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ABSTRACT

A numerical model is presented for calculating flows,
in compound prismatic channels with turbulence-driven sec-
ondary motion. The model uses the algebraic stress turbu-
lence model developed by Launder and Ying and the k-s model
along with the continuity and momentum equations. The model
is tested by application to an open channel flow and.a duct
flow. Satisfactory predictions are obtained on the distri-
butions of mean velocities and shear stresses opposing the
primary velocity, while the ahisotropy of normal stresses
is underestimated by one order of magnitude less than the
experimental data.

1. Introduction

Many rivers in Japan have been improved to have a com-
pound cross-section which consists of a deep main channel
and shallow flood plains. River flow is contained within
the main channel in low flow regime. During the flood
events, however, the flow spills over onto the flood
plains, resulting in a compound channel flow. Such a flow
is accompanied by secondary currents and has highly three-
dimensional structure. Further, the flow changes its struc-
ture with the variation of the channel configuration, the
roughness distribution, etc. These complexities of the
flow field have been an obstacle to clarify the full fea-
tures of the flow. Hence a numerical model has to be de-
veloped which can predict important characteritics of the
flow under a wide range of hydraulic conditions.

The purpose of the present paper is to demonstrate
that main characteristics of the mean velocity fields in
compound straight channels can be reproduced with the ASM

3 )
developed by Launder and Ying . Calculated results are
compared with two available experimental data, one for an
open channel and the other for a closed channel, with the
emphasis on the distributions of mean velocities and turbu-
lent stresses to examine the applicability of the stress
model.
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Model Description

2 .1 Governing Equations
The compound channel cross-section and the coordinate

system are shown in Fig.l. The cross-sectional shape is
symmetrical.

The present numerical model solves the continuity
equation, three momentum equations and transport equations
for the kinetic energy of turbulence k and the dissipation
rate s. All these equations can be written in a general
form as shown below.

f^(u*)+ %<v«-rg)+ few-rg)- s(«) (1)

where U, V, W are mean velocities in the x, y and z direc-
tions, respectively; ^ is avariable; F is a diffusion
coefficient and s is a source term.

The quantities <P, T and s are specific to each govern-
ing equation and are expressed as follows:
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where u, v and w are fluctuating components of velocity; P
is the pressure; g is the gravitational acceleration; Dc is
the flow depth in the main channel; 9 is the inclination of
the channel bed to a horizontal line; \> is the kinematic
viscosity of the fluid; \>, is the eddy viscosity; G is the
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Fig.l The coordinate system



production rate of turbulence energy and a^, a£, c£l

are empirical constants. The eddy viscosity and the
duction rate of turbulence energy are evaluated as

ll

"£2

pro-

v^ =
k;

U s
G = \)

t «
3Uv2 3U>

3zJ (8,9)

where c is an empirical constant.
In deriving* the above equations,- the flow is assumed

predominant in the x-direction and hence the x-gradient
stress terms are neglected. It is further assumed that the
pressure gradient term in the x-component of momentum
equation is represented by the term g-sin8-gcos8 dDc/dx. The
x-component of momentum equation is applicable also for a
closed channel flow when the pressure gradient term is
replaced by -l/Pd$/dx, where $ is the cross-sectional mean
pressure.

Before the equations are solved, a turbulence model
must be introduced for determining the Reynolds stresses.
We adopt the ASM developed by Launder and Ying for its
simplicity and easy applicability. The Reynolds stresses
are expressed by the following: relations.

u = -cki*å •E -uv= v.
3U
3yf
-^..8U-uw=\>t 3z'

-

v = c'\> c k'k,
-

\rw= c \>
8U
3 y'

3U.
3 z; (10)

-w
= c'v Vk'

where'ko and c1 are empirical constants. It is the

distinctive feature of Launder-Ying- model that the con-
stant c' governs the intensity of the secondary current.

The values for the empirical constants are given as
follows:

c u=0.09, c£l=1.45, c £2=1.9, 0 k=1.4, V1-3

c ko=0.915, c k'=0.522, c'= 0.037.
(ll)

2.2 Boundary Conditions
Boundary conditions must be specified for the mean

velocity components, the turbulence energy and the dis-
sipation rate at inlet, solid walls,, planes of symmetry and
free surface for an open channel flow. At inlet, uniform
distribution is given for all quantities. At planes of
symmetry, the velocity component normal to the symmetry
plane is zero, while for all other quantities, the gradi-
ent normal to the plane is taken as zero.

At solid walls, the wall-function technique is adopted
which relates the streamwise velocity U, the kinetic energy
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k and the dissipation rate s at the first grid point to the
local friction velocity U* by

Sri!-«,'). "7# "iir- >'å *?å  (121

where k is the von Karman constant(here 0.42); E is a fric-
tion parameter (here 9.0 for smooth walls), y is the dis-
tance from the wall. No-slip conditions is applied on
solid walls for the other mean velocity components.

At free surface of an open channel flow, symmetry con-
ditions are applied for all variables except for the dissi-

pation rate. Following Naot and Rodi , the dissipation
rate is specified as

C 3/4 3/2
_

CU/k/ ,1_ 1 x (13]
£- k (y' 0.07D} •E (13J

in which D is the flow depth and y' is the distance from
the bank.

2.3 Calculaiton Procedure
Calculations" are carried out on the non-uniform and

staggered grid. Discretized equation is obtained by inte-
grating Eq.l over the small grid volume.

The Spalding-Patankar algorithm for three-dimensional
6)

parabolic flow is applied to solve the equations simulta-
neously. Convection-diffusion terms in Eq.l are evaluated

7 )
by the power-law scheme proposed by Patankar

Calculation marches forward to a distance o.f about
400-500 times the hydraulic radius, where mean velocities
are fully developed. Calculated results at the downstream
end are compared with those of the experiment.

3. Application of the Model

3.1 Compound Open Channel Flow
8 )

Tomlnaga et al. made detailed measurements of the
distributions of mean velocities and turbulent stresses for
open channel flows. We first applied the numerical model
to one of their experiments. The channel had the flood
plain of 5.01cm high, main channel of 8.7cm wide and flood
plain of 10.8cm wide. The total depth was 10.03cm and the
mean velocity was 34.35cra/s, thus the Reynolds number
based on the hydraulic radius and the mean velocity was
5.O9xlO4.

Fig-.2 compares the isovels U/Umax (Umax is the maxi-
mum velocity) with the measured results. The comparison
shows good agreement, even though the maximum velocity is
somewhat overestimated, and consequently the velocity level
is underpredicted over the whole domain. Also, the distor-
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(a) Experiment . (t>) Calculation
Fig.2 Primary velocity U/Umax.
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Fig.3 Secondary flow.
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tion of the contours near the interface between the main
channel and the flood plain and the bulging toward the main
channel corner are predicted to a lower degree.

Fig.3 displays the secondary flow vectors, where the
reference velocity is taken as the 0.02Umax. The predicted
secondary flow cells.agree well with the experiment. The
magnitude of the secondary flow is underestimated at the
interface, while it is overestimated near the symmetry axis
of the main channel. The differences are consistent with
the discrepancies in the isovels of the primary flow.

The distributions of the shear stress -uv/U * ( U~ is

the mean friction velocity) are shown in fig.4. The pre-
diction yields the correct change of sign in the shear
field and the predicted contours shows good agreement with
the measurement. Fig.5 compares the contours of the shear
stress -uw/Uf2. The prediction compares favorably with the

experiment in the main channel. In the flood plain, the
correct sign change is simulated, while the predicted level
of the stress is lower near the interface and the complex
distribution in the middle part is not well reproduced.

3.2 Compound Closed Channel FLow
4 )

Nakayama et al. investigated the flow in a closed
channel of a cross-shaped cross-section. The duct had the
main channel and the flood plain of the same 1.8cm wide.
The Reynolds number based on the hydraulic diameter and the
mean velocity was 3.0xl04.

Fig.6 shows the contours of the primary velocity U/Um
(Ura is the cross-sectional mean velocity) with the' experi-
ment. The prediction compares well with the measurement,
despite the fact that the predicted level of the isovels is
lower than that of the experiment and that their distor-
tions toward the main channel center and the corners are
slightly underestimated.

Secondary flow vectors are compared in Fig.7. A pair
of secondary flow cells is well predicted. The up-welling
motion at the end of the flood plain, which is also notice-
able in Fig.3, is inherent to compound channel flows. The
magnitude of the secondary current along the symmetry axes
is overpredicted, which produces the steep gradient of the
primary flow near the walls.

Fig.8 shows the anisotropy 'of normal stress components

(v -w )/Urn , the gradient of which is the major cause of
the secondary flow. A careful comparison reveals that the
predicted level of contours is about one order less than
that of the experiment, the discrepancy which seems to be

2)
inherent of this particular ASM. As indicated by Launder'

and Demueren-Rodi , the ASM is designed and tuned on the
basis of simple yet accurate prediction on mean flow fields
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at the expense of the loss of accuracy in some of the tur-
bulence structures.

Fig.9 compares the shear stress -uv/Um2. The predic-
tion is in good agreement with the experiment, even though
the level of the contours in the lower part of the main
channel is overpredicted, where the high shear rate of the
primary flow is calculated because of the overestimation of
the secondary current.

4. Concluding: Remarks

A numerical model has been presented for simulating
turbulent flows in compound straight channels and tested by
application to a developed open channel flow and also to a
developed duct flow. The comparisons with the measurements'
have revealed that the present model is able to predict the
mean velocity fields in compound channel flows', while this
model cannot explain correctly the generation mechanism of
turbulence-driven secondary flow in compound channels. Fur-
ther refinements of the numerical model are thus required
to investigate the turbulence structures in compound chan-
nels.
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