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View-based pose estimation
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Learning relations

Learning set
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(=1, 2, ... ,n)

Relations

Nonlinear 6; = f(x )

Linear Hj = Fa:j
Estimation

Nonlinear 6 = f(x)

Linear 0=Fx

Nonlinear methods

Parametric
Eigenspace method
(Murase, 1995)

Kernels
(Melzer, 2003)
(Ando, 2005)

Manifold learning



Learning relations

Learning set Linear methods
{0, =} Linear regression
(=1, 2, ... ,n) (Okatani, 2000)
Relations Cyclic permutation

(Tamaki, 2007)

EbC
(Amano, 2006/2007)

Nonlinear 6, = f(x)
Linear  6.= Fx,
Estimation

Nonlinear 6 = f(x)
Linear 0=Fx




Overview of EbC

Learning phase EbC: “Estimation-by-

ore 3 g Completion”

Learn

Image part x,
Parameter part p,
Compute Eigenspace

Estimate pose
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Questions to investigate

Performance depends on the number of learning
Images.

Few images: bad estimation

Many images: better performance

Is it really? How many images are enough?

- HEHHRHAAHAHAHAEH

& H 0 H




Questions to investigate

Performance depends on the number of learning
Images.

What is an appropriate set of images when we fix the
number of images?

Any set is enough?
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Learning image set

Definition of a learning set :

¢ . sample span [deg]

Sz’,sz{mik—l—s} s : start angle [deq]
x, . Images at 0 k=01, ..., n-1
= 360/1
Example : I /3
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Performance evaluation

Root mean square error (RMSE):

; y . @ true angle
RMSE, , = \/72_ 2(91—6’1) 0: estimated angle
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b,

Exclude learned images

sample spans:
¢ = 5,10,15,20,30,40,45,60,90,120
(divisors of 360 [deq])



RMSE [deg]

Experimental results 1:

moderate case
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Error Increases
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Starting angle doesn’t affect
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Experimental results 2:
performance dip at 40 deg.

RMSE [deg]
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Not monotonically

Error at :=40 [deq] Is very
large: 9 images are learned

The number of images
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Examples of learning sets

Seoo 6 Images

S50 8 Images

Swo 9 Images

Worst !

S300 12 Images




Objects that have
performance dip at 40 deg.

Object Object Object Object Object Object
5 6 9 11 14 19

What property affect the performance?
Future work....



RMSE [deg]

Experimental results 3:
keeping good performance

Error Increases
monotonically

Error at :=120 [deg] Is SO
small: only 3 images are
used for learning
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Objects that
keep good performance

COIL-20 Round shape may

. affect the
Object315 performance
ﬁ 'y Also future work...
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Conclusions

Performance evaluation of EbC
a view-based pose estimation

Experimental results:
Some objects have the performance dip
Some objects keep good performance
Future work

To Investigate the relationship between
performance and object shape
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