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Abstract—This paper considers k-minimum spanning tree
problems. An existing solution algorithm based on tabu search,
which was proposed by Katagiri et al., includes an iterative
solving procedure of minimum spanning tree (MST) problems
for subgraphs to obtain a local optimal solution of k-minimum
spanning tree problems. This article provides a new tabu-search-
based approximate solution method that does not iteratively
solve minimum spanning tree problems. Results of numerical
experiments show that the proposed method provides a good
performance in terms of accuracy over those of existing methods
for relatively high cardinality k.

I. I NTRODUCTION

A k-minimum spanning tree (k-MST) problem is a combi-
natorial optimization problem to find a subtree with exactly
k edges, i.e.,k-subtree, such that the sum of the weights
is minimal. Thek-MST problem was firstly introduced by
Hamacher et al. [6] in 1993, and it can be applied to many
real-world problems in wide variety of decision making, e.g. in
telecommunications [13], facility layout [10], open pit mining
[1], oil-field leasing [6], matrix decomposition [16], [17] and
quoram-cast routing [18].

Since thek-MST problem is NP-hard [11], [12], it is
difficult to solve large-scale problems within a practically
acceptable time. Therefore, it is very important to construct
solving methods which quickly obtain a near optimal solution.

As for existing approximate solution methods fork-MST
problems, Urosevic et al. [3] provided approximate solution
methods based on Variable Neighborhood Search (VNS).
Blum et al. [2] also proposed several metaheuristic approaches.
Recently, Katagiri et al. [5] developed a solution method which
uses a combination of tabu search and an iterative solving
procedure for minimum spanning tree (MST) problems. They
showed that their method provides a better performance than
existing methods for dense graphs with high cardinalityk
through some numerical experiments.

In this paper, we propose a new tabu-search-based approxi-
mate solution method with an efficient local search algorithm.
Our local search algorithm obtains local optimal solutions of
k-MST not solving MST problems iteratively. In order to
demonstrate efficiency of the proposed solution method, we
compare the performances of the proposed method with those
of existing methods by Blum et al. and Katagiri et al.

This paper is organized as follows: Section 2 provides
problem formulation. In Section 3, we introduce a summary
of tabu search.

II. PROBLEM FORMULATION

Given that a graphG = (V, E) whereV is a set of vertices
andE is a set of edges,k-subtreeTk is defined as

Tk ∈ G, k ≤ |V | − 1.

Then ak-minimum spanning tree problem is formulated as

minimize
∑

e∈E(Tk)

w (e)

subject to Tk ∈ Tk,

whereTk is the set of allk-subtreeTk in G, E(Tk) denotes
the edges ofTk andw(e) is a weight attached to an edgee.
The above problem is to seek ak-subtree with minimum sum
of weights. If the problem size is small, the problem can be
easily solved by finding thek-subtree with the minimum sum
of weights after enumerating all possiblek-subtrees in a given
graph.

Even if the size of problem is not so large, it can be
solved by some exact solution algorithm. As for exact solution
algorithms fork-MST problems, a branch and bound method
[18] and a branch and cut algorithm [7] have been developed
and implemented.

However, it has been shown that thek-MST problem is NP-
hard even if the edge weight is in{1,2,3} for all edges, or if
a graph is fully connected. The problem is also NP-hard for
planar graphs and for points in the plane [12]. Therefore, it is
impossible to solve large-scale problems within a practically
acceptable time even if the problems is solved by efficient
exact solution methods.

Therefore, it is important to construct not only exact solution
methods but also efficients approximate solution methods.
Metaheuristic approaches such as genetic algorithms are useful
for getting an approximate optimal solution. Blum et al.
[2] proposed three metaheuristic approaches tok-minimum
spanning tree problems, namely, evolutionary computation,
tabu search and ant colony optimization. They compared their
performances through benchmark instances [8] and showed
that the performance of their metaheuristics depends not only
on the instances but also on the cardinalityk. For example,
an ant colony optimization approach is the best for relatively
small ks, whereas a tabu search approach has an advantage
for largeks in terms of accuracy.

Recently, Katagiri et al. [5] proposed a tabu-search-based
approximate solution method which includes a procedure of

159



iteratively solving minimum spanning tree (MST) problems.
They showed that their algorithm has a better performance
in terms of accuracy in comparison with those of existing
methods for dense graph with largeks.

III. SUMMARY OF TABU SEARCH AND VARIABLE

NEIGHBORHOOD SEARCH

A. tabu search

Tabu search [4] is one of metaheuristics and is the extension
of local search. Letxc be a current solution. Local search
generally improves the current solution because it moves from
the current solutionxc to a solutionx′ ∈ N(xc) which
is better than the current solution, whereN(·) is a given
neighborhood structure. For simplicity, suppose thatxc is
a local minimum solution and that the next solutionx′ is
selected as the best solution amongN(xc). If the local search
is applied forx′, thenx′ is moved back toxc becausexc is
the best solution among a neighborhoodN(x′). In this way,
cycling among solutions often occurs around local minima. In
order to avoid such cycling, TS algorithms use a short-term
memory. The short-term memory is implemented as a set of
tabu lists that store solution attributes. Attributes usually refer
to components of solutions, moves, or differences between two
solutions. Tabu lists prevent the algorithm from returning to
recently visited solutions.

Aspiration criteria permit a part of moves in the tabu list
to cancel any tabu status. The typical aspiration criterion is to
accept a tabu move if it leads to a new solution better than
the current best solution.

The outline of TS is as follows:

Step 1 Generate an initial solutionx and initialize a tabu
list TL.

Step 2 Find the best solutionx′ ∈ N(x) such thatx′ 6∈
TL, and setx := x′.

Step 3 Stop if a termination condition is satisfied. If not,
then updateTL and return to Step 2.

In Step 2, a tabu list memorizes solution attributes. A tabu
tenure, i.e., the length of the tabu list determines the behavior
of the algorithm. A larger tabu tenure forces the search process
to explore larger regions, because it forbids revisiting a higher
number of solutions.

In step 3, it is checked whether the algorithm satisfies a
termination condition. The termination condition is usually
related to the iteration number of the algorithm and/or the
iteration number of not updating the current best solution.

B. variable neighborhood search

Variable neighborhood search proposed by Mladenovic and
Hansen [15] is summarized as follows:

Variable Neighborhood Search (VNS)
Initialization. Select the set of neighborhood structures
Np, p = 1, . . . , pmax,that will be used in the search; find an
initial solution T ; choose a stopping condition;

Repeatthe following sequence until the stopping condition
is met:

1) Setp ← 1;
2) Until p = pmax, repeat the following steps:

a) (Shaking) Generate a treeT ′ at random from the
pth neighborhood ofT (T ′ ∈ Np(T ));

b) (Local search) Apply some local search method
with T ′ as initial solution; denote withT ′′ the so
obtained local optimum;

c) (Move or not) If this local optimum is better
than the incumbent, move there(T ← T ′′), and
continue the search withN1(p ← 1); otherwise,set
p ← p + 1;

IV. PROPOSED ALGORITHM

A. Initial solution

At first, an edgee = {v, v′} is chosen uniformly at random.
With this edge, a 1-subtreeT1 with is generated. Thenk − 1
edges are added to the subtree so as to construct ak-subtree.
Finally, a solution algorithm for MST problems is applied for
the subgraph of which vertices are selected as thek-subtree.
In this way, an initial solution ofk-minimum spanning tree is
obtained.

B. Neighborhood

Let us introduce a distanceη(T1, T2) between any two
solutions (trees with cardinalityk) T1 andT2 as a cardinality
of difference between their edge sets, i.e.,

η(T1, T2) = |VT1 \ VT2 | = |VT2 \ VT1 |
Note that the distance functions above may be viewed as Ham-
ming distances if each solution is represented by0−1 vectors
having1 if an edge belongs to the solutionT and0 otherwise.
The neighborhoodNp(T1) consists of all solutions (subtrees)
with distancep from T1 : T2 ∈ Np(T1) ⇔ η(T1, T2) = p. It
is clear that this function is metric.

C. Shake

We use the procedure of Shake proposed by Mladenovic
and Urosevic [14].

The distance functionη is used in our shaking step. In order
to obtainT ′ ∈ Np(T ), the following procedure is done with
p cycles.

Step 1 Choose at random a set of a deleted vertexvdel ∈
V (T ) and an added vertexvadd /∈ V (T ).

Step 2 Apply the Transition Algorithm (see Section V).
If the transition is infeasible, then return to Step 1.
Otherwise, terminate.

D. Local search

We use tabu search as a local search for an initial solution
which is obtained by Shaking step. The flowchart of tabu
search is as follows (see Fig.1):
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Fig. 1. Flowchart of local search

1) Intensification:The procedure ofIntensificationrepeats
transitions based on hill climbing with tabu lists and aspiration
criterion:

a) Transition strategy:There are two major transition
strategies; one isbest improvement strategyand the other is
first improvement strategy. The best improvement strategy is a
search strategy which selects the best solution of all solutions
in neighborhood as the next solution. On the other hand, the
first improvement strategy selects the firstly found solution
of which objective function value is better than that of the
current solution. In this paper, we use the first improvement
strategy because it takes much computational time for search a
neighborhood if we use the best improvement strategy. These
strategies are also applied whenTransition Algorithm is used
in Intensification procedure.

b) Tabu list: Tabu lists store the induces of the edges that
were recently added or removed. As described before, every
move consists of two steps; the first step is to remove one edge
e ∈ T c from the current spanning treeT c, and the second step
is to add an edge inNp(T c− e)\{e} to T c− e. The status of
the forbidden moves are explained as: If a vertexvj is in the
tabu list, then our algorithm forbids the addition or deletion of
the vertexvj . In this paper, we use two tabu listsInList and
OutList, which keep the induces of removed edges and to sore
that of added edges, respectively. Tabu tenure, denoted byθ,
is a period for which it forbids vertices in the tabu lists from
deleting or adding.

c) Aspiration criterion: When an attribute is declared
tabu, all solutions possessing this attribute are implicitly de-
clared tabu. However, some of these solutions may have never
been considered by the search. To remedy this, an aspiration

criterion is defined to override the tabu status of a solution.
One common aspiration criterion is to allow tabu solutions
yielding better solution values than that of the best known
solution.

In our TS implementation, we apply an extension of the
aspiration level concept by associating an attribute to each
vertex of the graph. The tabu status of an attribute can be
revoked if it leads to a solution with smaller cost than that of
the best solution identified having that attribute. The aspiration
level γv of an attribute is initially set equal to the cost of
the initial solutionT int if vertex v belongs to this solution,
and to∞ otherwise. At every iteration, the aspiration level
of each attributev ∈ V (T ) of the current solution is updated
to min{γv, f(T )}, wheref(T ) stands for the cost value of
solutionT .

2) Update tabu tenure:Let nicmax and θinc be given
parameters. If the current best solution is not updatednicmax

times, then we regards this situation as cycling and increase
tabu tenure using (1).

θ ←− θ + θinc (1)

3) Diversification strategy:A diversification procedure, us-
ing the residence frequency memory function, will lead to
the exploration of region of the solution space not previously
visited. The residence frequency memory records the number
of times a specific element has been part of the solution.

Frequency-based memory is one of the long-term memories
and consists of gathering pertinent information about the
search process so far. In our algorithm, we use residence
frequency memory, which keeps each track of the number of
iterations where vertices have been explored.

The diversification procedure begins at the situation
that some spanning tree is formed. Letd(Tk) =∑

v∈V (Tk) Freq(v) denote a criterion for diversification. In a
manner similar to intensification strategy as described above,
Transition Algorithm is repeated withk cycles, where
Freq(v) is the frequency of vertexv to be searched.

4) Reset tabu: InList and OutList are set empty. A
parameterθ is reset the default value.

5) Stopping condition):If the iteration is beyond a given
value, then terminate.

V. NEW TRANSITION ALGORITHM

The most important feature of the proposed algorithm is
that it does not apply a minimum spanning tree algorithm
iteratively for a subgraph with exactlyk + 1 vertices unlike
the solution method by Katagiri et al. [5]. Since minimum
spanning tree algorithms find an optimal spanning tree for a
fixed subgraph, the obtained solution is considered as a local
minimum ofk-minimum spanning tree problem. In this sense,
MST algorithms is worth using for local search. However,
there are many cases where it dose not need to use MST
algorithms in order to find a local optimal solution. Therefore,
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in this paper, we consider a new transition algorithm which
move the current solution to a local minimum solution, not
using MST algorithms. As described in the previous section,
this algorithm is applied for vertex transition in Shaking
and any local search of Intensification and Diversification
procedures.

Our transition algorithm which obtains a local optimal
solution ofk-minimum spanning tree, not using the algorithm
for solving MST problems, consists of two stages. Since
the algorithm is a little complex, we explain the outline
of the algorithm using a simple example (see Fig.2). Let
vdel ∈ V (Tk) and vadd /∈ V (Tk) be the vertices selected as
the deleted and added vertices, respectively.

Transition algorithm for the first stage
Step 1 Let St, t = 1, 2, 3, · · · be a set of sub-trees which

is constructed by deletingvdel. Merge eachSt into a
vertex, calledsuper-vertexand letS0 be vadd. Then
constructG′(V ′, E′) according to following equation
(see Fig.3):

V ′ ← {St|t = 0, 1, 2 · · · }
E′ ← {(Si, Sj)|(Si, Sj) ∈ E, i 6= j}

Step 2 Obtain a minimum spanning tree problem using
some algorithm such as Prim method or Kruskul
method (see Fig. 4).

Step 3 Go to the second stage and apply the transition
algorithm for the second stage.

Transition algorithm for the second stage
Let the dotted lines denote the edges between super-vertices

(see Fig.5).

Step 1 Find edgeemax whose weight is the maximum
from among all the edges included in super-vertices.
Find edgeemin whose weight is the minimum from
among all the dotted edges.

Step 2 If w(emax) > w(emin), then go to Step 3.
Otherwise, go to Step 4.

Step 3 Delete the edgeemax and add the edgeemin. Go
to Step 5.

Step 4 Attach label ”explored” to a set of dotted lines that
connects subgraphs which are derived by deleting the
edgeemax.

Step 5 If all the dotted line is labeled ”explored”, then
terminate. Otherwise, return to Step 1.

The above algorithm is applied for all vertex transition proce-
dures in the subroutine of shaking and local search.

VI. N UMERICAL EXPERIMENTS

In order to compare the performances of our method with
those of representative existing solution algorithms, we solve
some benchmark instances which includes the instances pro-
vided by Blum [8] and our new instances. Tables I and II show
the results for instances by Blum [8] and our new instances,
respectively.

Fig. 2. Example of|V | = 12, |E| = 23, k = 7 (Bold lines are edges which
form the current solution)

Fig. 3. Example of generatingG′ from G (vdel = v5 andvadd = v8)

Fig. 4. Graph of super-vertices and its minimum spanning tree

We use C as the programming language and compiled all
software with C-Compiler: Microsoft Visual C++ 7.1. All the
metaheuristic approaches were tested on a PC with Celeron
3.06GHz CPU and Ram 1GB under Microsoft Windows
XP. In the tables shown, TSI, TSK and TSB represent tabu
search approaches by this paper, Katagiri et al. and Blum et
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Fig. 5. Transition algorithm in the second stage

al., respectively. We executed each method in 30 runs and
computed thebest,meanandworst objective function values
for each method. represents a mean of computational time.

Table I shows that the performance of the proposed method
is clearly better than that of the existing method by Katagiri
et al. Also, our algorithm provides better performance than
the method by Blum et al., for high cardinalityk, whereas the
performance of the method by Blum et al. is the best for low
cardinalityk.

Table II shows the results for new instances which are more
dense than the existing benchmark instances. It is observed
from Table II that our algorithm provides as good a perfor-
mance as the method by Katagiri et al.. Although the best
values are often obtained by the method by Blum et al., the
performances of our algorithm are fairly better than the method
by Blum et al. in respect to the mean and worse objective
function values. Therefore, we conclude that our algorithm
provides a better robustness performance than the method by
Blum et al.

VII. CONCLUSION

In this paper, we have proposed a new solution method
based on tabu search fork-minimum spanning tree problems
and compared the performance of the proposed method with
those of existing methods though numerical experiments with
several benchmark instances. It has been shown that the
proposed method has an advantage of robustness over the
existing methods. However, numerical experiments executed

TABLE I

Objective value
graph k TSI TSK TSB

|N | = 1000 200 best 4131 4098 3609
|E| = 1250 mean 4147.6 4373.2 3685:9

d = 2.5 worst 4174 4587 3771
σ(d) = 1.57 400 best 9624 9936 8976

mean 9841.0 10088.0 9091:0
worst 9918 10202 9301

600 best 16299 17243 16282
mean 16319:0 17320.1 16323.7
worst 16349 17330 16454

800 best 26429 27170 26552
mean 26429 27172.9 26687.3
worst 26429 27173 26755

900 best 32981 32981 33147
mean 32984:5 33284.0 33187.6
worst 32985 33459 33233

|N | = 400 80 best 1627 1478 1466
|E| = 800 mean 1627 1562.4 1477:5
d = 4.00 worst 1627 1627 1500

σ(d) = 0.00 160 best 3330 3361 3217
mean 3346.1 34522.5 3240:0
worst 3369 3449 3259

240 best 5264 5270 5215
mean 5281.6 5432.5 5224:6
worst 5325 5531 5234

320 best 7682 7684 7682
mean 7687.8 7697.9 7682:9
worst 7689 7719 7684

360 best 9249 9256 9250
mean 9249 9257.8 9257
worst 9249 9259 9260

|N | = 1000 200 best 1100 1130 1047
|E| = 5000 mean 1141.1 1166.5 1063:7
d = 10.0 worst 1175 1225 1078

σ(d) = 3.22 400 best 2577 2682 2499
mean 2602.6 2698.9 2535:9
worst 2639 2725 2604

600 best 4570 4681 4516
mean 4590.4 4705.6 4548:6
worst 4608 4718 4603

800 best 7324 7405 7281
mean 7325.8 7418.9 7324:7
worst 7359 7434 7405

900 best 9248 9375 9291
mean 9248 9375.0 9323.9
worst 9248 9376 9372

|N | = 450 90 best 139 138 135
|E| = 8168 mean 141.3 145.1 136:7
d = 36.30 worst 145 155 140

σ(d) = 16.83 180 best 346 349 337
mean 353.8 352.2 346:5
worst 357 356 434

270 best 631 643 630
mean 632:1 649.2 653.4
worst 637 654 728

360 best 1060 1062 1060
mean 1060:1 1062 1098.7
worst 1064 1070 1158

405 best 1388 1389 1391
mean 1388:0 1389.4 1410.8
worst 1389 1390 1467

　

are not enough to conclude such advantage is still valid for
other types of benchmark instances. In the near future, we
will provide additional benchmark instances such as random
graphs, geometric graphs or small- world graphs, and execute
more numerical experiments to clarify the advantage of our
method.
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TABLE II

Objective value
graph k TSI TSK TSB

|N | = 300 60 best 554 546 554
|E| = 20000 mean 579.9 572:0 628.8
d = 133.3 worst 603 606 2180

σ(d) = 36.57 120 best 1236 1267 1229
mean 1294:2 1304.4 1613.4
wrost 1346 1384 3189

180 best 2179 2241 2169
mean 2184:5 2256.5 2838.9
worst 2208 2264 4517

240 best 3564 3564 3566
mean 3571.7 3568:8 4313.7
worst 3572 3581 5906

270 best 4690 4690 4690
mean 4690 4690 5326.3
worst 4690 4690 6635

|N | = 300 60 best 355 354 357
|E| = 30000 mean 361.6 359:8 503
d = 200.00 worst 367 364 2552

σ(d) = 38.99 120 best 891 897 877
mean 898:5 912.4 1228.2
worst 920 922 3047

180 best 1737 1661 1653
mean 1738:2 1746.6 2194.9
worst 1764 1784 3947

240 best 2760 2737 2740
mean 2760.3 2753:0 3290.3
worst 2765 2765 5019

270 best 3491 3491 3491
mean 3491 3491 4322.2
worst 3491 3491 5730

|N | = 300 60 best 237 224 224
|E| = 40000 mean 243.3 238:1 405.4
d = 266.67 worst 255 257 2430

σ(d) = 24.61 120 best 566 547 554
mean 572.3 567:4 1075.3
worst 605 589 2787

180 best 1016 1031 986
mean 1034:9 1053.5 1653.1
worst 1055 1066 3271

240 best 1671 1656 1647
mean 1678.2 1659:3 2493.3
worst 1696 1676 3939

270 best 2107 2107 2107
mean 2107 2108.5 2845.5
worst 2107 2109 4440
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