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The shear and bulk viscosities of gluon plasma are calculated by accumulating a large amount of

data for the Matsubara Green function (Gβ (tm)) on isotropic 243 × 8 and 163 × 8 lattices. In the

case of Iwasaki’s improved action, Gβ (tm) is calculated on roughly 6 million configurations, while

for the standard action the calculation is carried out on more than 16 million configurations. The

shear viscosities increase roughly with T 3, and η/s ratios are close to the KSS lower bound in the

region where 1 < T/Tc < 25. Using these data the bulk viscosities are also determined in the re-

gion where T/Tc < 2. They are roughly one order of magnitude smaller than the shear viscosities.

Our next target is to determine the transport coefficients more precisely by a maximum-entropy

method. For this purpose the most effective method may be to adopt an anisotropic lattice. In

this report, we study the possible systematic error due to the deformation of the anisotropic lattice

at short distances. Near the critical temperature, it is found that the standard action suffers from

a large deformation on the anisotropic lattice at short distances, while the deformation is slight

for Iwasaki’s improved action. To reduce the fluctuation of the Matsubara Green function, the

improvement of the energy momentum tensor operator by using clover-type loops is promising.

We are also attempting to apply the multi-level algorithm to reduce fluctuation.
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1. Introduction and formalism

A new state of matter has been reported in RHIC experiments. From an estimation of the
temperature, it is expected that quark gluon plasma (QGP) is realized there. A phenomenological
study of elliptic flow revealed that a new state of matter is well explained by the fluid with very
small viscosity. Jet quenching data indicate that it is strongly interacting.

If QGP is realized as a fluid, its viscosities should be smaller than those of usual fluids such
as water and oil, because they are proportional to g−2, and the coupling constant g is larger than
1/137 even above the transition temperature. The lower bound for the ratio of shear viscosity(η)
to entropy(s) has recently been conjectured by Kovtun et al.[1]. However, values close to transi-
tion temperature should be calculated from QCD by fully taking into account the nonperturbative
effects. It is urgently necessary to carry out detailed phenomenological studies of the new state of
matter using these viscosities.

The transport coefficients are calculated in the framework of linear response theory:

η = −

∫
d3x′

∫ t

−∞
St1eε(t1−t)

∫ t1

−∞
dt ′ < T12(~x, t)T12(~x′, t

′) >ret (1.1)

4
3

η +ζ = −

∫
d3x′

∫ t

−∞
dt1eε(t1−t)

∫ t1

−∞
dt ′ < T11(~x, t)T11(~x′, t

′) >ret (1.2)

where η is shear viscosity, and ζ is bulk viscosity. < Tµν Tρσ >ret is the retarded Green function of
the energy momentum tensor. In pure gauge theory it is given by

Tµν = 2Tr[Fµσ Fνσ −
1
4

δµν Fρσ Fρσ ], (1.3)

and the field strength tensor Fµν is defined by the plaquette operator on a lattice:
Uµν(x) = exp(ia2gFµν(x)).

The transport coefficients are also expressed by the slope of the spectral function ρ(ω) at
ω = 0 of the corresponding retarded Green function. The shear viscosity η is written as

η = π lim
ω→0

ρ(ω)

ω
. (1.4)

On a lattice, we determine ρ(ω) by the Matsubara Green function Gβ instead of the retarded
Green functions themselves, because both Green functions have the same spectral function,

Gβ (tm) = −
1
β ∑

n
e−iωntm

∫ ∞

−∞

ρ(ω)

iωn −ω
dω =

∫ ∞

0

cosh(ω(tm −β/2))

sinh(ωβ/2)
ρ(ω)dω, (1.5)

where ωn = 2πn/β for the Matsubara Green function. If iωn is replaced by p0 + iε , the retarded
Green function is obtained.

However, there are still difficulties in the determination of ρ(ω). One is that Gβ (tm) is discrete,
while ρ(ω) is continuous. Therefore, fine resolution in the temperature direction (simulation on
large NT lattice) is necessary for its accurate determination. The other difficulty is that Gβ (t)
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Figure 1: Shear viscosity in physical units from lattice and perturbative calculations. The circles are results
from the improved action and squares are those from the standard action. The perturbative results beyond
leading log approximations [6] are shown by lines.

is noisy; thus its determination requires much CPU time. Hence, we start with the smaller NT

lattice, assuming a plausible form for the spectral function ρ(ω) that fits Gβ (tm) well. The simplest
nontrivial form is[2],

ρ(ω) =
A
π

(
γ

(m−ω)2 + γ2 −
γ

(m+ω)2 + γ2 ) (1.6)

This form is derived from a perturbative calculation in ϕ 4 theory[3].

2. Numerical results from isotropic lattice

Because ρ(ω) given by Eq.(1.6) has three free parameters, Gβ (tm) should be calculated on
NT ≥ 8 latticels. We carry out simulations on 243×8 and 163×8 lattices, using Iwasaki’s improved
action and the standard action, and the temperature range is 1.4 < T/Tc < 25. We are attempting
to overcome the huge fluctuations by a large number of measurements. In the case of the improved
action, Gβ (tm) is determined by roughly 6 million measurements, while for the standard action
there are more than 16 million measurements. The fit of Gβ (tm) is made by SALS, and errors
are estimated by the jackknife method. Then the viscosities are obtained by the formula ηa3 =

4Aγm/(γ2 +m2)2.
To obtain the viscosities in physical units, we need the lattice spacing a(g). For the improved

action, a has been determined for 2.2 < β < 3.8 by the Tsukuba group[4], and for the standard
action, a has been determined for 5.58 < β < 6.5 by Edward et al.[5]. Outside these regions, we
assume a two-loop asymptotic scaling relation.

The results for shear viscosity η in physical units are shown in Fig.1. Because the η × a3

has weak T dependence, the shear viscosity increase roughly with T 3 throughout the temperature
region. We find little difference between the results from 243×8 and 163×8 lattices. Thus, the size
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Figure 2: η/s obtained by lattice simulations (circles and squares) and perturbative calculations (lines). The
KSS bound[1] is also shown.

effect may not be large for the lattices of these sizes. However, more accurate data are necessary to
determine quantitative size dependences.

We have also shown the perturbative results beyond the leading log approximation[6] in Fig.1,
where the scale factor µ in the running coupling constant is a free parameter. The agreement
improves when µ becomes smaller, but in this case the breakdown of the perturbative calculation
starts at a higher temperature.

Let us proceed to the η/s ratio, recently studied by Kovtun et al.[1]. The results are shown
in Fig.2. The lattice data on entropies are given by Ref. [4, 7]. The perturbative results are also
shown, where we use the entropy calculated by the hard thermal loop approximation given in
Ref.[8]. Because both ηa3 and sa3 have weak T dependence in the T > 1.5Tc region, the η/s ratio
also has weak T dependence and the lattice results are close to the KSS bound for T/Tc < 25.

In Fig.3, we show the ratio in RHIC temperature regions together with the bounds by Meyer
[9], who employed a multi-level algorithm and got bounds without using an ansatz.

For the improved action, signals for the bulk viscosities begin to overcome the errors, when
there are about 6 million measurements. The results are shown in Fig.4. The values of bulk
viscosity still have rather large errors, but at T close to Tc, their values are determined, which
are roughly one order of magnitude smaller than the shear viscosities. Their T -dependence is an
interesting problem but that requires more measurements. Recently it has been claimed that the
bulk viscosity is large near the critical temperature and decreases rapidly with T[10]. Our results
do not contradict this. In the case of the standard action, the bulk viscosities still have large errors
that they cannot be determined.

It will be interesting to carry out phenomenological studies on RHIC data taking into account
these viscosities in the fluid model.

2.1 Discussions
• The renormalization factor Z of the energy momentum tensor is discussed by Meyer[9]:
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Figure 3: Ratio of η /s in RHIC regions.

Figure 4: Lattice results of ζ /s ratio from the improved action

Z = 1− g2/2(cσ − cτ). If the parametrization of Z factor given by Ref.[9] is used, the viscosities
calculated by the standard action decrease by about 30%. Z factor can also be written as follows:
Z = ∂γ/∂ξ [14], where ξ is the renormalized anisotropy and γ is the bare anisotropy. In the case
of Iwasaki’s improved action, ξ ∼ γ over a wide range of β and ξ ; therefore the Z factor is close
to 1. If the Z factor is taken into account, the difference between η obtained from improved action
and standard action decreases.

• We have attempted to fit G12
β by other parametrizations of ρ(ω) than that given in Eq.1.6. If

we apply the formula for ρ proposed in Ref.[11], the fit is not satisfactory and ρ does not satisfy
the constraint ωρ(ω) > 0[12]. If we truncate the Taylor expansion of ρ(ω) after the lowest 3
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Figure 5: G12
β (tm) on isotropic (NT = 4) and ξ = 2 anisotropic lattice (NT = 8)

terms, the fit is also not satisfactory and the coefficient of ω becomes negative, which also cannot
be accepted as a spectral function. In the three-parameter functions for ρ , we have not found a
ρ(ω) that fits G12

β (tm) well except for Eq.1.6.

3. Next project: toward the high-precision calculation of η

3.1 Simulation on anisotropic lattice

To determine ρ(ω) without relying on any assumption, the maximum entropy method(MEM)
seems promising. To get a reliable result, accurate Gβ for a NT ∼ 30 lattice is necessary. For this
purpose, the best method may be to adopt an anisotropic lattice. Before carrying out the simulation
on large anisotropic lattices, we start with a preliminary study on the possible systematic error.

The fundamental properties of anisotropic lattices have already been studied[13, 14, 15]. The
anisotropy ξ = aσ/aτ is controlled by the bare anisotropy γ in the action. The γ dependence of ξ
is expressed in terms of the ratio ξ/γ[13, 14, 15]. The ξ/γ ratio is determined by its asymptotic
plateau for r ≥ 3, where r is the distance of the lattice in the unit of space direction aσ . At short
distances, the ξ/γ ratio is not equal to its asymptotic value. Thus Gβ (tm) for small tm/ξ will suffer
from a systematic error due to deformation.

To study the effects of the deformation, we compare G12
β for isotropic and ξ = 2 anisotropic

lattices at the same T/Tc (aσ ). For the standard action, G12
β is shown in Fig.5. Large discrepancies

are observed near Tc, due to the deformation at short distances (tm/ξ ≤ 2) and to the difference
between the Z factor in the lattices. An increase in the deformation is anticipated as the ξ/γ ratio
increases toward Tc. On the other hand in the case of improved action, the difference in G12

β (tm) for
the lattices is small. In this action, because the ratio ξ/γ is close to unity over a wide range of β
and ξ , the deformation is weak and the Z factor is close to unity.

3.2 Improvement of the energy momentum operator

To reduce the fluctuation of G β , we have attempted to use clover-type operator for the defini-
tion of the energy momentum tensor. It was found that the noise is strongly suppressed, and the
normalization and the t-dependence of Gµν(t) are not changed. We are also testing the effective-
ness of the multi-level algorithm[16] for reducing the fluctuations[17].
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4. Conclusion

The shear and bulk viscosities are calculated on isotropic 243 × 8 and 163 × 8 lattices. The
T-dependence of the η/s ratio is weak and its value is close to KSS bound throughout the region
T/Tc < 25. The bulk viscosities are obtained in the T/Tc ≤ 2 region, and their values are one order
of magnitude smaller than those of shear viscosities.

The systematic error due to the deformation of lattice spacing at a short distance is studied.
For the standard action, the deformation becomes strong near Tc. In the tm/ξ ≤ 3 region, the effects
of deformation should be carefully controlled.

For the accurate determination of the spectral function ρ by MEM, improvements of the energy
momentum tensor operator using clover-type loops and the multi-level algorithm are promising.
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