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Abstract 

The fundamental frequencies and the mean values of the internal coordinates are extracted from 

the trajectories of classical dynamics based on the relation between the classical and the 

quantum mechanical frequencies using quasi-classical direct ab initio molecular dynamics, 

where the oscillator amplitude is specified by setting the total energy equal to the harmonic 

vibrational energy. This method is applied to a triatomic molecule H2O. The harmonic 

frequencies, the fundamental absorption frequencies, and the mean structures are obtained in 

good agreement with experimentally observed values with the theoretical level of MP2 using 

the aug-cc-pVTZ basis set. 
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1. Introduction 

There are various methods to analyze vibrations of molecules based on ab initio molecular 

orbital theory.  One of them is a normal vibrational analysis, which approximates a molecule as 

a combination of harmonic oscillators.  It conveniently gives harmonic frequencies with low 

cost. Recent progresses in the implementations of ab initio MO theory and in computer power 

also enabled various vibrational analyses considering anharmonicity [1-4]. 

It is well appreciated that molecular dynamics (MD) is a useful and powerful technique [5] 

to evaluate changes in molecular structures or properties along time evolution.  Using classical 

MD, vibrational analyses of molecules are also done widely. Although this method may take 

account of anharmonicity, the following two points should be taken into consideration.  

First, the correspondence between classical and quantum mechanical frequencies should be 

considered [6]. Although microscopic phenomena such as absorption of electromagnetic ray 

are ruled by quantum mechanics, MD treats molecules based on classical mechanics. Secondly, 

the potential energy surface (PES) on which dynamics run should be accurate. In general, the 

accuracy of the PES depends on the model functions which should have been constructed in 

advance and are used to perform molecular dynamics simulation. It is difficult, however, to 

construct an appropriate potential energy function enough to calculate dynamics properly from 

which vibrational properties involving anharmonicity can be extracted. 

To consider these two points, we use quasi-classical direct ab initio MD. Aida et al. showed 

that the fundamental frequency of D2 can be obtained fairly accurately using quasi-classical 

direct ab initio MD with full-SDCI/aug-cc-pVTZ level of theory [7].  In this letter, we present 

that the method can be also applied to triatomic molecules including couplings between 

vibrational modes. This is the basis for future studies of more extension of this analysis to larger 

molecules or clusters. 

In addition to the fundamental frequencies, we show that the ‘mean molecular structures’ 
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can be derived from quasi-classical direct ab initio MD.  There are various kinds of ‘mean 

molecular structures according to the definitions [8,9].  It is well-known that there are intrinsic 

and sizable differences between the equilibrium structure and the experimentally derived 

structures [10].  We obtain the mean values of the internal coordinates at the vibrational ground 

state from quasi-classical direct ab initio MD according to the definitions.  These theoretical 

mean structures are found to be in good agreement with those respective experimental 

structures. 

  

2. Fundamental frequencies 

2-1. Frequency of classical oscillator 

When an oscillator’s vibrational amplitude is small, each vibrational mode of the classical 

oscillator is approximately independent.  In such a case, the classical mechanical frequency of 

mode i ( classical
iν ) is represented as follows [11]: 

i
i J

E
∂
∂

=classicalν             (1) 

Here, E is the total energy of the system, and Ji is the action variable of mode i defined by 

　∫= iii dqpJ          (2) 

 

2-2. Frequency of quantum oscillator 

For a quantum oscillator, the vibrational frequency is expressed as the separation of the 

relevant energy levels.  Here, we describe two vibrational energy levels as two vectors, 

),...,...,,( N21 nnnn i ′′′′=′n      (3) 

and  ),...,...,,( N21 nnnn i ′′′′′′′′=′′n ,     (4) 

where jn′  and jn ′′  (j=1,2,…,N) are vibrational quantum numbers and N is the degree of the 



 4 

freedom.  The frequency of a quantum oscillator with the transition from n′  to n ′′  is expressed 

as follows: 

)(1 quantumquantumquantum
nnnn ′′′′′→′ −= EE

h
ν           (5) 

According to the quantum mechanics, the action variable of a quantum oscillator is represented 

by 

　)
2
1( += ii nhJ            (6) 

 

2-3. Relationship between frequencies of classical and quantum oscillator  [12] 

For quasi-classical treatment [7] of molecules, in which they are treated classically but with 

consideration of quantum mechanical elements, the relationship between the frequencies of a 

classical and a quantum oscillators should be elucidated. For this purpose, Eq. (5) is 

transformed using Eqs. (1) and (6) as follows. 

)(

)(1

)(1)(1

1

classical

1 2/)(

quantum

2/)(1

quantum
quantumquantumquantum

jj

N

j
j

jj

N

j j

jj

N

j j

nn

nn
J

Eh
h

nn
n

E
h

EE
h

′−′′=

′−′′⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂
∂

×=

′−′′⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂
∂

≅−=

∑

∑

∑

=

= ′′+′

′′+′=
′′′′′→′

ν

ν

nn

nn

nnnn

 (7) 

Note that the partial derivative is performed at the mean state,  

)
2

,...,
2

,...,
2

,
2

(
2

NN2211 nnnnnnnn ii ′′+′′′+′′′+′′′+′
=

′′+′ nn       ,  (8) 

which corresponds to the ‘energy level’ of the classical oscillator, of which the vibrational 

frequency is classical
jν  (j=1,…,N).  quantum

mE  corresponds to the energy of one vibrational state m 

which consists of a combination of quantum oscillators including coupling between the 

oscillators. Thus, the expression of a quantum mechanical frequency is obtained in terms of the 

motions of the classical oscillators.  
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2-4. Quasi-classical treatment of triatomic molecules 

Based on the general relationship between classical and quantum mechanical frequencies 

derived above, here we show the procedure how to get the fundamental frequencies of a 

non-linear triatomic molecule H2O. 

The lower vibrational energy levels of a triatomic molecule are expressed by 

)0,0,0(=0 ,       (9-a) 

)0,0,1(1 =1 ,       (9-b) 

)0,1,0(2 =1 ,       (9-c) 

and   )1,0,0(3 =1 ,      (9-d) 

where the elements of vectors are vibrational quantum numbers of vibrational modes 1, 2, and 3, 

which correspond to symmetric stretching, bending, and antisymmetric stretching, respectively. 

For example, if they are represented in terms of the harmonic frequency ωi within the 

framework of harmonic approximation, the element 0, means the zero point harmonic 

vibrational energy 2/iω , and 1 means the first excited energy 2/3 iω , since the harmonic 

energy is represented by ∑ +=
i

iiharm nE )2/1(ω . According to Eq. (7), fundamental 

frequencies of the modes 1, 2 and 3 are expressed in terms of the frequencies of the classical 

oscillators in the following way: 

classical
1

quantum
1

νν ≅→10      ,    (10-a) 

classical
2

quantum
2

νν ≅→10      ,    (10-b)  

and   classical
3

quantum
3

νν ≅→10      ,    (10-c) 

when the energy levels of the classical oscillators are,  
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)0,0,
2
1(

2
1 =

+ 10 ,     (11-a) 

)0,
2
1,0(

2
2 =

+ 10 ,    (11-b) 

and   )
2
1,0,0(

2
3 =

+ 10 ,        (11-c) 

respectively, according to Eq. (8).  Thus, the fundamental frequencies of the mode 1 ( quantum
110→ν ), 

the mode 2 ( quantum
210→ν ), and the mode 3 ( quantum

310→ν ) are obtained from the motions of classical 

oscillators, in which the energy levels are set to those in Eqs (11-a), (11-b), and (11-c), 

respectively.  

 

3. Mean structures 

Various ‘mean structures’ have been proposed [8,9]. In this letter we show structural 

parameters of three types of structures R0, Rz, and Rg from quasi-classical direct ab initio MD by 

setting the vibrational ground state. We present in this section the formalization of the 

parameters for the O-H distance and the H-O-H angle corresponding to these structures R0, Rz, 

Rg in terms of the Cartesian coordinates.  

We use the bracket  to indicate the expectation or mean value over the ground 

vibrational eigenstate. In the framework of MD,  means the average over the trajectory 

which mimics the vibrational ground state. We refer to this trajectory as ‘ground state 

trajectory’ described in subsection 4-2. 

 

3-1. Effective structure R0 

An effective structure R0 corresponds to the one which is obtained from the rotational 

constants in the vibrational ground state from measurements of microwave or IR spectroscopy.  
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Theoretically, the effective structure is defined as follows.  The structure of a water 

molecule is set on the x-z plane in the Cartesian coordinate system, the origin of which is the 

center of the mass and the principal axis is z-axis. When the structure of a water molecule is R0 

with the C2V symmetry, the tensor of inertia is automatically diagonalized; thus, 
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The diagonal terms, 

 ∑=
α

αα
2

00 zmI a ,           (13-a) 

∑=
α

αα
2

00 xmI b ,            (13-b) 

and )( 2
0

2
00 ∑ +=

α
ααα zxmI c ,      (13-c) 

are related to the rotational constants of the vibrational ground state in the following way. 

 )1)(8( 0
2

0
aIhA π= ,       (14-a) 

 )1)(8( 0
2

0
bIhB π= ,       (14-b) 

 )/1)(8( 0
2

0
cIhC π=    .      (14-c) 

Based on the structural parameters for each time step of quasi-classical direct ab initio MD at 

the vibrational ground state, we can obtain the inertia moments for each time step. The 

rotational constants are equal to the corresponding mean values over the trajectory; namely, 



 8 

 aIhAA 1)8( 2
0 π== ,       (15-a) 

 bIhBB 1)8( 2
0 π== ,        (15-b) 

 cIhCC 1)8( 2
0 π==   .     (15-c) 

As shown in Eq. (13), to obtain the elements of the R0 structure, x0α, y0α, and z0α (α = H, H’, O), 

the inertia moments of vibrational ground state, aI0 , bI0  and cI0  are required. Thus, from Eqs. 

(14) and (15) one way to obtain R0 from MD is reduced to calculating the average of reciprocals 

of inertia moments over the ‘ground state trajectory’, namely, aI/1 , bI/1 , and cI/1 . If 

x0α, y0α, and z0α are obtained, the structural parameters of r0 and 0θ , the distance of  O-H bond 

and the angle of H-O-H, can be obtained as follows: 

2
H0O0

2
H0O0

2
H0O000 )()()( zzyyxxr −+−+−== OH        (16) 

)()()()()()(
))()()()()()((arccos
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          (17) 

Here, one of the two hydrogen atoms is denoted as H and the other as H’. 

 

3-2. Zero point mean structure Rz 

Rz is the zero point mean structure. Thus, this value is more physically clear than R0. The 

parameter rz is obtained as the magnitude of the mean value of the vector OH; namely,  

OH=zr    . (18) 

Here, the vector OH is defined as 
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The parameter zθ  is obtained as the angle between two OH bonds; namely, 

OH'OH
OH'OH ⋅

= arccoszθ            (21) 

Therefore, using the mean values of atomic coordinates, αx , αy , αz , over the ‘ground 

state trajectory’, rz and zθ  can be obtained. 

 

3-3. Rg Structure 

The Rg structure is the center of gravity of the probability distribution function, and is 

derived by electron diffraction experiments.  Theoretically, the mean value of OH distance, rg, 

corresponds to the Rg structure [13]; namely,  

2
OH

2
OH

2
OH )()()( zzyyxxrg −+−+−=                                   (22) 

Therefore, to calculate rg from MD, we need to calculate the distances at each step of the 

‘ground state trajectory’ and average it over the trajectory. 

 

4. Computational details 

4-1. Fundamental frequencies 

The theory described in Section 2 is applied to H2O, a non-linear triatomic molecule. The 

procedure is as follows. 
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1. The molecular structure is optimized by means of ab initio MO.  

2. The normal vibrational analysis is done at the optimized structure, and the harmonic 

frequencies ω1, ω2, and ω3 are obtained.  

3. Three trajectories (Case-1, Case-2 and Case-3) of direct ab initio MD are run. The initial 

geometry for each of the trajectories is the optimized geometry and the initial velocity is as 

follows: the direction is along the normal mode, and the magnitude is as much as the 

molecule can oscillate with the energy levels of Eq. (11).  Using harmonic frequencies 

which are obtained in Step 2, the energy levels of Case-1, Case-2 and Case- 3 are 

[3ω1/2, ω2/2, ω3/2], [ω1/2, 3ω2/2, ω3/2], and [ω1/2, ω2/2, 3ω3/2], respectively. Here, the 

square brackets specify that the levels are expressed not in terms of quantum numbers as in 

Eq. (3) or Eq. (4) but the harmonic frequencies. 

4. Fourier transformation of the velocity auto-correlation function of Case-1 gives the 

fundamental frequency quantum
110→ν ; that of Case-2 gives quantum

210→ν and that of Case-3 

gives quantum
310→ν . 

Concerning the quasi-classical MD, we use the method of direct ab initio MD, in which the 

trajectories are calculated by integrating Newton’s equations of motion with the energies and 

forces obtained directly from ab initio MO calculations at each time step. The classical nuclear 

trajectories are integrated with constant total energy using a fourth-order Gear 

predictor-corrector algorithm [14], and the time step of 0.1 fs is used to ensure the numerical 

accuracy.  The total number of the steps is 8000 for each simulation. The level of the theory 

used is MP2/aug-cc-pVTZ and the program used is HONDO2004 [15].  

The Fourier transformation method we use is the Fast Fourier Transformation (FFT) [16]. 

The spectral resolution is estimated to be 1.27 cm-1.  
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4-2. Mean structures 

In section 3 we referred to the trajectory which mimics the vibrational ground state as 

‘ground state trajectory.’ In order to simulate the vibrational ground state, we run the Case-4 

trajectory of quasi-classical direct ab initio MD for ‘ground state trajectory’ in the following 

way. The initial geometry is the optimized geometry same as the above cases but the initial 

velocities of each vibrational mode are as much magnitudes as the zero point vibrational 

energies [ω1/2, ω2/2, ω3/2] for respective modes, so that this trajectory mimics the quantum 

mechanical zero point vibrational eigenstate. The time step is 0.1 fs and the total number of 

steps is 30000. The R0 structure is obtained by calculating aI/1 , bI/1 , and cI/1  at each time 

step and averaging them, the Rz structure by averaging atomic coordinates, and the Rg structure 

by averaging distance OH  over the total MD steps (that is 3 ps) of Case-4. 

 

5. Results and discussion 

5-1. Fundamental frequencies 

Calculated fundamental frequencies from quasi-classical direct ab initio MD are 

summarized in Table 1 together with experimentally obtained fundamental frequencies.  The 

calculated harmonic frequencies based on the normal mode analysis at the optimized geometry 

with the same level of theory are shown in Table 2. On calculating the fundamental frequency 

of vibrational mode i from quasi-classical direct ab initio MD, the state of the oscillator of the 

mode i is equal to ni=1/2, and those of the other modes j ( i≠ ) are equal to nj=0. 

For comparison, the results of the other methods to calculate fundamental frequencies are 

shown in table 1. One is the second order perturbation theory implemented in the program 

package Gaussian 03 [21], which calculates anharmonic constants and fundamental frequencies 

from second, third, and quartic potential derivatives with respect to normal coordinates [1]. The 
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other is direct VCI (Virtual Configuration Interaction). The results were taken from Ref. [4], in 

which the eigenvalues of anharmonic vibrational eigenstates were calculated self-consistently 

based on variational principle including the couplings of vibrational modes using global PES 

with MP2/aug-cc-pVTZ. 

As shown in Tables 1 and 2, both of the fundamental and the harmonic frequencies at the 

level of MP2/aug-cc-pVTZ are satisfactory and consistently agree well with the experimental 

values, for all of these three methods, i.e., our method, the second order perturbation theory and 

direct VCI.  It is expected that when the level of theory is higher, the degree of the agreement 

would become better, taking account of the fact that the harmonic frequencies at the level of 

CCSD(T)/aug-cc-pVQZ agree quite well with the estimated values based on the CVRQD PESs 

[19] and also with the experimental values (see Table 2).  Since all of the three methods provide 

almost the same values, we can regard all of those methods are in similar quality in the case of 

H2O.  Our method does not require the PES of the system in advance, nor higher order 

derivatives.  Therefore, it is possible to apply our method to any system, especially to a larger 

molecular system.  Furthermore, our method can apply to get any frequencies other than 

fundamental frequencies. 

 

5-2. Mean structures 

Computational and experimental structural parameters are shown in Table 3. The 

equilibrium internal O-H distance re and H-O-H angle θe are obtained by means of the 

optimization procedure based on ab initio MO (MP2/aug-cc-pVTZ). The order of the size re < 

rg < rz and the differences rg - re and rz - rg are consistent with those obtained experimentally 

except for r0.  Although in general r0 is considered to be greater than re, in the case of H2O the 

experimentally obtained r0 was reported to be smaller than re.  Our method gives the value for r0 

greater than re, which is consistent with most molecules. As shown in Table 3, the level of 
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CCSD(T)/aug-cc-pVQZ gives closer values of the equilibrium geometrical parameters to the 

best computational estimate in the literature based on the CVRQD PESs [19].  The equilibrium 

geometry as well as the mean geometries at the level of MP2/aug-cc-pVTZ are satisfactory and 

consistently agree well with the experimental geometries.  To the best of our knowledge, this is 

the first ab initio evaluation of the mean structures, rg, rz and r0, of H2O without any force field 

parameters. 

 

5. Conclusion 

The fundamental frequencies of a non-linear triatomic molecule H2O are obtained from 

quasi-classical direct ab initio MD by describing quantum mechanical eigenstates in terms of 

classical trajectories. In this way, quantum mechanical frequencies are obtained from classical 

trajectories with high numerical accuracy. It is important to control the energy levels of the 

classical oscillators, i.e., molecules with multiple vibrational degrees, to obtain the quantum 

mechanical frequencies from the trajectories. This study lays a foundation for the extension of 

vibrational analysis using quasi-classical direct ab initio MD to larger molecules or clusters.  

By controlling the energy levels to be equal to the zero point vibrational state, the mean 

structures are obtained reasonably consistent with experimentally obtained values. 

As a further application of the method described here, it is possible to obtain transition 

energy between any states and a mean structure of a specific excited state by controlling the 

energy levels properly. 
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Table 1. Calculated and experimental fundamental frequencies (in cm-1) of H2O 

 

 Q-C MD a) Direct VCI b) second-order c) expt d) 

ν1 3640 3647 3646 3657.050 

ν2 1578 1576 1578 1594.74635 

ν3 3751 3760 3758 3755.929 

 
 

a) Quasi-classical direct ab initio MD with MP2/aug-cc-pVTZ. 
b) Direct Virtual Configuration Interaction with MP2/aug-cc-pVTZ taken from [4]. 
c) Second-order perturbation method with MP2/aug-cc-pVTZ. 
d) Experimental values. ν1 and ν3 are taken from [17] and ν2 from [18]. 
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Table 2. Calculated and experimental harmonic frequencies (in cm-1) of H2O. 

 

 MP2/ 
aug-cc-pVTZ a) 

CCSD(T)/ 
aug-cc-pVQZ a) CVRQD b) expt c) 

ω1 3800 3834 3833.0 3832.17 

ω2 1626 1649 1648.8 1648.47 

ω3 3923 3944 3944.1 3942.53 

 
a) Normal mode analysis by means of ab initio MO method. 
b) Computational values taken from [19]. 
c) Experimental values taken from [20]. 
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Table 3.  Various mean structures a) of H2O 

 

 MP2/ 
aug-cc-pVTZ b) 

CCSD(T)/ 
aug-cc-pVQZ c)

CVRQD d) expt e) 

re 

θe 

rz 

θ z 

rg 

r0 

θ 0 

0.9596 

104.21 

0.973 

104.15 

0.976 

0.962 

104.74 

0.9588 

104.35 

0.95782 

104.485 

0.9572 

104.34 

0.9714 

 

0.974 

0.956 

105.11 

 

a) re and θe are the O-H length and H-O-H angle, respectively, at the equilibrium structure. rz, rg, 

r0 and θz, θ0 are the mean structures corresponding to the O-H length and H-O-H angle, 

respectively.  See text for the definition. Lengths are in Ångstrom and angles are in degrees. 

b) re and θe are the optimized geometrical parameters with MP2/aug-cc-pVTZ, and the other 

values are obtained from quasi-classical direct ab initio MD with MP2/aug-cc-pVTZ. 

c) Optimized geometrical parameters with CCSD(T)/aug-cc-pVQZ. 

d) Optimized geometrical parameters with CVRQD taken from [19]. 

e) Experimental values taken from [6, 20, 22]. 

 


