. [19, 8, 5, 7, 9, 30, 42, 37, 17, 50]). The possibility of water

velocity monitoring through sound transmission was demonstrated in the midocean

region on a 300km scale in 1983 [26], and on a 1000km scale in 1987 [10]. However,

no the three-dimensional monitoring of velocity structures is attempted because only

two or three acoustic stations were deployed in those �eld experiments.

A velocity tomography experiment with �ve stations was done in the south of the

Gulf Stream meandering region [3]. The wave-like energy ux radiated southward

from the Gulf Stream meander was well estimated at di�erent depth layers, but the
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velocity structure of cold rings separating from it was not imaged due to the failure

of data recording at one station. A computer simulation of velocity tomography was

carried out by Gaillard [16] who used a quasi-geostrophic ocean model with mesoscale

variabilities. The barotropic and baroclinic velocity �elds described in terms of the

stream function were the targets of inverse analysis. The reconstruction of velocity

�elds was worse for the barotropic mode than for the baroclinic modes, although the

reason for this was not well clari�ed.

As described in chapter 2, the conventional inverse method used in midocean

acoustic tomography for mapping temperature and velocity �elds is based on stochas-

tic inversion, which requires statistical information on both solution �elds and data

error. However,tidal currents in the coastal seas are extremely variable at each tidal

phase and sometimes induce two-dimensional vortices [45]. In such complicated sit-

uations it is unlikely that suÆcient statistical information on the solution �eld can

be obtained. Further simpli�cation of inversion is required for the reconstruction of

tidal currents in the coastal seas.

There is a prominent di�erence between the deep acoustic tomography (DAT)

and coastal acoustic tomography (CAT). In the coastal seas, current velocity �elds

are strongly inuenced by complicated shorelines. The �rst step of velocity �eld

inversion for CAT is done similarly to DAT by using travel time data obtained for

the ray paths which cross the interior of the observation region. At the next step, the

inversion result is modi�ed to satisfy the boundary conditions at the shorelines. This

modi�cation is e�ective especially for the near-shore region.

This chapter is concerned with the acoustic tomography of barotropic or depth-

averaged tidal vortices distributed in the coastal sea model. The main purpose of this

chapter is to develop a simple inversion method applicable to the acoustic tomography

of two-dimensional current �elds in the coastal seas. Vortex �elds induced by strong

tidal currents around straits, islands and peninsulas may be the best targets for this

study because of their two-dimensionality. The feasibility test of this simple method
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is performed through computer simulation.

Two methods are examined to consider the boundary condition at the coastline.

In the �rst method, current �elds are corrected to satisfy the boundary condition after

the inversion (Chapter 4.5). In the second method, the stream function is put zero

at the coastlines prior to the inversion (Chapter 4.6). In addition, the coordinate

transformation by using the boundary-�tted curvilinear grid generation technique

is introduced to make the above two methods applicable to the coastal seas with

complicated coastlines (Chapter 4.7).

4.2 Tidal vortex model

For the simulation of CAT the vortex �elds induced by strong tidal currents are

constructed by a two-dimensional spectral model. The model �elds are described by

the stream function 	 alone.

The most important parameter in understanding the performance of tomography

is a spatial resolution of inversion. This can be easily examined by distributing two-

dimensional vortices of various sizes in the tomography domain. To distribute tidal

vortices with expected strengths and sizes in the model domain, the wavenumber

spectrum of the stream function is given in the following form:

Skl = S0

"
a exp

�
�(
K � k1

�
)2
�
+ b exp

�
�(
K � k2

�
)2
�

+ c exp

�
�(
K � k3

�
)2
�
+ d exp

�
�(
K � k4

�
)2
�#

exp(i�kl) (4.1)

where K =
p
k2 + l2 (k and l are the horizontal components of wave number), S0

is the amplitude, �kl the random phase function and � the spectral width. The

maximum wave number K is 21 and the model domain is divided into 64�64 grid

points. Each component of the above spectrum shows peaks at wave numbers k1,

k2, k3 and k4, which are determined as 2, 3, 4 and 5, respectively. The spectral
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width � is given 0.3. The magnitude of each spectral component is weighted with

the parameters a, b, c and d. To test the performance of the inverse method, these

parameters are examined for three cases with tidal vortices of di�erent size. The

variable spectral peaks and random phases make it possible to construct expected

vortex �elds in the model domain. The tomographic experiment is conducted in the

5km�5km area located in the center of this model domain (Figure 4.1).

4.3 Forward problem and inverse analysis

4.3.1 Forward problem

As the coastal sea is modeled by a stream function which provides no information on

temperature, the sea is assumed to be homogeneous. In this situation, the ray paths

of sound are refracted by the vertical variation of sound velocity due to the pressure

and the vertical shear of water ow. In the coastal seas, ray paths can also be reected

by the sea surface and bottom. The complicated ray paths in the vertical section can

be projected onto the horizontal section in the analysis. The horizontal refraction of

ray paths due to the horizontal variation of sound velocity and the horizontal shear

of water ow is negligible in comparison with the refraction in the vertical section.

As a result, we can plot all ray paths as straight, horizontal lines. Furthermore, the

vertical component of velocity is assumed to be very small compared to the horizontal

ones and is thus not considered in this study.

The travel time ti along the i-th ray path �i in the two-dimensional ow �eld

u(x; y) is determined from the following path integral equation:

ti =

I
�i

ds

C0 + u(x; y) � n
(4.2)

where C0 is the reference sound speed, n the unit vector tangent to the i-th ray and

s the arc length along the i-th ray path. Equation (4.2) is nonlinear and can be
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Figure 4.1: Model domain and the con�guration of seven acoustic stations superim-

posed on the stream function �eld. The con�gurations for four, �ve and nine stations

are indicated above and below of the model domain, respectively. S1-S9 are the name

of stations.
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linearized by considering C0 >> u(x; y) � n. After the linearization, �i is replaced by

the ray path �0i for C0. The travel time di�erence �ti for the reciprocal transmission

between two acoustic stations is expressed by

�ti =
1

2
(t+i � t�i ) = �

I
�0i

u(x; y) � n
C2
0

ds (4.3)

where the superscripts + and � denote the opposite directions of sound transmission

[38]. In the �eld experiment, �ti is not error-free and is usually contaminated by

travel time errors due to the movement of acoustic stations, the interference of sound

waves with the sea surface and bottom, and so on. In our simulation experiments,

random errors are introduced in the simulated travel time data instead of the above

in situ travel time errors.

4.3.2 Inverse analysis

The inverse analysis is used to determine the unknown depth-averaged velocity �eld

u(x; y) from the travel time di�erence data �ti in equation (4.3). The u(x; y) in equa-

tion (4.3) is further examined to make the inversion eÆcient. The two-dimensional

vector �eld u may be decomposed into

u = u	 + u� (4.4)

where u	 is the solenoidal vector �eld and u� the nonrotational vector �eld. On a

horizontal plane (x; y) these are expressed by

u	 = r� (�	ẑ) =
�
�
@	

@y
;
@	

@x

�
(4.5)

u� = r� =
�@�
@x

;
@�

@y

�
(4.6)
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where ẑ is the unit vector in the vertical direction, 	 the stream function and �

the velocity potential with no relative vorticity. Here notice that according to the

projection slice theorem, the nonrotational component of current �elds due to tidal

sea level changes and bottom topography has no inuence on the tomography result

expressed by the stream function [38]. This means that acoustic tomography mea-

surements have the ability to measure only the solenoidal vector �eld. In section 4.5,

the projection slice theorem will be discussed in detail.

Introduction of stream function halves the number of unknown variables in the

inverse analysis. We shall here expand 	(x; y) into a truncated Fourier series:

	(x; y) =
NX
k=0

NX
l=0

fAkl cos 0(kx + ly) +Bkl sin 0(kx+ ly)g (4.7)

where Akl and Bkl are the unknown coeÆcients and 0 = 2�=L. L ( = 10km)

is the side length of the square inversion domain, which is taken as twice that of

the observation area to avoid the e�ect of periodicity (Fig. 1). N is taken as 4

(2.5km/cycle) in consideration of the number of unknown coeÆcients and the size of

resolvable vortices. Equation (4.7) then reduces to

	(x; y) =

(N+1)2X
j=1

PjQj(x; y) (4.8)

where

P = [A00; B00; A01; B01; : : : ; ANN ; BNN ]

and

Q(x; y) = [1; 0; cos 0y; sin0y; : : : ; cos 0(Nx +Ny); sin 0(Nx +Ny)]
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Substituting equation (4.8) into (4.3), we obtain

�ti =

(N+1)2X
j=1

Pj

Z Ri

0

@
@y
Qj(x; y)� @

@x
Qj(x; y) tan�i

C2
0

dx (4.9)

where �i is the angle between the eastward x-axis and the i-th ray path, and Ri

the distance between two stations measured along the x-axis. Equation (4.9) can be

rewritten in matrix form as

y = Ex+ e (4.10)

where

y = [�t1;�t2;�t3; : : : ;�tNr
]

Eij =

Z Ri

0

@
@y
Qj(x; y)� @

@x
Qj(x; y) tan�i

C2
0

dx

x = PT

The e denotes the observational errors, added to the travel time di�erences as random

errors. There is another source of error due to the inadequacies of the model which

cannot describe vortex �elds with length scales smaller than the spatial resolution

of the tomography array due to a limited number of stations and the truncated

wavenumber in the Fourier expansion. This error may also inuence the performance

of inversion.

Since the number of unknown parameters x to be estimated by inversion is greater

than the number of data y, the problem is underdetermined. The stochastic inverse

method is applied to obtain the optimum estimate of x [38]. The expected uncertainty,

the di�erence between the true value of x and its estimate x̂, becomes as shown in

(2.24). From the condition that makes the diagonal component of P minimum, the
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optimal estimate x̂ can be obtained as shown in (2.33) by

x̂ = RxxE
T (ERxxE

T +Ree)
�1y (4.11)

Each component of Rxx and Ree can be speci�ed when suÆcient statistical informa-

tion on current �elds is available [38]. Given the limited information, we shall assume

that all the components of Rxx and Ree possess the following constant values �
2
xx and

�2ee, respectively:

Rxx = �2xxI; Ree = �2eeI (4.12)

where I is the unit matrix. When putting �2 = �2ee=�
2
xx, x̂ reduces to

x̂ = V[�T� + �2I]�1�TUy (4.13)

where E = U�VT is given from the singular value decomposition of the coeÆcient

matrix E. The inversion in the form of equation (4.13) is called the ridge regression

[25] and also the damped least squares method [36].

4.3.3 The L-curve method

The next step is to determine the optimum value of the weighting factor �2. On the

basis of the Gauss-Markov theorem the covariances Rxx and Ree must be given as

a priori statistical information. However, the covariance of the solution �eld Rxx is

generally unavailable for tidal vortex �elds, which are variable at each tidal period.

The �2 is the weighting factor to minimize the magnitude of kxk in balance with

that of ky � Exk. Equation (4.13) can be rewritten

x̂ =
NrX
i=1

�i(u
T
i y)

�2i + �2
vi (4.14)

where ui and vi are the eigenvectors in the observation and the model spaces, respec-
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tively. The ui and vi has the following relationships with U and V

U = (u1;u2; � � � ;uNr
)

V = (v1;v2; � � � ;vNr
)

The �i are the eigenvalues comprising the diagonal components of �. Equation (4.14)

tells us that the solution x̂ becomes insensitive to �2 for �i > �2 and the inuence of

�i on x̂ is damped for �i < �2. There are a number of references in the literature on

the method to obtain the best selection of �2. The L-curve method recently developed

by Hansen and O'leary [21] is chosen as a simple, reliable one. The L-curve is a plot in

the (�(�); �(�)) plane, where parameters �(�) and �(�) are the size of estimated error

and solution. The idea understanding this method is that the optimum value of �2

is given as a point where the curvature of the concave L-curve becomes a maximum,

making both the size of estimated error and solution as small as possible in balance.

For the L- curve continuously di�erentiable up to the second order, its curvature �(�)

is de�ned as

�(�) =
� 0�00 � � 00�0

f(� 0)2 + (�0)2g3=2
(4.15)

where the superscript 0 means di�erentiation with respect to �. Without having a

priori statistical information on the solution �eld and data, the optimum value of �2

can be determined by this method.

4.3.4 Derivatives of the L-curve

It is possible to show that the L-curve always have an L-shape structure. From

equation (4.14) the x̂T x̂ and (y� Ex̂)T(y � Ex̂) can be obtained

� = x̂T x̂ =
NrX
i=1

�2i�
2

(�2i + �2)2
(4.16)
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� = (y � Ex̂)T(y �Ex̂) =
NrX
i=1

�4�2

(�2i + �2)2
(4.17)

,respectively, where � = uTi y. The derivative of � and � with respective to � become

d�

d�
=

NrX
i=1

2�j�j�2i
(�2i + �2)2

(4.18)

d�

d�
=

NrX
i=1

�2�j�j�i
�2i + �2

(4.19)

Thus

d�

d�
= �

 NrX
i=1

�i

�2i + �2

NrX
i=1

�2i
(�2i + �2)2

!
(4.20)

Therefore the calculation result of equation (4.20) is always negative, so that the size

of the solution � becomes smaller as the size of the estimated error � increases. As a

result, the slope of the L-curve is always negative. The second derivative of � with

respective to � is evaluated as follows:

d

d�

d�

d�

d�

d�
=

NrX
i=1

�4i � 3�2�2i
(�2i + �2)3

2�2j�j
� NrX
i=1

�2i
(�2i + �2)2

�2 �
NrX
i=1

�i

�2i + �2

NrX
i=1

�2i
(�2i + �2)2

(4.21)

Equation (4.21) shows that the L-curve is downward convex if
NrX
i=1

�4i � 3�2�2i is pos-

itive. This is a critical condition to make the L-curve method valid. This condition

provides the upper limit of �

� <
�maxp

3

where �max is the maximum eigenvalue. As the major role of � in the damped least

squares scheme is to reduce the e�ect of quite small eigenvalues on the solution, �
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should be greater than the minimum eigenvalue. Thus,
NrX
i=1

�4i � 3�2�2i is positive and

the resulting L-curve is downward convex, drawing a L-shaped curve.

4.3.5 Evaluation of the inversion result

The inversion result obtained by the computer simulation is evaluated by calculating

a correlation coeÆcient between the model stream function 	m and the reconstructed

stream function 	̂r :

� =

NgX
m=1

	m � 	̂rvuut NgX
m=1

	2
m �

vuut NgX
m=1

	̂2
r

(4.22)

where Ng ( = 900) is the number of grid points in the tomography domain. The

spatial resolution �R of the tomography system is determined by the number of ray

paths covering the observation region and may be de�ned as

�R =

s
A

M

where A is the area of the tomography domain and M the number of the ray path.

The number of terms for the truncated Fourier expansion should be determined �tting

to �R.

4.4 Computer simulation

4.4.1 Experiments with di�erent station numbers and error levels

The computer simulation of CAT has been conducted for four cases with four, �ve,

seven and nine stations (hereafter Cases I, II, III and IV, respectively), in which

the ocean model domain is surrounded adequately by the acoustic stations (Figure

4.1). �R is estimated as 4.2km, 2.5km, 1.2km and 0.8km for Cases I, II, III and IV,
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respectively. The conditions of computer simulation for each case are presented in

Table 1.

Table 4.1: Conditions of the simulation experiments for each case.
n Station Num. Ray Num. �R(km) Random Err. � �

Case I 4 6 12.2 st. 0.3 0.410

Case II 5 10 9.5 st. 0.3 0.803

Case III -A st.� 1/2 0.44 0.900

-B st. 0.74 0.887

-C 7 21 6.6 st.� 3/2 1.01 0.867

-D n.e. 0.1 0.914

-E st. 0.1 0.677

Case IV 9 36 5.0 st. 0.62 0.922

Case V -A 7 21 6.6 st. 0.59 0.854

-B st. 1.33 0.534

For these four cases, the model vortex �elds are constructed by putting a = 1.0, b

= 0.7, c = 0.5 and d = 0.3 in equation (4.1). The quality of vortex �elds reconstructed

by the inverse analysis, of course, depends on the con�guration of acoustic stations,

even given the �xed number of stations. In this paper, close attention is focused on

the number of stations rather than their con�guration. Thus only one con�guration

of stations is examined for each case, in which the sides of the polygonal domain are

taken as almost the same length.

No tomography experiments in the sea are error-free, so random errors should

be added to evaluate the performance of inversion. Random errors produced by

multiplying random numbers by the Gaussian distribution of a standard deviation

2� � 0.017ms are added to the travel time di�erences obtained in the simulation.

We shall call these random errors the standard error level. To clarify the e�ect of

the random errors on the inversion, Case III with seven acoustic stations is further

divided into four cases; Cases III-A, -B and -C are the cases in which random errors

are produced by multiplying the random numbers by 1/2, 1 and 3/2, respectively.

Case III-D is the error-free case.

Figures 4.2a, b, and c show the L curves, the � - � plots and the � - � plots for
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although the peak positions are not the same as those for the � - � plots. The

steepness of the peaks decreases with decreasing random error and is zero for the

error-free case. The optimum value of � may be determined as a peak position on the

� curve because the � curve cannot be obtained in the �eld experiment. At the peak

positions of � = 0.44, 0.74 and 1.01, the values of � are estimated as 0.900, 0.887

and 0.867 for Cases III-A, -B and -C, respectively. These satisfactory values of � are

found because the � curves are at around the corresponding peaks. For Case III-D

(error-free), the optimum inversion is obtained for any � smaller than 0.4 where the

� curve is nearly horizontal.

The L, � and � curves for Cases I, II and IV with di�erent numbers of stations

and the standard error level are shown in Figure 4.3. Except for Case IV, with nine

stations, there are no clear folds in the L curves (Figures 4.3a and b). As expected, a

steep peak placed at � = 0.62 is seen on the � curve for Case IV (Figure 4.3c). The

value of � reaches a large value of 0.922 at � = 0.62 and maintains values greater than

0.9 over the wide range of 0.1 < � <2.0. For Cases I and II, any values of � smaller

than 1.0 are selectable. According to equation (4.14), these results are expected when

� >> �. However, the inversion results are so bad, especially for Case I, because of

the insuÆcient number of stations.

A tidal vortex �eld prepared for the computer simulation is shown in Figure 4.4

with the contour plot of the stream function. A cyclonic vortex with a diameter

of about 15km is located at the middle of the domain, surrounded by four smaller

diameter anticyclonic vortices. The upper panel of Figure 4.5a shows the contour plot

of the stream function for Case III-B, obtained by the computer simulation in which

the optimum value of � is used. The contour plot of the di�erence between the model

and reconstructed stream functions is also shown at the lower panel of the �gure.

The overall feature of the vortices is well reconstructed, although the shape of the

central vortex is horizontally less elongated than that of the model stream function

�eld. The smallest anticyclonic vortex at the upper right is shifted lower and is spread
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Figure 4.4: Contour plot of the stream function for the model vortex �eld constructed

by putting a = 1.0, b = 0.7, c = 0.5 and d = 0.3 inequation (4.1).

The inversion results for Cases I, II and IV are shown in Figures 4.6a, b and

c, respectively. The four stations in Case I are too few for the vortex �eld to be

reconstructed. The inversion result is greatly improved for Case II with �ve stations,

but the size of the central cyclonic vortex is considerably smaller than that of the

model vortex �eld. The best agreement with the model vortex �eld is attained for

Case IV with nine stations. The � value is estimated as 0.410, 0.803 and 0.922 for

Cases I, II and IV, respectively.

4.4.2 Experiments with di�erent vortex �elds and standard error level

Tidal vortex �elds generated in the coastal seas are highly variable during a tidal

period. We examine the performance of the present inverse method for various vortex
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Figure 4.5: Contour plots of the stream function for the reconstructed vortex �elds

in (a) Case III-B and (b) Case III-E. The di�erences between the model and recon-

structed vortex �elds are presented at the lower panel of the �gures.
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Figure 4.5: (Continued)
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Figure 4.6: Contour plots of the stream function for the reconstructed vortex �elds

in (a) Case I, (b) Case II and (c) Case IV. The di�erences between the model and

reconstructed vortex �elds are presented at the lower panel of the �gures.
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Figure 4.6: (Continued)
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Figure 4.6: (Continued)
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Figure 4.7: (a)� curves and (b)� curves obtained for Cases V-A and -B. The vertical

lines point the peaks on the � curves.

�elds corresponding to di�erent tidal phases. Two kinds of vortex �elds are here

generated by putting a = 1.0, b = 0, c = 0 and d = 0 (Case V-A) and a = 0, b

= 0, c = 0 and d = 1.0 (Case V-B). The computer simulation condition are taken

the same as those for Case III-B, except for the prescribed vortex �eld. The vortex

�eld for Case V-A has intensi�ed energy in a wavenumber zone much lower than that

for Case V-B; the size of the vortices distributed is much smaller for Case V-B than

for Case V-A. The � curve forms a steep peak at � = 0.59 for Case V-A and � =

1.33 for Case V-B (Figure 4.7a). The � curves are also characterized by broad peaks,

distributed around the corresponding values of � (Figure 4.7b). The values of � are

given as 0.854 and 0.534 for Cases V-A and -B, respectively. The small value of � for
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Case V-B is due to the characteristic property of the model vortex �eld, i.e., there

are some vortices with sizes smaller than the spatial resolution of tomography (�R).

The unresolvable vortices may produce signi�cant errors in the inverse analysis. This

is also understood from the fact that optimum � is increased more for Case V-B than

for Case V-A. It should also be noted that in the L-curve method the optimum values

of � are changed exibly, depending on the length scale of vortices.

4.5 Boundary correction of the inversion result

4.5.1 Basic idea and projection slice theorem

The idea of the algorithm presented in this section is to deal with velocity �elds di-

vided into two components: solenoidal and nonrotational components. The solenoidal

component is determined from the acoustic tomography measurements. On the other

hand, the nonrotational one is known that it cannot be measured by the acoustic

tomography performed along the ray paths [38]. This idea has been proposed by

Norton [40] and Sielschott [44] using some di�erent algorithms.

The continuous vector �eld u can be decomposed into

u = u	 + u� (4.23)

as shown in (4.4) and u	 and u� is expressed by (4.5) and (4.6), respectively. The

projection slice theorem provides the theoretical basis of inversion algorithms for the

scalar-�eld tomography.The vector version of the projection slice theorem is here

introduced to show the relationship between 	 and � in sound transmission mea-

surements. To state the theorem, let the i-th ray path connecting the point a and

b parameterize in terms of the distance  from the arbitrary selected origin and the

unit vector n
?
normal to the ray, as illustrated in Figure 4.8. As a result, equation
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a

b

n

γ
n⊥

L ( γ ,    ) = δ(         − γ)    n⊥ n⊥ r

Figure 4.8: Schematic diagram showing the ray path L parameterized by its distance

 from the origin and by its direction represented by unit vector n.
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(4.3) reduces to

4ti(;n?) = �
I
L(;n?)

u(r) � n
C2
0

ds (4.24)

Here, r = (x; y). This equation is rewritten

4ti(;n?) = �
n

C2
0

�
I I

u(r)Æ(n
?
� r� )d2r (4.25)

where Æ is the Dirac delta function. Let us take two-dimensional Fourier transform

of u(r)

û(k) =

Z Z
u(r) exp(�ik � r)d2r (4.26)

where k is a wave number vector in the two-dimensional domain. The Fourier trans-

form of 4ti(;n?) with respective to  becomes

4̂ti(k;n?) =
Z Z

u(r) exp(�ikn
?
� r)d2r = û(kn

?
) (4.27)

Therefore, equation (4.27) reduces to

4̂ti(k;n?) = �
n

C2
0

� û(kn
?
) (4.28)

Now, the two-dimensional Fourier transform of equation (4.23) in use of equation

(4.5) and (4.6) is

û(k) = i(k� ẑ)	̂(k) + ik�̂(k) (4.29)

where 	̂(k) and �̂(k) are the two-dimensional Fourier transforms of 	(r) and �(r),

respectively. Substituting (4.29) into (4.28) yields

4̂ti(k;n?) = �
ik

C2
0

	̂(k) (4.30)

by n
?
� ẑ = n and n � n

?
= 0. The important point of this result is that �̂(k) is
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removed and the stream function 	 can be analyzed independently of the velocity

potential �. This result also means that acoustic tomography measurements have no

ability of measuring the velocity potential. Another explanation of this is that the

increment of the velocity potential from station to station has no change for any ray

paths connecting the stations.

4.5.2 Application algorithms

The remaining task is to determine � about which acoustic tomography measurements

do not contain any information. It is straightforward that the constraint r � u = 0

yields the Laplace's equation of �, which can be solved from the boundary values of

u. As the normal component of u vanishes on the closed boundary, we get

@�

@�
= �� � u	 (4.31)

and for the open boundary we get the boundary condition like

r�� = 0 (4.32)

By adding the solution of the Laplace's equation for � to the reconstructed stream

function �eld, the correction to satisfy the boundary conditions can be done. However,

the corrected �eld may not be the best solution which minimizes the residual based

on equation (4.3)

eTe =
NX
i=1

�
�ti +

I
�0i

u(x; y) � n
C2
0

ds
�2

(4.33)

Thus, the algorithm for the boundary correction is operated iteratively.

The algorithm is summarized as follows:

(i) Calculate the solution u	 from the observation data �ti

(ii) Judge whether or not the iteration continues.
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(iii) Calculate u� by solving the Laplace's equation of � which satis�es the boundary

conditions (4.31) and (4.32) and determine u = u	 + u�.

(iv) Correct the observational data �ti

�t0i = �ti +

I
�0i

u(x; y) � n
C2
0

ds

(V) Go back to (i) and calculate the corrected solution u0	 from �t0i to obtain the

�nal current �eld u = u + u0	.

The iteration is �nished at a few times. Through the iteration, we have a solution

u that ful�lls the di�erential travel time data optimally, but even at this stage the

boundary conditions may still be not satis�ed perfectly by the �nal solution u.

4.5.3 Computer simulation

To illustrate the signi�cance of the boundary correction the model vortex �eld men-

tioned above (see Figure 4.4) is modi�ed to impose a closed condition at both the

boundaries x = 0 and x = 5km. The computer simulation is conducted for Case

III-D, which is error-free and has seven acoustic stations. Di�erential travel times are

calculated between the acoustic stations distributed in the vortex �eld model.

Figure 4.9a shows the model vortex �eld described with velocity vectors. The

disappearance of u-component near the boundaries x = 0 and x = 5km is seen in

this �gure. The result of inversion analysis obtained without imposing the boundary

condition is shown in Figure 4.9b. Current vectors near the closed boundaries are not

in good agreement with the model vortex �eld. The estimated correlation coeÆcients

�u and �v for the u- and v-components are 0.780 and 0.674, respectively. The current

�eld corrected with the boundary condition and its deviation from the current �eld

without the boundary condition are shown in Figure 4.9c and 4.9d, respectively. The

velocity �eld is modi�ed to satisfy the closed boundary conditions and the correlation
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Figure 4.9: (a) The current �eld of ocean model and (b) the inversion result not

corrected with the boundary conditions (c) the inversion result corrected with the

boundary conditions (d) the deviation of (b) from (c)
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Figure 4.9: (Continued)
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coeÆcients are increased up to 0.814 and 0.745 for �u and �v, respectively.

4.6 Inverse analysis including the boundary condition

4.6.1 Algorithms

If the stream function can be modi�ed to satisfy the boundary condition, it is not

necessary to correct the inversion result as discussed in the previous section. A spec-

tral method including the coastal boundary condition was �rst used for the analysis

of currents in Lake Ontario by Rao and Schwab [41]. They incorporated the principle

of no ow perpendicular to a coastline into the eigenfunctions of current �elds. This

method has been applied to the mapping of current �elds from the drifter data by

Eremeev et. al. [12, 13]. Another method which used the boundary-�tted coordinate

system to convert any coastal boundary into a rectangular boundary was applied to

the analysis of the moored current meter data obtained on the Texas-Louisiana shelf

[4]. Most recently, the nowcast of surface velocity �elds in Monterey Bay were at-

tempted by using the HF radar data on the basis of the normal mode analysis [27].

They used the eigenfunctions which satisfy no ow across the closed boundaries. Here,

the method using the stream function put into zero at the coastlines is introduced.

Assuming that the coastline exists at both the eastern and western boundaries of

the model domain as described in Figure 4.9a, we shall represent the stream function

which satisfy no ow normal to the closed boundaries as follows:

	(x; y) =
NX
k=0

NX
l=0

fAkl cos 0(kx + ly) +Bkl sin 0(kx+ ly)gcos 0x (4.34)

The algorithm of this method is very simple and the remaining work is to estimate

Akl and Bkl which satisfy no normal ow condition at the coastline.
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4.6.2 Computer simulation

To illustrate the usefulness of this method the model vortex �eld of Figure 4.9a is

also used here. The current vectors reconstructed are modi�ed to satisfy the closed

boundary conditions (Figure 4.10) and the correlation coeÆcients become 0.840 and

0.662 for �u and �v, respectively.

0
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y(
km

)

0   5

x(km)1 m/s1 m/s

Inversion with B. C.

Figure 4.10: Inversion result reconstructed by including the boundary conditions

However, there is a serious shortcoming in this approach. This comes from that

the coastline is generally not �tted to the inversion domain put to be rectangular.

Thus, transforming the inversion domain to �t to the coastlines is needed for the

practical application of this method.
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4.7 Boundary-�tted coordinates and numerical grid genera-

tion

Coordinate transformation from the Cartesian coordinates system (x; y) to a new

curvilinear coordinate system (�; �) is introduced to treat the arbitrary shaped coast-

lines in the inversion. The scheme of this transformation is shown briey in Figure

4.11. The x and y on the physical domain (PD) represent the longitudinal and latitu-

x

y

Physical 
 domain

Computational 
    domain

ζ

η

Figure 4.11: Schematic diagram for the transformation of coordinate system.

dinal coordinates. The counterparts � and � on the computational domain (CD) are

the new curvilinear coordinates. This transformation method is called the boundary-

�tted coordinate method.
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To make a boundary-�tted inverse domain, the numerical grid generation method

with a lot of application to the coastal ocean modeling is used. An appropriate choice

of the numerical grid has a key role in determining the quality of the solution of the

coastal ocean model. The grid generation strategy is very important especially for the

complicated physical domain accompanied by the complicated physical phenomena.

One can use a numerical grid generation technique to design the boundary-�tted

curvilinear coordinate system for the coastal seas with complicated boundaries. There

are a number of methods for the coordinate transformation. In this section, a brief

discussion of the algorithm proposed by Thompson et. al. [46] is presented.

4.7.1 Trans�nite interpolation

The coordinate transformation may be done directly by interpolation from the bound-

ary location given by the latitude and longitude coordinate. Such coordinate genera-

tion procedures are referred to as the algebraic generation systems. Let the description

start from an unidirectional interpolation before discussing two-directional one.

Unidirectional interpolation means that the interpolation is done for only one

direction on the curvilinear coordinate. The simplest type of unidirectional interpo-

lation for the linear case is expressed by

r(�) = (x(�); y(�)) = (1�
�

Imax

)r(�1) +
�

Imax

r(�2) (4.35)

where 0 � � � Imax and r is the Cartesian coordinate vector. The r(�1) and r(�2) are

two boundary values for r. Figure 4.12 shows this relations simply. Equation (4.35)

can be written in another form

r(�) =
2X

n=1

�n(
�

Imax

)r(�n) (4.36)
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Figure 4.12: Schematic diagram of the unidirectional interpolation

where

�1(
�

Imax

) = 1�
�

Imax

�2(
�

Imax

) =
�

Imax

Of course, other interpolation methods are selectable for �. Here, we select the linear

interpolation for simplicity.

In two-direction method, a linear interpolation is done for two ways on the curvi-

linear coordinate by

r(�; �) =
2X

n=1

�n(
�

Imax

)r(�n; �) (4.37)

and

r(�; �) =
2X

m=1

 m(
�

Jmax

)r(�; �m) (4.38)
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where

�1(
�

Imax

) = 1�
�

Imax

; �2(
�

Imax

) =
�

Imax

 1(
�

Jmax

) = 1�
�

Jmax

;  2(
�

Jmax

) =
�

Jmax

(4.39)

This interpolation is called the trans�nite one since r(�; �) is de�ned on the entire

boundary between � = 0 and � = Imax for equation (4.37) and between � = 0 and

� = Jmax for equation (4.38).

The sum of equations (4.37) and (4.38) is

S(�; �) =
2X

n=1

�n(
�

Imax

)r(�n; �) +
2X

m=1

 m(
�

Jmax

)r(�; �m) (4.40)

where S(�; �) on the boundary � = 0 is given by

S(0; �) = r(0; �) +
2X

m=1

 m(
�

Jmax

)r(0; �m) (4.41)

This means that S(�; �) does not match with r(0; �) on the boundary � = 0 because

of the existence of the second term on the right hand side. The schematic diagram

of this mismatch is shown in Figure 4.13. Similar mismatches which occur on all the

boundaries are removed from S(�; �) by subtracting a function formed by reducing

the discrepancies between two boundaries by interpolation. Finally, the trans�nite

interpolation with the boundary correction results in

S(�; �) =
2X

n=1

�n(
�

Imax

)r(�n; �) +
2X

m=1

 m(
�

Jmax

)r(�; �m)

�
2X

n=1

2X
m=1

�n(
�

Imax

) m(
�

Jmax

)r(�n; �m) (4.42)
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Figure 4.13: Schematic diagram of the boundary matching in the trans�nite interpo-

lation

4.7.2 Elliptic grid generation systems

A set of elliptic partial di�erential equations serves as a mean of coordinate trans-

formation from PD to CD. Grids generated by the elliptic grid generation system

generally have a tendency to be smoother than those by the algebraic grid generation

system [46]. The Laplace or Poisson type systems are the most common form of the

elliptic grid generation system. The basic coordinate transformation between (x; y)

and (�; �) is described by the following system of the Poisson's equation:

@2x

@�2
+
@2x

@�2
= P (x; y)

@2y

@�2
+
@2y

@�2
= Q(x; y) (4.43)

where P (x; y) and Q(x; y) are the control functions which control the spacing and

orientation of the coordinate lines. The system (4.42) reduces to the Laplace's system

when P (x; y) = Q(x; y) = 0. Before generating a grid on the CD, the initial guesses
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of x and y on the CD are done by the trans�nite interpolation. The grid then

can be generated by solving the Laplace or Poisson systems for both the x and y

numerically. The boundary conditions for solving this system are the values of the

(x; y) coordinates at the boundaries of the CD, which correspond to longitudes and

latitudes along the coastlines on the PD. The elliptic grid generation systems of

Laplace or Poisson type have better quality of smoothness, orthogonality, and well

distributed interior.

4.7.3 Application to the tomography �eld

When the boundary-�tted coordinate transformation is applied to the CAT inversion

domain, we shall introduce the new stream function on the CD (see equation (4.7))

	(�; �) =
NX
k=0

NX
l=0

�
Akl cos(�k� + �l�) +Bkl sin(�k� + �l�)

�
(4.44)

where

� =
2�

L�

; � =
2�

L�

Here, L� and L� are the side lengths of the square in the � and � direction, respectively.

From the above equation, u(�; �) and v(�; �) are also obtained as

u(�; �) = �
@	

@�
; v(�; �) =

@	

@�
(4.45)

For including boundary condition, equation (4.34) may be rede�ned on the CD by

multiplying cos�� in equation (4.44).

The remaining task is to make a coordinate transformation for the integral equa-

tion (4.3). Here, note that the ray paths are not straight lines on the CD. Thus, the

integration on the CD is approximated by the sum of the segmented integral sections
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as follows:

�ti = �
 
r1 �

I
�0i1

u(�; �) � n1
C2
0

ds + r2 �
I
�0i2

u(�; �) � n2
C2
0

ds+

� � �+ rn �
I
�0in

u(�; �) � nn
C2
0

ds

!
(4.46)

where

�0i1 + �0i2 + � � �+ �0in = �0i

and n1, n2,� � �, nn are the unit vectors tangent to the i1-, i2-,� � �, in-th ray segments,

respectively. Here, � and s are the lengths on the CD. The r1, r2,� � �, rn are the ratios

of the unit arc lengths on the PD to those on the CD. By this approach, equation

(4.9) is transformed to

�ti =

 (N+1)2X
j=1

r1 � Pj
Z Ri1

0

@
@�
Qj(�; �)� @

@�
Qj(�; �) tan�i1

C2
0

d�

+

(N+1)2X
j=1

r2 � Pj
Z Ri2

Ri1

@
@�
Qj(�; �)� @

@�
Qj(�; �) tan�i2

C2
0

d�

+ � � �+
(N+1)2X
j=1

rn � Pj
Z Rin

Rin�1

@
@�
Qj(�; �)� @

@�
Qj(�; �) tan�in

C2
0

d�

!
(4.47)

where

P = [A00; B00; A01; B01; : : : ; ANN ; BNN ]

and

Q(�; �) = [1; 0; cos��; sin��; : : : ; cos(�N� + �N�); sin0(�N� + �N�)]

Here, �i1, �i1,� � �, �in are the angles between the �-axis and the i1-, i2-,� � �, in-th ray

segments. Ri1, Ri2,� � �, Rin are the start or end points of each ray segment along the

�-axis.
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Note that the current �eld reconstructed by the inversion which uses equation

(4.46) is represented by the function of � and �. This means that when u and v

on the CD are transformed to those on the PD, the directions of u and v are also

changed. Figure 4.14 shows the schematic diagram for the transformation of u and v

from the CD to PD. When putting the angle between u(�; �) and uo(x; y) into �x and

that between v(�; �) and vo(x; y) into �y (�x and �y are measured counterclockwise),

the u(x; y) and v(x; y) transformed on the PD is expressed by follows:

u(x; y) =
u(�; �)( sin �x + cot �y cos �x)� v(�; �)( cos �x + tan �x sin �y)

tan �x + cot �y

v(x; y) = tan �x � u(x; y) + v(�; �)( cos �y + tan �x sin �y) (4.48)

for �y 6= 0 and,

u(x; y) =
u(�; �) cos �x � v(�; �)( cos �y + tan �x sin �y)

tan �x

v(x; y) = u(�; �) cos �x (4.49)

for �y = 0.

4.8 Summary and discussion

A computer simulation of the CAT has been carried out to �nd out the inversion

scheme suitable for the two-dimensional tidal vortex �elds with a horizontal scale of

5km�5km, and to determine the optimum number of stations for the model vortex

�eld. The simulation was conducted with four kinds of con�gurations constructed

with four, �ve, seven and nine acoustic stations. In most cases, the random errors of

the Gaussian distribution were added to the travel time di�erence data to evaluate

the e�ect of errors on the inversion. The model vortex �elds with di�erent length

scale have been examined to test the performance of the inversion.

The conventional stochastic inverse method is reduced to the damped least square
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Figure 4.14: Schematic diagram for the coordinate transformation of u and v. The uo
and vo represent the velocity components in the orthogonal curvilinear grid system

method because variable tidal vortex �elds in the coastal seas make it diÆcult to

obtain suÆcient a priori statistical information on the solution �eld. The appropriate

selection of the weighting factor �2 was found to be the most important point in

obtaining an optimum inversion inversion. The L-curve method�searching for a point

where the curvature � of the L curve becomes maximum�is applied to determine the

optimum �. The results of the computer simulation show the usefulness of the L-curve

method in which the optimum � can be determined exibly, depending on variable

vortex �elds and the data errors. When tidal vortices with various length scales
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coexist, vortices smaller than �R are diÆcult to reconstruct, serving to increase

�. Even in such complicated conditions, vortices larger than �R can still be well

reconstructed by use of the optimum �. The L-curve method is proposed as a simple

method for reconstructing two-dimensional tidal vortex �elds in the coastal seas.

Given the suÆcient a priori statistical information, the full form of the covariance

matrix of the solution may be determined a priori, serving to improve the performance

of the inversion.

New methods for the CAT inversion including coastal boundaries are also pro-

posed. One method is to correct the inversion result to satisfy the boundary condi-

tion. The other is to include the boundary condition into the stream function �eld

which satisfy the closed boundary condition.

The role of the new methods in the inversion are investigated by performing the

computer simulation. It is shown that application of boundary conditions improved

the inversion results to be consistent with the model �eld.

In addition the boundary-�tted curvilinear coordinates are introduced to include

the arbitrary shaped coastal boundaries into the inversion. The boundary-�tted curvi-

linear coordinates may broaden the application of the CAT to the coastal seas with

complex coastlines.
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CHAPTER 5

ANALYSES OF THE REAL OCEAN DATA

5.1 Introduction

In this chapter the inversion and data assimilation methods proposed in the previ-

ous chapters are applied to two cases of �eld experiments. In one experiment, the

tomography domain is reserved at the central part of the coastal sea distant from the

shoreline. In another one, the acoustic stations are taken near the shoreline which

surrounds the tomography domain.

5.2 Bungo Channel experiment

5.2.1 Site and Method

A CAT experiment was carried out at the central part of the Bungo Channel of the

Seto Inland Sea during June 28 - 30, 1999 (Figure 5.1). In this experiment four

acoustic stations (T1 � T4) were placed at the corners of the square region with side

length 5km and one (T5) at the center of the square. An upward looking ADCP was

moored 10m above the bottom at station A near T5 to obtain comparison data with

the CAT. The experiment was carried out during 18:00 June 28 to 12:00 June 30.

Sound signals were transmitted every 6 minutes in this experiment.

The con�guration of the CAT mooring system is shown in Figure 5.2. Each station

are composed of a 5.5kHz transmitter and hydrophone, mounted on the mooring line
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Figure 5.1: Location map of the Bungo Channel experiment. The position of the

acoustic stations (T1 � T5) is marked by the dots and that of the ADCP mooring

station (A) by the square.
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Figure 5.2: Mooring design for the Bungo Channel experiment

at 17m and 18m above the bottom, respectively. The transmitter and hydrophone

are designed to stand up vertically by a subsurface oat. Each mooring system is

also equipped with the Global Positioning System (GPS) to synchronize the timing of

sound transmission and receiving with precise accuracy. The travel time data acquired

at each station are saved in the memory inside the pressure housing supported by a

surface buoy. As the bottom topography is relatively at with a oor depth of about

90m around the observation region, all the mooring stations have the same design.

5.2.2 Inversion

Figure 5.3 shows the time series of di�erential travel times obtained for all the station

pairs in the Bungo Channel experiment. These time series were smoothed through 30

minutes running mean. Because of the weak signals obtained between T1 and T3,
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Figure 5.3: Time series of di�erential travel times obtained for all the station pairs

in the Bungo Channel experiment.
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Figure 5.3: (Continued)
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the di�erential travel time data between T1 and T3 were not included in the inverse

analysis.

In the Bungo Channel experiment the ray paths T1-T4 and T2-T3 were directed

to the north-to-south and T1-T2 and T4-T3 to the east-to-west, respectively. Thus,

in the inversion the (x; y) coordinate is rotated counterclockwise by 10Æ as shown in

Figure 5.4 to reduce the nullspace in the matrix E. If the (x; y) coordinate is used

x

y

Lx

Ly

Lx/4 Lx/2 Ly/4

Ly/2

T1 T2

T3

T5

T4

10
o

N

E

Figure 5.4: Sketch of the tomography and inversion domains for the Bungo Channel

experiment. Lx and Ly are the east-west and north-south lengths of the inversion

domain, respectively.

in the inversion without rotation, no information is obtained on the u-components

of current near the ray paths T1-T4 and T2-T3 and the v-component near the ray

paths T1-T2 and T4-T3. The lack of information results in the increasing nullspace

in the matrix E.

Figure 5.5 shows the reconstructed stream function �elds obtained at the phase

when the tidal current changes its direction from north to south. Semi-closed stream-
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Figure 5.5: Reconstructed stream function �elds obtained during 20:30 to 21:54, June

28.
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Figure 5.6: Reconstructed stream function �elds obtained during 2:30 to 3:54, June

29.
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Figure 5.7: Comparison of the ADCP and inversion results at the ADCP station A.

The upper and lower panels are for the ADCP and inversion, respectively. A scale of

velocity is drawn at uppermost part of the �gure.
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lines with a counterclockwise rotation are visible during 21:12 to 21:24 of June 28.

More detailed maps show that an elliptical vortex is generated inside the semi-closed

streamlines. Except this period, the streamline patterns are fairly monotone. The

current �elds obtained 6 hours later are shown in Figure 5.6. At this time, the current

direction change from south to north, inducing a clockwise elliptical vortex during

3:06 to 3:24 of June 29 (Figure 5.6). The inversion results obtained at station A

are compared with the ADCP data in Figure 5.7. The inversion results have the

best �t with the deepest ADCP data obtained at the 80m depth. The mean and

standard deviation of the velocity di�erence between both the data at this depth

are 8.4�6.6cms�1 for the magnitude and 8.0�7.1Æ for the direction. It should be

remarked that the velocity is underestimated by the CAT. The major source of this

underestimation may come from that CAT produces path-integrated data along the

ray while ADCP makes point measurements in the horizontal space.

5.3 Neko-Seto Channel experiment

5.3.1 Site and Method

A CAT experiment was carried out in the Neko-Seto Channel of the Seto Inland Sea,

Japan during March 2 - 3, 1999 (Figure 5.8). Five acoustic stations (S1 � S5) were

used in this experiment. The same CAT systems as those used in the Bungo Channel

experiment were deployed at the nearshore stations of about 10m depth not to disturb

ship traÆc. All the acoustic stations transmitted sound signals every 5 minutes at a

synchronized timing. The distances between a pair of acoustic stations ranged from

2km to 5km. A transmitter and hydrophone were mounted on the mooring line at 5m

and 4m above the bottom, respectively. Figure 5.9 shows the sketch of the mooring

system.

Because of the complicated shoals near station S4, any travel time data between

S1-S4 and S2-S4 were not acquired. The sound transmission between S2 and S3 was
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Figure 5.8: Coastline and bathymetry of the Neko-Seto Channel CAT experiment.

The location of the CAT stations (S1 � S5) are shown by the dots. The white and

black lines indicate the ray paths of successful and failed transmissions, respectively.
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Figure 5.9: Sketch of th mooring system for the Neko-Seto Channel experiment.

prohibited by a cape protruded into the o�shore.

Overall current features in the Neko-Seto Channel are characterized by a eastward

tidal jet which ushes out from a narrow inlet located at the western part of the region.

At the ood tide, the strengthened tidal jet induces a pair of tidal vortices [45]. The

location of the vortex pair can also be seen through the bottom topography in Figure

5.8. Better reconstruction of the tidal vortex generation by the optimal analytical

method for CAT proposed in the previous chapters is the main target of this section.

The validity of the inversion results is con�rmed in comparison with the results of

the shipboard ADCP surveys, which were done inside of the observation region in

parallel to the tomography experiment.
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5.3.2 Inversion

The time series of the di�erential travel times obtained for all the station pairs are

shown in Figure 5.10. During two and half hours after 8:00 March 3, the station S5

did not work well because of the drifting of the mooring system, so the inversion were

not performed during this period. The time series data were smoothed through 30

minutes running mean. Major variability of the time series was a semi-diurnal tide.

However, the time series for S2-S5 were out of phase to those for S1-S3 though the

ray path S1-S3 was close to the ray path S3-S5. This means that currents along these

two ray paths have an reverse direction.

In order to introduce the shape of the coastlines in the inversion, we shall use

the boundary-�tted curvilinear coordinates. As shown in Figure 5.11, the physical

domain (PD), which covers the acoustic tomography region bounded by northern and

southern coastlines, is transformed into a rectangular computational domain (CD).

The eastern and western boundaries of the CD are determined to cover all the acoustic

rays. The rectangle represented with dashed lines in the upper panel of Figure 5.11

is the inversion domain that may be utilized in the conventional inversion.

Figure 5.12 shows the reconstructed current �elds obtained every hour by the

inversion including the coastal boundary correction. The initiation, growth,

translation and decay of the tidal vortices are well visible in the reconstructed current

�elds. At the start of the CAT experiment a clockwise vortex is developed in the

region surrounded by S1, S2, S4 and S5, and its shape and location is well compared

to the ADCP data, represented by the red velocity vectors (Figures 5.12(b) and

(c)). This vortex diminishes rapidly in the slack water (Figure 5.12(d)). A vortex

pair with a east-to-west arrangement is developed with increasing eastward current

(Figures 5.12(g) and (h)). This vortex pair exists for the next two hours (Figures

5.12(i) and (j)) and diminishes in the slack water (Figure 5.12(l)). A vortex pair

with the reverse rotation appears at the phase of maximum westward current (Figure

5.12(m)). The western, clockwise vortex is absorbed into the narrow outlet (Figure
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Figure 5.10: The time series of the di�erential travel times obtained for all the station

pairs in the Neko-Seto Channel experiment.
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Figure 5.11: Curvilinear coordinate transformation applied to the Neko-Seto Channel

experiment. The upper panel shows the PD surrounded by the thick solid line. This

PD is transformed into the rectangular CD in the lower panel.
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Figure 5.12: Inversion results obtained at various tidal phases. The red vectors in

(b)-(c) and (t)-(u) represent the shipboard ADCP data obtained during 14:45 to 16:45

March 2 and during 10:40 to 12:40 March 3, respectively.
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Figure 5.12: (Continued)
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Figure 5.12: (Continued)
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Figure 5.12: (Continued)
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5.12(n)) and the both vortices diminish in the slack water (Figure 5.12(o)). The next

ood tide is stronger than the previous one which occurred 12 hours ago. At this

time, the vortex pair is arranged in the north-to-south direction (Figures 5.12(t) and

(u)). Such di�erence of the vortex pair at the time lag of 12 hours is caused by the

diurnal component of tide. The ADCP data obtained during 10:40 to 12:40 March 3

are in good agreement with the inversion results in the western half of the tomography

domain while the current directions are opposite at the eastern edge of the domain

(Figure 5.12(t) and (u)). The reason for this disagreement is that the number of ray

paths is smaller in the eastern half of the tomography domain than in its western

half.

5.4 Application of the data assimilation to the Neko-Seto

Channel data

5.4.1 Numerical ocean model

In order to obtain the inversion estimates which are consistent with the dynami-

cal laws such as mass and momentum conservation, the Kalman �lter technique is

needed to be combined with a deterministic ocean model where these physical laws are

reected. For the assimilation of CAT data the Princeton Ocean Model (POM) devel-

oped by Blumberg and Mellor [1] is used. This model is a three-dimensional primitive

equation model with a free surface and formulated in a sigma coordinate vertically

and a Cartesian coordinate horizontally. This model uses a mode splitting technique

to calculate separately an external, barotropic and internal, baroclinic modes. In this

study, the data assimilation is performed only for the barotropic mode because the

vortex �eld which is dominant in the Neko-Seto Channel is quite barotropic. Thus,

the state vector x in (3.1) is composed of two-dimensional velocity components (u; v)

and surface elevation �, which results in 2193 state vector length.
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The external mode equations are obtained by integrating the internal mode equa-

tions over the depth, thereby eliminating all vertical structures. The conservation of

mass and momentum for the external mode are expressed by
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Here, the overbars denote vertically integrated velocities and < wu(0) > and <

wv(0) > are the wind stress components and < wu(�1) > and < wv(�1) > are the

bottom stress components. The horizontal eddy friction terms ~Fx and ~Fy are de�ned

as
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For the horizontal viscosity coeÆcient AM the Smagorinsky di�usivity is used. The

formula for the Smagorinsky di�usivity is

AM = C�x�y
1

2
jrV + (rV)T j (5.5)

where parameter C is given 0.2. An advantage of the Smagorinsky di�usivity is that

AM is speci�ed depending on the model resolution and velocity. AM decreases as

resolution is improved and velocity gradients become smaller [34].
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The model domain is chosen as a rectangular basin which cover the entire to-

mography domain with 38 � 27 grid points (Figure 5.13). The grid size is 200m

Figure 5.13: Model gird

for x- and y-directions and the realistic bottom topography is taken from the Coastal

Area Topographic Map edited by the Japan Geographical Survey Institute. The open

boundaries are introduced on the eastern and western sides. The time interval is set

to 1s to satisfy the typical CFL (Courant-Friedrichs-Lewy) condition. M2 tidal sea

level changes obtained at the nearest tidal gauge are given as the external forcing at

the eastern and western open boundaries.

5.4.2 Data assimilation

In order to assimilate the CAT data into the two-dimensional ocean model the time-

invariant Kalman gain �lter based on Chandrasekher-type algorithm and the ensemble
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Kalman �lter (EnKF) based on Monte Carlo method are here applied to the Neko-

Seto Channel data. Note that data assimilated into the model are not the current

�elds themshelves reconstructed by the inversion but the di�erential travel times

obtained for each station pair because unknown errors are added to the reconstructed

data after the inversion. Therefore, di�erential travel times are also calculated for

the ocean model to make the innovation vector in (3.5). As the two-dimensional

model used for the assimilation provides no information on temperature and salinity,

the model ocean is assumed to be homogeneous. Thus, the ray paths of sound are

refracted by the vertical pro�le of sound speed which increases with the pressure.

However, since the current �elds are barotropic in this region, only the straight,

horizontal ray paths (direct ray paths) are considered in this study. The observation

matrix Ek is obtained by projecting velocity �elds onto the ray paths and integrating

along each ray path. As a result, the ek of equation (3.2) includes errors caused by

this assumption.

For the time-invariant Kalman gain �lter application the measurement error co-

variance matrix Rk and model error covariance matrix Qk should be speci�ed previ-

ously to calculate the Kalman gain. In consideration of the travel time accuracy of

the CAT system ,the longer the distance between two acoustic stations, the smaller

the velocity error becomes. Thus, the diagonal components of Rk are determined

in the range of (0.05ms�1 � 10�3)2 and (0.1ms�1 � 10�3)2 by considering the dis-

tances between the stations. The measurement errors are assumed to be independent

of the model errors and uncorrelated with time, so that Rk has only the diagonal

components.

The model errors, caused by the tidal elevation uncertainties at the open bound-

aries, are diÆcult to be estimated. Those may be determined by a combination of

dynamical intuition and trial-and-error. After the use of various values for the model

errors the performance of the Kalman �lter can be judged by monitoring di�erences

between the observed and calculated di�erential travel times. The variance of model
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errors is chosen to be (80cm)2 for all the open boundary grids of the model. The

model errors are assumed to be distributed through the following correlations

< �(x0; ym)�(x0; yn) >= (80cm)2 exp

�
� a

q
(ym0 � yn0)2

�

< �(xM ; ym)�(xM ; yn) >= (80cm)2 exp

�
� a

q
(ymM � ynM)2

�
(5.6)

where x0 and xM denote the position at the western and eastern boundaries, respec-

tively. The (ym0, yn0) and (ymM , ymM) are the set of the arbitrary boundary points

at western and eastern boundaries, respectively. The a is determined 0.9. Before the

time-invariant Kalman �lter assimilation starts, the model is operated with sea level

changes at the open boundaries. After the �rst spinning up of the model for a day,

the assimilation starts.

To perform the assimilation by means of the EnKF, one hundred members of the

state vectors are selected for the ensemble, which are made by adding the random

errors to the sea level changes at the open boundaries. This process starts at the

spinning up of the model for a day without the data assimilation. Each member of

the ensemble is propagated forward with time through the ocean model and produces

various initial state vectors just before the assimilation starts. During the data as-

similation, the error covariance matrix P
f
k, necessary for calculating Kalman gain,

can be determined by using the mean and individual members of the ensemble. As

described in Chapter 3, the tomography data should be disturbed by random errors

to make an ensemble of measurements. The random velocity errors, which have the

Gaussian distribution with a standard deviation of 5cms�1 for every pair of acoustic

stations, are added to the tomography data.

Results from two kinds of data assimilations and the model result obtained at

the phases of ood tides when strong tidal vortices appear are compared in Figures

5.14, 5.15, 5.16 and 5.17. In the model results without the data assimilation, tidal

currents are too weak for actual tidal vortices to be generated even if the actual sea
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Figure 5.14: Vector plots of the tidal current �elds obtained at 22:30 March 2 from the

model (a) without assimilation, (b) with the time-invariant Kalman �lter assimilation

and (c) with the EnKF assimilation.
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Figure 5.15: Vector plots of the tidal current �elds obtained at 23:30 March 2 from the

model (a) without assimilation, (b) with the time-invariant Kalman �lter assimilation

and (c) with the EnKF assimilation.
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Figure 5.16: Vector plots of the tidal current �elds obtained at 10:30 March 3 from the

model (a) without assimilation, (b) with the time-invariant Kalman �lter assimilation

and (c) with the EnKF assimilation.
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Figure 5.17: Vector plots of the tidal current �elds obtained at 11:30 March 3 from

the model (a) without assimilation, (b) with the time-invariant Kalman gain �lter

assimilation and (c) with the EnKF assimilation. The red vectors represent the

shipboard ADCP data obtained during 10:40 to 12:40 March 3.
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level data are imposed as the open boundary conditions of the model. The results

from the time-invariant Kalman gain �lter show tidal currents strengthened a little,

but vortex formation is still not satisfactory in comparison with the pure inversion

results. The role of the data assimilation is drastically understood with the EnKF

results. The simulated vortex �elds are surprisingly improved through the EnKF

technique. The vortex shapes and locations are similar to the results of the pure

inversion. The strength of the vortices obtained by the EnKF technique is closer to

the ADCP data than from the pure inversion.

The results of data assimilation and pure inversion are compared with the ship-

board ADCP data at all the ADCP data points in Figure 5.18. It is clearly seen that

the data assimilation has a signi�cant role in improving the tomography results. The

velocity at the ADCP data points is simulated better by the EnKF data assimila-

tion than by the pure inversion. Table 5.1 shows the average velocity obtained along

three ADCP transects, numbered from west to east in order. The results are largely

improved by the data assimilation based on the EnKF technique.

Table 5.1: Comparisons of the velocity means along the three ADCP transects be-

tween the ADCP data and tomography results. The ADCP transects are numbered

from the western to the eastern.
Line Velocity ADCP Tomography

number component Inversion Assimilation

(cms�1) (with B.C.)

1 Um -29.6 -42.5 -21.5

Vm -35.0 -38.4 -29.5

2 Um -6.5 -3.9 -6.5

Vm -2.5 25.2 7.3

3 Um 17.3 2.4 10.7

Vm 24.6 13.4 17.1

Mean Um -6.3 -14.7 -5.8

Vm -4.3 0.1 -1.7
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Figure 5.18: Scatter plots of the velocity components (a)u and (b)v obtained between

the shipboard ADCP data and assimilation/inversion results. black crosses and gray

dots represent the assimilation and inversion results, respectively.

5.5 Summary and discussion

The inversion results of the Bungo Channel experiment caught the counterclock-

wise/clockwise vortex of the elliptical shape which is clearly visible at the change of

the ow direction from the north/south to south/north. In the Neko-Seto Channel

experiment variable tidal vortices which changes with the tidal phases were recon-

structed successfully. Such observations of the vortex �elds are diÆcult to be achieved

with the conventional point measurement technique of the same station number.

The di�erential travel time data obtained by the Neko-Seto Channel experiment

were assimilated into two-dimensional ocean model. The data assimilation based

on the time-invariant Kalman �lter provides unsatisfactory results because it can
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not work well for the strongly nonlinear phenomena such as tidal vortices while its

computational time is largely saved. Much improved results for the tidal vortices

are obtained by the data assimilation based on the EnKF. Comparison with the

shipboard ADCP results shows that the EnKF results surpass the results of the pure

inversion. It is because the dynamics and boundary conditions are satis�ed in the

EnKF technique.

The less accurate tomography data obtained in the Neko-Seto Channel experiment

may be caused by that no data were acquired for three of ten acoustic ray paths which

span �ve acoustic stations. Thus the di�erential travel time data only for the seven

ray paths are available in the inversion and assimilation. It is expected that more

accurate velocity �elds can be reconstructed when data from all ten acoustic ray paths

are available, rather than from just the seven used here.

Under the above consideration, we conclude that the data assimilation based on

EnKF can be used as a quite powerful technique which is superior to the pure inver-

sion in analyzing the CAT data. As a result of the assimilation, the coastal ocean

model lacking the ability to simulate strongly nonlinear phenomena can reach a level

suÆcient for explaining them dynamically.
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CHAPTER 6

GENERAL DISCUSSION

6.1 Inversion and data assimilation

If the conventional inverse analysis developed for the open ocean acoustic tomography

is applied to the coastal acoustic tomography (CAT) of current velocity �elds, two

problems may occur. For the coastal seas with so variable current �elds caused by

an interaction between strong tidal currents and complex topographies, statistical

information of current �elds to be used for the conventional inversion may be so

diÆcult to obtain prior to the tomography observation. The reason is why statistical

information itself is also variable with tidal phases. Thus, a new inverse method with

no use of a priori statistical information is required for the inversion of current �elds

in the coastal seas.

In Chapter 4, a new method to solve the problem mentioned above is proposed.

The L-curve method determines the weighting factor � which appears in the damped

least squares method. The � is equivalent to the ratio of the variance of noises to that

of signals. In the conventional inverse method, � is determined by a priori informa-

tion. The new inverse method allows � to be determined through a process seeking

an optimal solution from travel time data at subsequent tidal phases. The current

velocity �elds obtained by the inversion can be corrected to satisfy the boundary con-

ditions at the coast. This e�ect is also investigated through the computer simulation

of acoustic tomography with a shore bounding the tomography domain. The result
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shows that the e�ect of boundary correction is con�ned near the shore because the in-

ternal current �eld is forced to match with the travel time conditions provided by the

ray paths passing the interior of the sea. In addition the boundary-�tted curvilinear

coordinates are introduced to include the arbitrary shaped coastal boundaries into

the inversion. The curvilinear coordinates may be so e�ective when the tomography

stations are located at the periphery of the closed or semi-closed coastal seas.

The CAT can generally construct current velocity data with a resolution higher

than the conventional point-measurement technique. This advantage of CAT is

strengthened with increasing station number. However, the improvement of spa-

tial resolution may still be required for CAT because of the limited number of station

to be deployed in the sea. It is likely that current �elds reconstructed by the inver-

sion do not satisfy dynamic conditions due to errors introduced in the observation

and inversion. Also the current velocity �elds at subsequent time are independently

reconstructed in the inversion while ocean currents have a continuous time-wise evo-

lution. Such limited ability of CAT may be well improved through the assimilation

of CAT data into an ocean model.

6.2 Extension to the three-dimensional current �eld analyses

In this study all of the data analyses and the �eld application are focused on two-

dimensional current velocity �elds. The extension of the present methods to three-

dimensional cases may be expected in the application of CAT to the coastal sea

with baroclinicity. There are two aspects to be considered for three-dimensional

current �eld inversion. One is that we need an acoustic instrument which makes ray

identi�cation possible in the vertical section. The other is that we have to develop the

inversion and data assimilation methods applicable to the three-dimensional current

velocity �elds. The former had been already demonstrated successfully by Zheng et

al. [51, 52]. They showed that ray identi�cation could be done by using a vertical

array of hydrophones at each acoustic stations and the beamforming method. The
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latter is an diÆcult issue which have never been studied by anybody until now.

For the inversion of three-dimensional current velocity �elds, the vertical modes

of current Zm(z) may be introduced. These modes are provided by the empirical

orthogonal function (EOF) method of a priori current velocity data. If the �rst two

modes are chosen as the simplest case, modes 0 and 1 correspond to the barotropic and

the �rst baroclinic mode, respectively. By using the two modes the three-dimensional

current �elds may be expressed by the following equation:

	(x; y; z) =
NX
k=0

NX
l=0

1X
m=0

fAklm cos 0(kx+ ly) +Bklm sin 0(kx+ ly)gZm(z) (6.1)

If two ray paths can be identi�ed between two acoustic stations, the number of data

and unknown variables is still balanced as in the two-dimensional case. There may

be some diÆculty to determine the EOF modes from the observation data. For this

case, the EOF can be replaced by other function expansions.

The realization of three-dimensional data assimilation depends critically on the

computer resource. First of all, the ocean model is modi�ed three-dimensional and

needs very huge computational time and capacity. The ensemble Kalman �lter

(EnKF) uses one hundred members of ensemble to estimate the covariance matrix.

Each member propagates independently through the three-dimensional ocean model

and the renewed members are stored in the memory. Suppose that 10 vertical layers

are chosen for the three-dimensional ocean model. Then the length of state vector

becomes 10 times greater than the two-dimensional one. The �eld application of

data assimilation performed in Chapter 5 using usual Pentium II operated by Linux

is too unrealistic to be done even for the case of 10 vertical layers. The innovation

of the analytical method is also needed for realizing the three-dimensional acoustic

tomography and the related data assimilation.
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CHAPTER 7

CONCLUSIONS

In Chapter 2 the forward and inverse problems associated with the ocean acoustic

tomography are reviewed. The forward problem is used for the ray identi�cation,

needed to solve the inverse problem. The �elds of temperature and current velocity

are reconstructed by using the identi�ed travel time data. Though the Gauss-Markov

method had been used as the most familiar technique in the ocean acoustic tomog-

raphy, the damped least squares method can be an alternative to be selected when a

priori statistical information is unavailable.

Data assimilation techniques which combine the measured data and a numerical

ocean model are proposed in Chapter 3. Major results obtained in Chapter 3 are

summarized as follows:

(1) The Kalman �lter technique generally has a problem in its application to the

large ocean model because it needs huge computational time and memory.

(2) The time-invariant Kalman gain �lter based on Chandrasekhar-type algorithm

has an advantage of reducing computational time, but not applicable to strongly

nonlinear current �elds.

(3) The ensemble Kalman �lter (EnKF) based on the Monte Carlo method is pro-

posed as the best method applicable to the CAT data assimilation, covering

strongly nonlinear current �elds.

New inverse methods for the CAT are proposed in Chapter 4. Major results

obtained in Chapter 4 are summarized as follows:
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(1) The L-curve method can determine the weighting factor � appearing in the

damped least squares method without a priori statistical information.

(2) The current �elds reconstructed by the inversion can be corrected to satisfy the

closed boundary condition.

(3) Using the boundary-�tted curvilinear coordinates makes it easy to include the

arbitrary shaped coastal boundaries into the inversion.

In Chapter 5 the proposed analytical methods are applied to two cases of CAT

experiments, carried out in the Seto Inland Sea. Major results obtained in Chapter

5 are summarized as follows:

(1) The inversion results of the Bungo Channel experiment image the counterclock-

wise/clockwise vortex of the elliptical shape at the change of current direction

from the north/south to south/north.

(2) In the Neko-Seto Channel experiment, the evolution process of tidal vortex �elds

is reconstructed successfully by the inversion based on the damped least squares

method.

(3) The resolution and accuracy of the tidal vortex �elds obtained in the Neko-Seto

Channel are considerably improved by appling the EnKF technique of data

assimilation.

From all the results above, it is concluded that the CAT is a powerful technique

to reconstruct two-dimensional current �elds through the inversion and assimilation

of di�erential travel time data. The data assimilation is superior to the inversion if

the appropriate ocean model is available in the region where a multiple set of CATs

are deployed.
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