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Abstract. We study the forward self-similar solutions to a parabolic system modeling

chemotaxis S
ug =V (Vu—-uVv), 7v=A~40v+u

in the whole space R2, where 7 is a positive constant. Using the Liouville type result
and the method of moving planes, it is proved that self-similar solutions (u,v) must be
radially symmetric about the oritgin. Then the structure of the set of self-similar solutions
is investigated. As a consequence, it is shown that there exists a threshold in fRZ u for the
existence of self-similar solutions. In particular, for 0 < 7 < 1/2, there exists a self-similar
solution (u,v) if and only if [z u < 8.

1. Introduction

We are concerned with the parabolic system of the form

du_ V- (Vu—uVv)
(1.1) ot :
| 7‘-8-1-}- = Av+u

Ta =

forz € RY and t >0, where 7 > 0 is a constant. This is a simplified system of the one given
by Keller and Segel [16] describing chemotactic feature of cellular slime molds sensitive to
the gradient of a chemical substance secreted by themselves. The functions u(z,t) > 0
and v(z,t) > 0 denote the cell density of cellular slime molds and the concentration of the
chemical substance at the place z and the time t, respectively.

Backward self-similar solutions are studied in [12] for 7 = 0. The present paper is devoted
to the forward self-similar solutions. Namely, this system is invariant under the similarity

transformation :
u(z,t) = Xu(Az, A%t) and wx(z,t) = v(Az, %)

for A > 0, that is, if (u, v) is a solution of (1.1) globally in time, then so is (uy, vy). A solution
(u,v) is said to be self-similar, when the solution is invariant under this transformation,
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that is, u(z,t) = ux(z,t) and v(z,t) = va(z,t) for all A > 0. Letting A = 1/4/t, we see that
(u,v) has the form

(1.2) u(z,t) = %45 (%) and v(z,t) =9 (\%)
for z € RY and t > 0. It follows that
(13) [ ula,tdz = €27 [ g(4)dy

for ¢ € L}(RY). Therefore, self-similar solution (u,v) preserves the mass ||u(:, )|z gz if
and only if N = 2. On the other hand, the mass conservation of u(:,t) follows formally in
the original system (1.1) in any space dimensions. Regarding this fact, we study the case
N =2 in this paper. |

By a direct computation it is shown that (u,v) in (1.2) satisfies (1.1) if and only if (¢,v)
satisfies

»” v-(v¢—¢z¢)+%z-v¢+_¢=o, 1€ RY,
A¢+§x-V¢'+¢=O, z € R%

We are concerned with the classical solutions (¢,%) € C*(R?) x G%(R?) of (1.4) satisfying
(1.5) ¢, >0 inR® and ¢(z),9(z) 0 as |z|— oo.

Define the solution set S of (1.4) as

(1.6) S={(¢,%) € Cz(’IRQ) x C2(R?) : (¢,) is a solution of (1.4) with (1.5)}.

The existence of radial solutions (¢,7) € S has been known by [20, Theorem 1] and [22,
Theorem 1.1]. We investigate the structure of the solution set S.

Theorem 1. Any (¢,%) € S is radially symmetric about the origin, and satisfies ¢, €
LH(R?).

Theorem 2. The solution set S is expressed as a one parameter family:
S = {(4(s),9¥(s)) : s € R}.

If A(8) = ||6(s)llrre)s then (¢(s),%(s)) and A(s) satisfy the following properties:
(i) s~ (¢(s),1(s)) € C*(R?) x C2(R?) and s +> A(s) € R are continuous;
(i) (¢(s),¥(s)) = (0,0) in C*(R?) x C*(R?) and A(s) — 0 as s — —00;
(iti) [|%(8)l| Loo(mry = 005

A(s) = 8w, and ¢(s)dz — 8mdo(dz) in the sense of measure as s — 0O,
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where §o(dz) denotes Dirac’s delta function with the support in origin;
(iv) 0 < A(s) < 87 for s€ R, if 0 < 7 < 1/2, and 0 < A(s) < max{4n3/3,4n37?/3} for
seR, ift>1/2.

As a consequence of Theorem 2 we obtain the following:

Corollary. There ezists a constant X\* satisfying A\* = 8w, if 0, < 7 < 1/2, and 8r <
X* < max{4r®/3,4n37%/3}, if T > 1/2, such that

(i) for every X € (0, \*), there ezists a solution ($,v) € S satisfying ||¢|| LR = N

(i) for A > X*, there exists no solution (¢,v) € S satisfying ||8|| 112y = A

Remark. Biler [1] has shown that the system (1.4) with 7 = 1 has a radial solution
(¢,%) satisfying ||| gey = A for every A € (0,87), and has no radial solutions (,%)
satisfying ||@]| s gey/2m > 7.82.. ..

Theorem 1 isa consequence of the following:

Theorem' 3. Assume that (#,%) is a nonnegative solution of (1.4) satisfying ¢, ¢ €
L*®(R?). Then ¢ and ¢ are positive, and there ezists a constant o > 0 such that

1.7 ¢(z) = ge~l#*/4e¥ @),

Assume furthermore that ¥(z) — 0 as |z| — oco. Then ¢ and 9 are radially symmetric
about the origin, and satisfy 8¢/0r < 0 and 8y /0r < 0 for r = |z| > 0, and

¢(z) = O(e™*/%) and (z) = O(e” min{r1}el’/4)  gg || — oo.

The proof of Theorem 3 consists of two steps. First we show that (1.7) holds by employing
the Liouville type result essentially due to Meyers and Serrin [19]. Then we show the radial
symmetry of solutions by the method of moving planes. This device was first developed by
Serrin (28] in PDE theory, and later extended and generalized by Gidas, Ni, and Nirenberg
[7, 8]. We will obtain a symmetry result for Eq. (1.8) below with a change of variables as
~in [28].

By Theorem 3 it follows that under the condition ¢,9 € L®°(R?) the system (1.4) is
reduced to the equation

(1.8) Ay + %m Vip+oe P =0 in R?
for some positive constant o. Moreover, (¢,v) € S if and only if 4 satisfies (1.8) with
(1.9) P(z) =0 as |z| = oo,
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and ¢ is given by (1.7). Let A = ||§||z1(g2). From (1.7) we see that
N o / /) gy
R2
Then (1.8) is rewritten as the elliptic equation with nonlocal term,
(1.10) Ay + %a: Vo + Ae“'“'2/4e¢/ /mz e WP/t dy =0  in RZ

The proof of Theorem 2 is based on the ODE arguments to Eqs. (1.8) and (1.10). Further-
more, we employ the results by Brezis and Merle [2] concerning the asymptotic behavior
of sequences of solutions of

(1.11) ~Auy = Vi(z)e"™  in Q,

where © C R? is a bounded domain and V; is a nonnegative continuous functions. We also
need Theorem 4 below in order to prove Theorem 2. Here we recall Theorem 3 in [2].

Theorem A [2]. Suppose that
(1.12) 0< Vi(z) £Cy, z€Q,
for some positive constant Co. Let {ur} be a sequence of solutions of (1.11) satisfying

(1.13) limsup [ e**dz < co.

k—oo /O

Then there ezists a subsequence (still denoted by {ux}) satisfying one of the following
alternatives:

(i) {ux} is bounded in Li5(S);

(ii) up — —oo uniformly on compact subset of Q;

(iii) there erists a finite blow-up set B = {a, .. .,ag} C Q such that, for any 1 < i < ¢,
there ezists {xx} C Q, T — a;, vi(Tx) — 00, and vy — —00 uniformly on compact subsets
of Q\B. Moreover, Viettdz — Y5_; 0;0,,(dz) in the sense of measure with oy > 4m, where
8a,(dz) is Dirac’s delta function with the support in T = a;.

It was conjectured in [2] that each ; can be written as o; = 8mm; for some positive
integer m;. This was established by Li and Shafrir in [18].. Chen has shown in (3] that any
positive integer m; can occur in the case V =1 and € is a unit disc. On the other hand,
under more restrictive assumption that Vj € C*(2) we obtain the following theorem. It is
related to Theorem 0.3 of Li [17] and is proven in the appendix of the present paper.

Theorem 4. Suppose that Vi € CY(Q) satisfies (1.12) and
(1.14) IVVillzeo) < Cu

4



for some positive constants Cy and Cy. Let {ux} be a sequence of solutions of (1.11)
satisfying (1.13) and

(1.15) max uy, ~ 1in uy < Cy

for some positive constant Cy. Assume that the alternative (iii) in Theorem A holds. Then
a; = 8x for each i € {1,2,...,4}.

Recently, attentions have been paid to blowup problems for the system

(
%?=V-(Vu—-u\7'v), zeq, t>0,
ov '
) T—a-g—Av——'yv+u, z€N, t>0
%g:g%:, :L‘E@Q,t>0,
| u(z,0) =uo, w(z,0)= vy, z €,

where Q C R? is a bounded domain with smooth boundary 8, T and v are positive
constants, and v is the outer normal unit vector. Childress and Percus [5] and Childress
[4] have studied the stationary problem and have conjectured that there exists a threshold
in |Jul|z1(q) for the blowup of the solution (u,v). Their arguments were heuristic, while
recent studies are supporting their validity rigorously, see, [11], [13], [24], [26], and [27].
On the other hand, it is asserted that self-similar solutions take an important role in
the asymptotic behavior of the solution to the Cauchy problem for the semilinear parabolic
equation, see, e.g., [6], [14], and [15]. From Corollary, we are led to the following conjectures
for the problem (1.1) subject to the initial condition u(z,0) = uo and v(z,0) = vo in R?.

For 0 < 7 < 1/2, if |lugllj1wey < 87 then the solution of the Cauchy problem to (1.1)
ezists globally in time, and if ||uo||z1(q) > 87 then the solution can blowup in o finite time.

We organize this paper as follows. In Section 2 we show that (1.7) holds by employing
the Liouville type result. In Section 3 we show the radial symmetry of solutions by the
method of moving planes, and then give the proof of Theorem 3. In Section 4 we give the
ODE arguments to investigate the properties of radial solutions of (1.8). We study the
behavior of sequences {(r, )} C S satisfying ||| soo(m2) — 00 in Section 5. In Section
6 we investigate the upper bounds of |||l 1(g2). Finally, in Section 7 we prove Theorems
2 by using of the results in Sections 4-6. In the appendixes, we are concerned with the
existence of solutions to the problem (1.8) and (1.9), and give the proof of Theorem 4.



2. Reduction to the single equation

In this section we show that the system (1.4) is reduced to Eq. (1.8) if ¢, ¥ € L*=(R?).
More precisely, we have the following:

Proposition 2.1. Let (¢,9) be a nonnegative solution of (1.4) with ¢, ¥ € L®(R?).
Then the relation (1.7) holds with some constant ¢ > 0.

To prove this proposition we use the Liouville type result for second order elliptic in-
equalities essentially due to Meyers and Serrin [19].

Lemma 2.1. Let u satisfy
(2.1) Au+Vb-Vu>0 inR%.

Assume that x - Vb(z) < 0 for large |z|. If sup,cge u(z) < 0o then u must be a constant
function.

Proof. - Take a function p as pu(r) = 1/log(1 +r). Then u satisfies the Meyers-Serrin

condition K9) e u(s)
/1 + dt = oo, where k(t) = exp ( /1 " ds) .

Define v as . k()
v(r) =/1 -(T)—dt, r>1.

Then v(r) is positive and increasing for r € (1,00), and satisfies v(r) — oo as 7 — 0.
Furthermore v = v(|z|) solves

Av+Vb-Vu= kl(alcT'*’l) (—=u(|z]) + z - Vb(z)) -

By the assumption, there exists a large R > 0 such that
(2.2) Av+Vb-Vv <0 for |z| > R.

Now assume to the contrary that u is not a constant function. Without loss of generality
we may assume that u is not a constant function in |z| < R. Define

U(r) = sup{u(z) : |z| =1}

Then U(r) is strictly increasing for r 2 R. To see why, suppose R < 71 < 72 and
U(r,) > U(ry). Then u attains its maximum for |z| < 7 at an interior point and by the
strong maximum principle u is constant, which contradicts the assumption. Therefore U(r)
is strictly increasing, and we have U(R + 1) > U(R). Choose § > 0 so small that

_ UR+1)-U(R)
(2.3) 0<6§ o(B+1)—0(R)
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Put w(z) = u(z) — 6v(|z|). Then it follows from (2.1) and (2.2) that
(2.4) Aw+Vb-Vw>0  for |z| > R.
From (2.3) we obtain U(R + 1) — 6v(R +1) > U(R) — du(R). This implies

sup w(z) > sup w(z).
|lz|=R+1 |z|=R

Since w(z) — —o0 as |z| — o0, w has the maximum at a point zp € R?, |zg| > R. Then
we have Aw + Vb-Vw < 0 at z = zo. This contradicts (2.4). Hence, u must be a constant
function. o

Lemma 2.2. Let (¢,9) be a nonnegative solution of (1.4) with ¢, ¥ € L®(R?). Then
Vi € L®(R?).

Proof. Define u and v by (1.2), respectively. Then (u,v) solves (1.1), and it holds that-
1 .
()]l oo w2y = ;||¢||L°°(R2) and  [|v(t)|| Lo mey = 1%l oo (m2)-
Take t, > 0. From the second equation of (1.1) we have
i
o(t) = eltt)/MAy(40) + -1T- /t e t=)/DAy(5)ds = vy (t) + va(t), t > 1o,
0

where {e*A} is the heat semigroup. We recall the LP-L? estimates for the linear heat
equation,

(2.5) IV e/ 0]| oy < O ] o et

fort > 0 with 1 < p < g < oo, where C = C(7) is a positive constant. See, e.g., [10]. In
particular we have

Ve 20| oo ey < CtV?||w]| poomzy  for 2> 0.
Then it follows that
9010l =y < O = ta) 20t lzmgety < Ot = t0) 2w
and
VOl < © (6= ) ule)emds < Ollglum [ (6 5)7/267ds

for t > t,. Consequently, we obtain ||Vu(t)||z(g2) < oo for each ¢ > ¢. By the definition
of v it follows that [[Vo(t)|| w2y = t7/?[| V4|l Lome)- Thus we have Vo) € L*(R?. O
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Proof of Proposition 2.1. Put w(z) = —¢(z)eld’/4e=¥(® < 0. Then e /¥ Vw =
—Vé —2¢/2 + $Vip. From the first equation of (1.4) we have

V- (e Ae¥Tw) =0, or Aw+Vh-Vw=0 inR?

where Vb(z) = —z/2 + V(). From Lemma 2.2 we have

z - Vb(z) = (-I%E Py th(x)) <0

for large |z|. As a consequence of Lemma 2.1, w must be a constant function. This
completes the proof of Proposition 2.1. a

3. Radial symmetry: Proof of Theorem 3

In this section we investigate the radial symmetry of solutions to (1.8) and prove Theorem
3. Namely, we show the following:

Proposition 3.1. Let 9 € C*(R?) be a positive solution of (1.8) with (1.9). Then ¢
must be radially symmetric about the origin.

We prepare several lemmas.

Lemma 3.1. We have
(3.1) P(z) < Cemmn{ntlel/t for 5 € R
with some constant C > 0.

Proof. Define
Lu=—-Au— zz.-x—Vu

and put x, = min{l,7}. Let C be a positive constant and let v(z) = Ce~*r1al*/4, Then

L'U — Cﬁ'r (1 + (l:a’c_T).'wIZ) e-—l‘irlmlz/4 2 CKTB—NTI:CI2/4.
Since Ly = oe~1#*/4¢?¥  if we choose C so large that Ck, > ae”w“_L“’(Rz), then Lv > L) in
R?. Since v,1) — 0 as |z| — oo, by the maximum principle we have v > ¥ in R?. This
implies (3.1). O

We define w(z,t) by

(3.2) w(z,t) =t7% ( ) , where o=

Sils
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Lemma 3.2 (i) For every T' > 0 we have suppc;cr w(z,t) — 0 as |z| = oo.
(ii) For every p > 0 we have supy,s, w(z,t) — 0 ast — 0.

Proof. From Lemma 3.1 we have |y[**¢(y) — 0 as |y| — oo, that is, for all £ > 0 there
exists R > 0 such that

(3.3) ly*¥(y) <e  for |y| > R.

From (3.2) we have

o 3 _IE_I_ 2 i
(5.4 apeate = (5 v (5).
(i) Fix T > 0. From (3.3) and (3.4) it follows that

sup |z|w(z,t) <e  for |g| > RVT.

0<i<T

Since € > 0 is arbitrary, we obtain supyc,cr w(z,t) = 0 as |z| — oo.
(i) From (3.3) and (3.4) it follows that

12% sup w(z,t) < sup jzw(z,t) <e  for.0 <t < (u/R)*
jel>p z|>u

Then we have supy,,, w(z,t) — 0 as ¢ = 0. O
For p € R we define T, and I, by
T,={z=(21,2) ER¥|zy =p} and Z,={z€ R?|z; < p},

respectively. For z € R? and p € R let z# be the reflection of z with respect to T,, that is,
gk = (2 — T, %2). 1t is easy to see that if > 0,

|z#| > |z| forz €, and {zt:z e} ={z:m>p}C {z:|z] > p}-
By Lemma 3.2 we have the following:

Lemma 3.3. (i) For every T > 0 we have Supgescr Wz, t) = 0 as |z| — 00, T € DI

(ii) For every > 0 we have sup,es, w(z#,t) =0 ast — 0.

Lemma 3.4. Let u > 0. Define 2(z,t) = w(z, 1) ——‘w(x“,t). Then
(3.5) T2 > Az +cy(z,t)z in T, x (0,00) and z=0 onT,X (0, 00),
where

(3.6) cu(z,t) = % (—orr + oe I/ /0 1 e @/ V(-] ‘/Z)ds) :
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We have c,(z,t) < 0 in R? x (0,00).
Proof. By virtue of (3.2) we have
Tw, = Aw — 2T + gt—o-telol /atgtow,
t
Let w*(z;,t) = w(z”,t). Then w* satisfies
rwl = Aw* — OT ¥ 4 ot=olemlo P /atgtu®,
t
Since |z#| > |z|, we obtain

T a1 —lnl2
Twf < Aw* — —t—w" + gt~ g lelf /4 gt

Then we obtain 72, > Az + c,z, where c, is the function in (3.6). Since o satisfies
ar = aeW”L“(RZ), we have tc,(z,t) < —ar + el ®?) = 0 for (z,t) € R? x (0,00). O

Lemma 3.5. Let > 0. We have w(z,t) > w(z*,t) for (z,t) € £, x (0, 00).

Proof. Let z(z,t) = w(z,t) —w(z*,t). We show that z(z,t) > 0 for (z,%) € T, X (0, 00).
Assume to the contrary that there exists a (zo,%5) € £, x (0,00) such that z(zo,%0) < 0.
Take 6 > 0 so.small that z(zo, %) < —6. By (ii) of Lemma 3.3 we can take T € {0,1o) s0
that w(z*, Tp) < ¢ for z € £,,. Then it follows from w(z,t) > 0 that

(3.7) 2(z,Tp) > -0 forz €X,.

Fix T > t. By (i) of Lemma 3.3 we can take R > |zo| so large that w(z¥,¢) < ¢ for
|z| > R, x € T, t € [Tp, T). Then we obtain

(3.8) z(z,t) > =6 forz € I, |z| > R, t € [Ty, T).
Define Q = {z € £, : || < R}. Let T be a parabolic boundary of @ x (To,T), that is,
I = (Q x {To}) U (6@ x (To, T))-
From (3.5), (3.7), and (3.8) we have
T2 > Az +clz,t)z in @x (To,T) and z22-6 onl.
Put Z =z +9. Beéause cu(z,t) £ 0, if follows from the above inequality that
772, > AZ +‘cﬂ(a:, t)Z in Q% (T, T) and Z>0 onl.
By the maximum principle [25] we have Z > 0 on Q x [Ty, T), which implies that
(3.9) z(z,t) > =6  on @ x [To, T].
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On the other hand (zo,%) € Q@ X (Ty,T) and z(zg, %) < —6. This contradicts to (3.9).
Hence z(z,t) > 0 for (z,t) € B, x (0,00). g

Proof of Proposition 3.1. From Lemma 3.5 we have w(z,t) > w(z*,t) for u > 0 and
(z,t) € £, x (0,00). From the continuity of w we have w(z,t) > w(z°,t) for (z,t) €
o (0,00). We can repeat the previous arguments for the negative z1-direction to conclude
that w(z,t) < w(z?t) for (z,t) € Ty x (0,00). Hence w(z,t) is symmetric with respect
to the plane z; = 0, which implies that 1 is symmetric with respect to the plane z; = 0.
Since the equation (1.8) is invariant under the rotation, it follows that ¢ is symmetric in
every direction. Therefore 7 is radially symmetric with respect to the origin. O

Proof of Theorem 3. Let (¢,%) be a nonnegative solution of (1.4) with ¢, ¢ € L= (R?).
Then ¢ is given by (1.7) for some constant o > 0 from Proposition 2.1. It follows that
¢ > 0in'R? and ¢(z) = O(e™*/4) as |z| — oco. From the second equation of (1.4), %
satisfies the equation (1.8). By the strong maximum principle, ¥ > 0 in R

Assume furthermore that ¢(x) — 0 as |z| — co. Then, by Proposition 3.1, 1 must
be radially symmetric about the origin. Hence ¢ = v(r), 7 = |z|, satisfies the ordinary
differential equation |

Yrr + (% + ';'7” ) Yr+oe e =0, or (re" ), +oreT I A =0 for 7 > 0.
From 1, (0) = 0, we have
7
TCTT2/4¢1' = —a/ se(mDMebds < 0 for r > 0.
0

This implies that 1,(r) < 0 for r > 0. From Lemma 3.1 we obtain 9(r) = O(e~ min{r,1}r*/4)
as 7 — o0o. This.completes the proof of Theorem 3. - g

4. Structure of the solutions set to (1.8) with (1.9)

From Theorem 3 the solution 1 of (1.8) with (1.9) must be radially symmetric about the
origin. Then the study of the solutions is reduced to the problem:

1 T 2
r+ (— + —7'> +oe™" /4e¢ =0, r> 0,
(4‘.1)¢7 { 1/)7' T 2 ")[)'r . .

1/),.’(0) =0 and lim,e%(r)=0,

where o > 0. In this section we investigate the structure of the pair (o,%) of a parameter
and a solution. Define the set C as

(4.2) C = {(o,9): 0 >0 and ¢ € C*(0,00) N C*[0,00) is a solution of (4.1)5}.
For (o,1) € C we have 9 € C?[0,00) by Lemma 4.1 below.
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Proposition 4.1. The set C is written by one parameter families (o:(s),(r;s)) on
s € R, that is, C = {(0(5),¥(r;s)) : s € R}. The pairs (o(s),(r; s)) satisfy the following
properties: |

(i) s+ (a(s),%(+ 8)) € (0,00) x €?[0,00) is continuous;

(if) limyy—oo 0(5) = 0 and lim,,_o %(-; 8) = 0 in C?[0, 00);

() T oo 195 8)llwf0e) = oo Y05 5) = 0.

First we show the following:

Lemma 4.1. Let ¢ € C%(0,00) N C0,00) be a solution to (4.1),. Then 1 € C?[0,00)
and sup,sq % (r) = ¥(0). Moreover we have

2
(4.3) sup [t (r)] < 7/%0e¥®  and  sup |1 (r)] < 327,80,
>0 r>0 2

Proof. From (4.1); we have (re™"/44,), + ore™=1r*/4e¥ = 0 for r > 0. From 1 (0) =0,
it follows that

s R
By using the L'Hospital’s rule we obtain

e / (-84 H0) g = _TE0

g £255 = limy — o ], €O O = -,

which implies 9 € C2[0,00). Since 9,(r) < 0 for r > 0 from (4.4), we have sup,>o P(r) =

$(0)-
From (4.4) we have

(4.5) )l < (3 [ €em4dg) 0¥,

We see that (1/7) J7 £e~€*/4de < [&° e~¢*/4dg¢ = 7'/2. Then the left hand side of (4.3) holds.
From the equation in (4.1), we have

|'¢rr(7”)| < ( —7‘) Iwr(r)l +oe e < (: %7"> | (r)| + oe?©
We note here that
1 T 1 T 2 ]_ r T o0 9 1
=+ 57 = —E/ge < = Z —&/4ge — = 1 g
(4.6) (T-i-zr)rfofe df_rzfogdg.;.zfo e d¢ 2_,_7.
It follows from (4.5) and (4.6) that
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Therefore we obtain the right hand side of (4.3). This completes the proof of Lemma 4.1.
a

To prove Proposition 4.1 we consider the initial value problem
1
(4.7) { Wrr + (F * %r> w, + e =0, >0,
. 8
wr(0) =0 and w(0)=s,

where s € R. We denote by w(r; s) the solution of the problem (4.7),. We easily see that
w(r; s) and w,(r; s) satisfy, respectively,

T £
(4.8) w(r;s) = s — /0 %5-76_2/4 < /0 ne(f—l)vz/‘lew(n;s)dn) d¢
and
r
(4.9) w(r; s) = _%e—wm /0 £olrDE N gulEn) ge.

Define I(7) as
oo ] f r€
I(T) — /0 26—762/4 (/0 ,’76(7'—-1)772/4d,’7> df

From [21; Lemma 1] it follows that I(1) = (log7)/(r — 1) if 7 # 1, I(7) = Lif 7 = 1. We
easily obtain w,(r;s) < 0 for r > 0 and w(r;s) > s — e°I(7) for 7 > 0. (See [21, Lemma
2].) Then lim, o w(r; s) exists and is a finite value. Put #(s) = lim,c0 w(r; 8).

Lemma 4.2. For s € R, let ¥(r;s) = w(r;s) — t(s). Then ¢(r;s) is a solution to
(4.1), with o = €*), Conversely, let 1(r) be a solution of (4.1);. Then, for some s € R,
P(r) = P(r;s) and o = et),

Proof.. Tt is clear that t(r;s) is a solution to (4.1), with o = e®), Conversely, let
¥(r) be a solution of (4.1),, and let w(r) = ¥(r) + logo. Then w(r) satisfies (4.7), with
s = 1(0) + log . By the uniqueness we obtain w(r) = w(r;s) with s = ¥(0) +logo. We
have lim, e w(r; 8) = lim, 0 w(r) = logo. Then t(s) = logo, that is, o = e's), Hence
we obtain 9(r) = w(r) — logg = w(r; s) — t(s), which implies 9 (r) = 1(r; ). 0

From [21, (ii) of Lemma 5] it follows that, for s1, s2 € R,
(4.10) sup |w(r; s1) — w(r; s2)| < Cilsy — sal,
i~ ,
where C; = exp(e™I (7')) and m = max{sy, 82}. Moreover we have the following:

Lemma 4.3. Let 51, 52 € R, and let m = max{si, s2}. Then we have
(i) sup,sg [wy(r; 81) = wr(r; 82)| < Cals1 — s3], where Cy = m/2emCy;
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(ii) sup,5q [wer (75 81) = Wir (15 52)| < Csls1 — 82|, where C3 = (3 +27)e™Cy/2.
Proof. From (4.9) we have
5 51) = 3] < o7 [l 6D — 6

Note that |ew(tist) — ev(t2)| < e™|w(t; s1) — w(t; s2)] with m = max{s;,s3}. Then from
(4.10) we have |e?(ts1) — ev(ts2)| < Cje™|s; — s5]. Then it follows that

(4.11) lw, (13 81) — wp(r; 52)] < Cre™|s1 — s3] (-} /or 56"52/4(15) .

From (1/7) ff £e~6"/4dg < [ e~€'/4dE = n'/2, we obtain (i).
From (4.7); we see that w,,(r;s) = —(1/r + 7r/2)w,(r; 5) — e~ /4¢w(ri%), Then we have

1 7
|wpr (5 81) — Wee (75 82)| < (; + -2-7“> lw, (7 81) — w(r; s2)| + €™|w(r; s1) — w(r; s2)|-

Then from (4.11) and (4.6) we obtain
1427

Clem.l.5'1 — 8a91.

1 7
(;r- + 57’) |wy (75 81) — wp(r; 82)] <

Therefore we obtain (ii). O

Lemma 4.4. Let s, s3 € R, and let m = max{s1, s2}. Then we have
(i) |t(s1) — t(s2)| < Cils1 — 52|, where Cy = exp(e™I(7));

(ii) limgy—oo(s — t(s)) = 0;

(iii) sup,er t(s) < —log I(7).

Proof. Letting r — oo in (4.10), we have (i). Since w(r; s) < s for r > 0, it follows from
(4.8) that

rl 2 3 2
- ce) < ef [ ZeTE/A (r=1)n /4d>d.
0<s w(r,s)_e/ofe (/0 ne n | d€

Letting 7 — oo we have 0 < s — t(s) < e*I(r) for s € R. This implies that (i) holds.
Since w(r; s) is decreasing in 7 > 0, it follows form (4.9) that

wy(r; ) < —le“’(”?s)e"f'ﬂ/4 /T gelmDE/Ade,
TEI= 0

Then we obtain

4 (—emutr) < _L / " eer-DEage.
dr -7 0

Integrating the above on [0, 00) we have e~*®) — e~ > I(r) or e7**) > I(7). This implies
that (iii) holds. =
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Proof of Proposition 4.1. By Lemma 4.2 we have C = {(o(s),%(:; 8)) : s € R}, where
o(s) =€) and 9(r;s) = w(r;s) — t(s). We see that w(-;s) € C?[0,00) and t(s) € R are
continuous for s € R by Lemma 4.3 and (i) of Lemma 4.4, respectively. Thus (i) holds.

By (ii) of Lemma 4.4 we have o(s) = ") — 0 and 9(0;s) = s — t(s) — 0 as s — —o0.
Then, by Lemma 4.1 we conclude that ¢(;;s) — 0 in ‘C?[0,0) as s — —oo. Thus (ii)
holds.

* From Lemma 4.1 we have (-3 8)|| Leofo,00) = ¥(0; ). From (iii) of Lemma 4.4 we have
limyyo0 1(0; 8) = limyyeo(s — £(8)) > limssoo(s + log I(r)) = oo. Thus (iii) holds. This
completes the proof of Proposition 4.1. a

5. Blow-up analysis to self-similar solutions

‘This section is concerned with the case (iii) of Theorem 2. We study the asymptotic
behavior of sequences {(¢x, %)} C S satistying ||Ye]l o (g?) = 00 as k — 0o. We show the
following:

Proposition 5.1. Let (¢, ¥x) € S, and let My = ||dxllp1(re). Assume that
(51) “'lﬁkHLoo(R2) — 00 ask —oo.

and that_. {)\} is bounded. Then there exists a }subsequence, which we call again (Vi, Pr)
and ), satisfying Ay — 87 as k — oo and

(5.2) ¢ (z)dz — 8mlp(dx) ask — oo
in the sense of measure, where 8o(dz) is Dirac’s delta function with the support in origin.

In order to prove Proposition 5.1 we make use of Theorems A and Theorem 4 in Section
1. We also need the following result by Brezis and Merle [2].

Theorem B [2]. Assume {u;} is a sequence of solutions of (1.11) such that
Villze <€, il < G and [ Vieds < dr,
for some constant C > 0, where u* = max{u,0}. Then {uf} s bounded in L ().

Now we prepare several lemmas.

Lemma 5.1. Assume that f € C(R?) N LY(R?). Let w € C*(R%) N L'(R?) be a solution
of

(5.3) —Aw — %x Vw=f forzeR%.
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Then we have ||w|| 2 gey + |Vl pagey < Ol fll 21 wey for some positive constant C.

Proof. Define W and F respectively as

W(z,t) = w (%) and F(z,t) = % f (%) .
Then W and, F' satisfy
(5.4) IW (Ol @y = tlwllpgey and [IFCOlng = I1F]ln@e

for t > 0. Furthermore, from (5.3) we have 7W; = AW + F in R? x (0, 00). Since W — 0
in L}(R?) as t — 0 from (5.4), we obtain

¢
W(z,ty = %/0 elt=)DAR (., 5)ds.

Then it follows from (5.4) that

1 rt t
tlwlley = IWE Dl gy < ;/0 | F (- 8)|l o1 meyds < ;HfHLl(R?)-

Therefore we obtain |lw|:gzy < 77| fll 1 2)-
Next we show ||Vw||zi g2y < Cl|fllge). By the LP-L? estimates (2.5) withp =¢q =1
we have

”Ve((t_s)mAF(', 5)”1,1(1&2) <C(t- 5)_1/2“F('a 3)||L1(R2) =C(t - 3)_1/2“f||L1(1R2)-
Then we obtain
1 rt —\/r
HVW(’;t)”Ll(Rz) < ;_-/0 “Ve((t 5)/ )AF(',S)||L1(R2)dS < Ct1/2”f”L1(]R2)'

By the definition of W it follows that ||VW (-, 1|l w2y = t1/2||Vw|| ;1 g2y Therefore we
conclude that | Vw|| 1 g?y < C||f||z:@s)- This completes the proof of Lemma, 5.1. m]

Let (¢x, ¥x) € S, and let Ax = ||@xllp1ge)- Then (Ax, %) solves (1.10), that is,
(5.5) Aty + %x - Vay, + Age 1o 4P / f ) e WP /AghWdy =0 for z € R
R

From Theorem 3 we have ¢ € L'(R?), ¥y = ¥i(r), 7 = |z|, and Ot/0r < 0 for r > 0.
Assume that (5.1) holds. Then ||t || (r2y = ¥ (0) — 00 as k — 0o. We always use B, to
denote a ball of radius r centered at origin, that is, B, = {z € R? : |z| < r}.

Lemma 5.2. (i) We have ||[¥x|lpiwe) + | Vil 212y = O(1) as -k — 0.
(ii) For all v > 0 we have supy ||Ykl| oo g2\ 5,) < 00
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Proof. (i) Put
fo(@) = Mpe /(@) / /R el /gueli) gy

Then f; € C%(R?) N L}(R?). We have ¢, € L'(R?) and
— Ay, — —;-:L‘ Vipp = fr  for z € R?

By Lemma 5.1 we obtain ||| ;1 mey + | Vil 11 w2y € Cll k| me) for some constant C >0.
Since || fill @2y = M = O(1) as k — o, the assertion of (i) holds.

(if) Assume to the contrary that supy ||9x| e (r2\5,,) = 00 for some ro > 0. Since Pi(r)
is decreasing in 7 > 0, there exists a subsequence, which we call again {%k}, such that
infye,, ¥x(y) — 00 as k — co. Then ||thl|z1(re) — o0 as k — oo, which contradicts the
assertion (i). o

Take R > 0. Let gx be a unique solution of the problem

——Agk = -g'.’ﬂ . V’l,bk in BR, g = 0 on aBR.

Lemma 5.3. We have ||gk||z=(zz) = O(1) and ||V gi|lLe(Br) = O(1) as k — oo.
Proof. . We have gy = g(r), r = |z|, since ¥, = 9 (r). We see that gi(r) satisfies
—~(rgh) = 3r*%, 0<r<R,  g,(0)=g(R)=0,
where ' = d/dr. We will show that

(5.6) l|gkllzeopo,ry = O(1),  Nlgkllzeopo,ry = O(1) as k — oo.

By integrating the equation above, we obtain

T

—rgh(r) = = [ uils)ds.

Then it follows that

! _7-_ TNy Z r /
lg, ()] < 27’/0 82| (s)|ds < 2/0 s|yy(s)lds for0<r < R.

Thus we obtain

(6.7) gk |l ze=po,7) < 5/0 s|Yi(s)|ds.

We note that [ gi(s)ds = gx(R) — gi(r) = —gx(r). Then
R
96()| < [ 164(0)lds < Rllgilimom for 07 < R
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From (5.7) we obtain

A TR (R
(5.8) lgellz=iom < 5 [ sli(s)lds.

By (i) of Lemma 5.2 we have

o [ sli(s)lds = | Vulzicam < [ Voallsqusy = O(1) 2 k = o
From (5.7) and (5.8) we obtain (5.6). This completes the proof of Lemma 5.3. m]
Now define vy as
(5.9) 0(z) = u(o) — gu(z) —log ([, T/ ay)
It follows from (5.5) that
(5.10) —Av = —Aty — —;—:c Vi = Ape~ o 4ese%  for z € Bp.
Then we have
(5.11) —Avy, = Vi(z)e**  in Bp,

where V;(z) = Mge 1o’ /4e% . Since {);} is bounded and by Lemma 5.3, we have 0 < Vi(z) <
Cy and ||V Vi||zee(Br) < Ch for some constants Co and C,. Since vy is radial symmetry and
satisfies —Av, > 0 in Bg, vx(r) is nonincreasing in 7 € (0, R) by the maximum principle.

Lemma 5.4. There exists a subsequence, which we call again {vg}, such that v (0) — 00
and vi(z) — —oo uniformly on compact subset of Br \ {0} as k — oo. Moreover,

(5.12) A Vie dr — 87 as k — o0
R
and
(5.13) / e~ WP/ 4eh®W)dy — 0o as k — 0.
R2

Proof. We see that

/ W gy < ellorllie=(sp) / ) gy / e~ WP/ gy < O
Br - Bg R? -

for some constant C > 0. Hence, by applying Theorem' A, there exists a subsequence (still
denoted by {v}}) satisfying one of the alternatives (i), (ii), and (iii) in Theorem A.
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Assume that the first alternative (i) holds. Since {vy} and {gx} are bounded in L3, (Br)
and 1,(0) — oo as k — 00, it follows from (5.9) that

log (/R? é—|y|2/4e¢k(y)dy) = 1 (0) — gx(0) — vs(0) = 00 as k — o0,

Let yo € Bg \ {0}. Then from (5.9) we have 4 (yo) — 00 as k — co. This contradicts (ii)
of Lemma 5.2.

Assume that the second alternative (i) holds. Since vi(r) is nonincreasing in r, we have
vx — —oo uniformly on Bg. Then

(5.14) / e’*dz -0 as k — oco.
Bp
Put
wy =1 — gr and Wi(z)= Vk(x)/ /R?- el /aghn ) gy

Then we have —Awy, = Wie¥ in Bg. Because 9 > 0, we have

Wi(z) < Vk(w)/ /Rz e~ M /tdy < C

for somé ‘constant C' > 0. We find that ||wi|lzizz) < [Wellzr@a) + lgellzrar) = O(1) as
k — oo by Lemmas 5.2 and 5.3. It follows from (5.14) that

/ Wk(y)ewk(y)dy = / Vk(y)evk<y)dy < C’o/ e*Wdy -0 as k — oo.
BR BR BR

Hence, by applying Theorem B we obtain ||wj ||z~(s,j = O(1) as k — co. This contradicts
wg(0) = Y (0) — gx(0) — oo as k — oo.

Therefore, the third alternative (iii) must hold. By (ii) of Lemma 5.2 we have the blow-up
set B = {0}. Then v,(0) — oo and vx(z) = —00 uniformly on compact subset of Bg \ {0}
Moreover

(5.15) A Vie™dz — a as k — o0
R
for some a > 4. Since vy is radial symmetry, we have maxgp, vk — mingg, vy = 0. By
applying Theorem 4, we obtain o = 87 in (5.15).
Let zg € Bg \ {0}. From vi(zo) — —oc as k — oo we have

log (/IR2 e‘ly|2/4ewk(y)dy> = y(z0) — g (o) — vk(To) = 00 as k — o0,
which implies that (5.13) holds. -

Proof of Proposition 5.1. Let {vx} be a subsequence obtained in Lemma 5.4, First we
verify that, for all 7 > 0,

Vi
(5.16) /R?\B, Viet*dy — 0 as k — 0.
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From (ii) of Lemma 5.2 there exists a constant M = M (r) > 0 such that |¢)(x)| < M for
|z| > r. Since

~lyI*/4 g% () M —|y|?/4
Ak e~ W %ePeWidy  Ape /Rz\BreM/dy

2
/ Vi(y)eWdy = —F < -
R*\B, /R TPl gy /R el gy

it follows from (5.13) that (5.16) holds.
From (5.10), (5.11), and the second equation of (1.4) we have

Vie™ = —Avp = —Agy — ';'93 + Vb = .
From (5.12) and (5.16) we have

Ak = ||kl (r2y) = /RZ Vie™ dy = /BR Vie" dy + /R’\BR Vie'tdy — 87 as k — oo.

Thus \; — 87 as k — o0o. Since {¢;} is bounded in L!(R?), we may extract a subsequence,
which we call again {¢s}, such that ¢, converges in the sense of measures on R? to some
nonnegative bounded measure u, i.e.,

[ #(e)mdz ~ [, nau

for every.n € C(R?) with compact support. From (5.16) we have Jge\p, ¢x(z)dz — 0 as
k — oo for every 7 > 0. Then ¢ — 0 in LL (R?\ {0}) and hence 4 is supported on {0}.

loc

Thus we obtain du = abo(dz) with o = 87, which implies that (5.2) holds. This completes
the proof of Proposition 5.1. O

6. L*-norms of self-similar solutions

This section is concerned with the case (iv) of Theorem 2 and we investigate the upper
bounds of ||| 22y for (¢, %) € S.

Proposition 6.1. Let (¢,9) € S. Then

4 , 4
9}l L1 ey < max {g?ra, §7T3T2} .
Moreover, if 0 < 7 < 1/2 then ||| 1 gz) < 8.

We prove Proposition 6.1, following the idea of Biler[l]. By Theorem 1 the solution
(¢,%) € S must be radially symmetric about the origin. Define ® and ¥, respectively, as

3(s) = 5 [ 6(/iar and \I/(s)z% [ ot
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First we show the following:

Lemma 6.1. We have |¢|| 11 g2y = 27 lim,s00 @(5). Moreover, (®, ¥) solves

@II + ']_‘@I . 2@[@” — O
(61) 1
4sU0" + 178V - 70+ =0

for s > 0, where' = d/ds.

Proof. We see that

[y =2r [~ rotryar =2m (5 [ (/D)

which implies ||¢||71(gz) = 27 lims—c0 2().
Define v and v as

ulr,t) = 14 (%) and v(r,£) = (—})

respectively. Put U and V as

U(r,t) =/0T su(s,t)ds and V(rt) =/0T su(s,t)ds.

Then, by the change of variables, we obtain

Ulr, ) = % /0’2/ ‘4(/5)ds and V(rt) = : / " (E)ds

By the definition of ¥ and ® we have

2 72
(6.2) U(r,t) =9 (—t—) and V(r,t) =t¥ (—t—) .
Now we verify that (U, V') satisfies
Ui=r(U,), - U (r™'V,),
(6.3)
Vi=r(r V), +U
for (r,t) € [0,00) X (0, 00). Since (u,v) solves (1.1), we see that
rug = (rup)r — TU U — u(rv,), and  Trup = (rv,), +rU.
Then we obtain

7

r . r
/0 sui(s, t)ds = ru, — ruv, and 'r/ svi(s,t)ds = rv, + A su(s,t)ds.
0
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Thus we obtain (6.3). By virtue of (6.2) we have (6.1).

Lemma 6.2. We have

1 8
(6.4) —s0"(s) = Ze‘”/‘i/o e™4®' (t)dt >0 for s > 0.

Proof. Put W(s) = —4s7"(s). From the second equation of (6.1) we have
& = (—4s0"Y — 75T = W' + %VV.
Since 50" (s) = /s%'(y/3)/4, we have W(0) = lim,_,o W(s) = 0. Then we obtain
w — o~ T8/ : 'rt/4@l t)dt.
(s) =7 [ e/ia/ (1)
Since ®'(s) = ¢(1/s)/2 > 0, we obtain the assertion.

Lemma 6.3. We have s¥”(s) — 0 as s = oo and, for s >0,

%/s—%:idt<s 'I:fO<TSl,
0 < U(s)—sT'(s) < 0 ¢

T 5 A
L —_— ) 1.
4/0 et/4_1dt if T >

Proof. From the first equation of (6.1) and (6.4) we have

1 1 s
V. VNP T2 I/ 'rt/4lt t = 0.
<I>+4<D+2se <I>Oe @'(t)dt =0
We note that ®'(s) = ¢(v/5)/2 > 0. Then, for the case 0 < 7 < 1, we have
n, Tar i —73/4@1 /s 'rt/4¢l dt <0
<I>+4<D+2se A (t)dt <0,
that is,
T9/4 Ny _1_ //s Tt/d gt <
(6.5) (em/*a') +5-8 [ et < 0.
For the case 7 > 1 we have
n 1, 1 —r38/4 //s t/4 5!
9 4+ — <
<I>+4¢+2Se o | € ®'(t)dt < 0,
that is,
1\ o L a-nsiag [° ot
(6.6) (e/4@) + -elilig /0 e/4®!()dt < 0.
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First we consider the case 0 < 7 < 1. Define Z as
Z(s) = /0 ’ e (t)dt.
From (6.5) we have
(6.7) sZ" + -;-e—”/‘lz’z <0.
By integrating the above on [0, s] we obtain

1 T [®
gl _ gy L emTslt 2 / ~Tt/4 72 <o.
s +4e +16 | € (t)dt <0

Then we have sZ' — Z + e "*/*Z?/4 < 0. Dividing the inequality by Z> it follows that
(5/Z)" > e~/ /4. Therefore we obtain
(6.8) Z(s) € —0

- 1 —_ e—"rs/4.

From (6.4) we have —sU" = e~ ™/4Z(s)/4 > 0. Then

TS
0<_S\I,II(5)SW:]T)—<1 for s > 0.
This implies s¥"(s) — 0 as s = oco. By integrating the above on [0,s] we obtain the
assertion.
Next we consider the case 7 > 1. Define Z as
8
Z(s) =/ e/’ (t)dt.

0

Then from (6.6) we have (6.7). By the similar argument above we obtain (6.8). We see
that '

et [ i@ t)dt = [ e (tat < [ eI 1)t = e/ 2(s).
0 0 0

‘Then from (6.4) and (6.8) we have

1 _ TS TS
0< "5\1[”(5) < Ze S/TZ(S) < 4(65/4 —_ 6(1—7)3/4) < 4(63/4 — 1)

Therefore s¥”(s) — 0 as s — co. By integrating the above we obtain the assertion. a

Proof of Proposition 6.1. First we consider the case 0 < 7 < 1. From the second equation
of (6.1) we have ®(s) = —4s¥"(s) + 7 (¥(s) — s¥'(s)). From Lemma 6.3 we obtain

lim ®(s) = lim 7 (¥(s) — s¥(s)) < = [ —2—d
lim (s) = Jim 7 (¥(s) - s%'(s)) S T [ —r—ds
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By the change of variable z = 7s/4 it follows that

2
dz = 2
e — 1 Sy
Since |||z wey = 27 lim,00 (s) from Lemma 6.1, we obtain the assertion.

Next we consider the case 7 > 1. By the similar argument we obtain

_ *® ___2_22
slggo@( 4/ es/4__1d$ 47'/o e_1alz 3T

which implies the assertion.

lim ®(s <4/

$—00

Finally we consider the case 0 < 7 < 1/2. The change of variables
t=(logs)/2, k(t)=9(s), £L(t)=2s¥(s), m(t)=T(s), n(t)=25T(s)

transforms (6.1) into

k=24, m=n,

; ™ %
<A£=<2 k+'rm——2——? L,

h=2n+ezt(127l+'rm—k),

where "= d/dt. Hence we have
™ e

i ((k 2)? + 2£) =2 <7‘m -5 ——2—> = 459'(s) (T(\I/(S) — s¥'(s)) — %) <0

by Lemma 6.3. Then (k(t) — 2)® + 2(t) is decreasing for ¢ > —oco. We note that
limg oo k(2) = ®(0) = 0 and limy_o £(t) = lim,o 25%/(s) = lim,0 5¢(+/5) = 0. Then
we have

(k(t) —2)2 +20(t) <4 fort> —oo.

Since £(t) = 2s9'(s) = s¢(/s) > 0 and lim,eo((k(t) — 2)* + 2£(t)) < 4, we obtain
lim; 00 k(t) < 4. Thus lim,_e ®(s) < 4, which implies ||¢||z1 g2y < 87. O

7. Proof of Theorem 2

By Theorem 3 it is shown that (¢,9) € Sif and only if ¢ = ¥(r), r = |y|, solves (4.1),
for some o > 0 and ¢ is given by (1.7). By Proposition 4.1 the set C defined by (4.2) is
written by one parameter families (o(s),%(r;s)) on s € R. Let

(7.1) - p(r;8) =o0(s 6"72/4611’@’3).

)
Then S is written by one parameter families (¢ (¢(r,s),%(r,s)) on s € R. From (i) and (ii) of
Proposition 4.1 and (7.1) we have s — (¢(+; 8),%(+; 5)) € C?[0, 00) x C?[0, 00) is continuous
and (¢(-;8),%(+;8)) = (0,0) in C?[0, 00) x C?[0, 00) as s — —oo. We see that

(7.2) A(s) =27 ‘/Ooo ro(r; s)dr.
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Then A(s) is continuous and satisfies A(s) — 0 as s — —co. Hence, (i) and (ii) holds. By
Proposition 6.1 we obtain (iv).

We have ||3(-, 8)||ze[0,00) = %(0, 8) — 00 as s — oo from (iii) of Proposition 4.1. Let {s;}
be a sequence satisfying s — 0o as k — co. We note that {)\} is bounded by Proposition
6.1. By applying Proposition 5.1, there exists a subsequence (still denoted by {sx}) such
that A(sy) — 87 and x(|z|, sx)dz — 8mdy(dz) as k — oo. Therefore, (iii) holds. This
completes the proof of Theorem 2. a

Appendix A. Existence of solutions to (1.8) with (1.9)

The following theorem refines the previous results [20, Theorem 1], [21, Theorems 1 and
2], and [22, Theorem 1.1].

Theorem A.1. For any 7 > 0 there ezists o* > 0 such that

(i) if o'> o*, then (1.8) with (1.9) has no solution;

(ii) if o = o*, then (1.8) with (1.9) has at least one solution;

(iii) if 0 < o < o*, then (1.8) with (1.9) has at least two distinct solutions ©¥_, P,
satisfying limy—0 ¥ _(0) = 0 and lim, 09, (0) = co. '

Proof. By Theorem 1 the problem (1.8) with (1.9) is reduced to the problem (4.1),. By
Proposition 4.1 the set C defined by (4.2) is written by one parameter families (o(s),%(r; s))
on s € R. From (7.1) and (7.2) we find that

o(s) = A(s)/ (2% /ooo re'rz/“e’/’(m)dr) = )\(s)/ /R2 e WP /4ghvle) gy

From (5.13) in Lemma 5.4 we have
/R2 e~ W4l gy — 0o as 5 — oo,
Then o(s) — 0 as s = co. Therefore, from (ii) of Proposition 4.1, o(s) satisfies

Jm, o) =0

Let 0* = sup,cg 0(s). Then there exists s* € R such that o* = o(s*).

By Proposition 4.1 it is shown that (4.1), has a solution if and only if o = o(s) for some
s € R. Therefore, (4.1), has no solution, if ¢ > ¢*, and (4.1), has at least one solution, if
o =o* If ¢ € (0,0*), by the mean value theorem, there exists s1, s3 € R, 51 < 8* < 52
such that o = o(s;) = o(s2). Then (4.1), has at least two solutions VYo(sy) and Yo(sy). We
note that lims——co Y(s)(0) = 0 and lim,_,e0 %(s)(0) = 00 by (ii) and (iii) of Proposition 4.1.
Since lim,_,+, 0(s) = 0, we can choose solutions ¢, and % satisfying limy_o ¥, (0) =0
and limg0 %, (0) = co. This completes the proof of Theorem A.1. -
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Appendix B. Proof of Theorem 4

Define hy € C2() N C(Q?) by
Ahy=0 inQ and hy=u; on Of.
We may assume that {0} € Q with no loss of generality.
Lemma B.1. Let r > 0 satisfying B, C Q. Then |[Vh||ze(s,) = O(1) as k = co.

Proof. By the maximum principle, we have maxg hy — ming by < maxgq by — mingg Ayx.
Then from (1.15) we obtain

max hy — min hy < Cy
Q )

with a positive constant Cy. Let Ay (z) = hy(z) — ming he. Then hy, satisfies
Aﬁk=0 in Q, OvS ﬁkSC’g.

Since Oy /0z;, i = 1,2, is harmonic, by the mean value theorem and Gauss-Green Theorem,

we obtain ~ N
Ohu_ 1 [ SRy L po
dz; nrle Oz, wr?lam, F

for i = 1,2, where n = (ny,n) is the outer normal unit vector on 8B,. Then it follows
that.

Ohel ¢ L[ fhyas< 22, i=1,2.
Oz;| ~ 7r? JeB. r
Since |Vhg| = |Vhy|, we conclude that || Vhg||ze(s,) = O(1) as k — oo. a

Let wy(z) = uk(z) — hx(z) in Q. Then
—Awy, = Wi(z)e¥™ in Q, wi =0 on 0,

where Wi (z) = e™*®@V;(z). Let G(z,y) be the Green’s function of —A in { with respect
to the zero boundary conditions:

—A,G(z,y) =0y, TEL, G(z,y) =0, =z €.
Then we have
(B.1) Vwy(z) = AVzG(w,y)Wk(y)ewk(y)dy, z €.

Put zx(z) = Wi(z)ew®.
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Lemma B.2. For ¢ € C¢(2) we have

(B2) - [(A¥)adz = [ (V(ogWy)- Vy) adnt s [[plo,n)a(@)m)dedy,
where p(z,y) = VoG (z,y) - Vi (z) + V,G(z,9) - Vi (y).
Proof. We see that |
Vi = (VWi)e¥ + Wie? Vo, = 2,V (log Wi) + 2, Vg
Then, for v € C2(£2), we obtain
(B.3) - /ﬂ (AY)zda = /n (V(log Wi) - V) z4da + /Q (Vg V) zeda.
From (B.1) and Fubini’s Theorem, we find that
B4) [ (Voua) V9@ alade = [[ (VeCla.) - V(@) (e)2(v)dody.
By changing the role of & and y in (B.4) we obtain
[ (Vur@) - Vo) atldy = [[ (VG (@) I9()) 24(0)(v)dody.
Hence, we obtain
[ (Fun- Vo) ando =3 [ pla, )@z (w)dady.
From (B.3) we obtain (B.2). o

‘Without loss of generality, we may assume that the blowup set B contains {0}, and that
there exists a R > 0 satisfying {z : 0 < |z| < R} N B = 0. Therefore, {uy} satisfies

(B.5) maxuy — o0 and max ux — —00 ask— o0
Bpr Bgr\B,

for all » € (0, R). Moreover,
(B.6) Vie* dz — ady(dz)
on By in the sense of measure for some o > 4.

Lemma B.3. There egzist constants 7o € (0,R) and a > 0 such that Vi(z) = a for
z € By,.

Proof. First we show lim infx_,co V4(0) > 0. Assume to the contrary that

lim nf V4(0) = 0.
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From (1.12) and (1.14), by taking a subsequence in {V;} (still denoted by {Vj}), there
exists Vp € C(Q) such that Vi, — V; in C(Bg) and V,(0) = 0.
Let z € Br, ug(2x) = max, 5, ux(z). It follows from (B.5) that

(B.7) zr = 0 and wug(zk) — oo.

Let 6 = e~%(®)/2, Tt follows from (B.7) that & ~ 0. For |z| < R/(26;), we consider the
sequence of functions vx(z) = ux(6xz + zx) + 21og &. Then vy satisfies

~Avg(z) = Vi(6pz + x4 )€ v forz e Brsy)-
Moreover, we have vx(0) = 0, vx(z) < 0 in Br/(2s,), and

/ e (@ dr < @ dy < C
Bry(2s) ~ JBr -

for some positive constant C.

For each 7 > 0 the sequence {uvy} is well defined in B, for k large enough. It follows from -
Theorem A that only alternative (i) may occur, hence {v;} is bounded in L{2 (B,) and, by
standard elliptic estimates, also in C2%(B,), 0 < a < 1. Therefore, a subsequence in {vj}
converges in CZ.(B,). We may do the same arguments for a sequence 7, — 00, and pass
to a diagonal subsequence (which we will still denote as {vy}) converging in CZ,(R?) to v
which satisfies —Av = V;(0)e? in R%. Moreover, v(0) = 0, v < 0 in R?, and

(B.8) /1122 e’dz < C.

Since V5(0) = 0, v is harmonic in R?. Then v is a constant. This contradicts (B.8). Thus
we conclude that liminfy_,o Vi(0) > 0.

From (1.14) there exists constants 7o € (0, R) and a > 0 satisfying Vi(z) > a for z € B,.
0

Proof of Theorem 4. We will show that o = 87 in (B.6). Take ¢ € CZ(Bg) so that
0< ¢ <1land¢ = 1forz € B,, where ry is a constant in Lemma B.3. Let ¢(z) = |z2¢(z).
Then we have 1 € C2(Bg). Moreover, it follows that Ay(z) = 4 and Vy(z) = 2z for

z € By,.
We recall that Wy (z) = e*@V;(z). Then we have
_ VWi _ \7V;C
V (1ogWi) = 5 = Vhie+ 52*.

From Lemmas B.1 and B.3 and (1.12) we obtain |V log Wk(m)| < C for z € B, with some
constant C. Then we have

(B.9) |V(z) - V(log Wi(z))| < 2C|z| for z € By,.
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We see that G(z,y) = —(1/27) log |z — y| + K(z,v), where K(z,y) is a smooth function
on 2 x Q. Then p(z,y) defined in Lemma B.2 satisfies

1
(B.10) plz,y) = — +2z -V K(z,y)+ 2y VyK(z,y) for z € B,,.

We see that zx(z) = Wi(z)e?*® = Vi (z)e’®). From (B.6) we have zx(z)dz — ado(dz)
on Bpg in the sense of measure. Furthermore, we have

2 () 2 (v) dzdy — 020520 (dz) ® by=0(dy) = &*6(zy)=(0,0)(dzdY)

on Bg in the sense of measure. Letting k — oo in (B.2), from (B.9) and (B.10), we have
—4na = —a?/(27). From a > 47, we obtain o = 8. This completes the proof of Theorem
4. O
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