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1. Introduction

Consider the regression problem on a set of p response variables

y = (yl, e, yp)’ and a set of q explanatory variables x = (Xl’ o

Xq) . Let (yi = (yil, ve, yip) P Xy o= (Xil’ ""Xiq) ), 1 = 1,‘°°°,

n, be the n observations on (y; x). The regression model assumed is

(1.1) yi = nixg) o+ gy,

where n = (nl,~~° np)’: RY 5 RP is a function of x whose shape is

unknown but its smoothness is presumed, and the errors Si = (Sil’

s, Sip)’, i=1, ---, n, are independently and identically

distributed with mean 0 and unknown covariance matrix X = [cjﬂlpxp°

Writing this model in matrix form, we have

(1.2) Y =9 + &,
where
Yy
Y = : = [~(l)’ ] z’(p)]!
Yn'
Ny’
- =, Py
Mn

bl



and - & = | ° = [g(l), §(p)].

bl

The measurements Xi i=1, «++, n, which are called the design

points are expressed as
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rank(X) = g £ n.

The regression analysis usually involves two important problems:

making inferences about the regression surface np and estimating the

covariance matrix x. These problems are closely related. It is

easily seen that a good estimator of np immediately yields a good

one of Z. Conversely, once an adequate estimator of 3 is available,

it will provide helpful information to explore a good estimator of p.
When a vaild.parametric model for pn is at hand, some least squares

fechnique will yield a good result. However, in practical situation
of data analysis it is often difficult to chose a valid parametric
modei especially when q or p is large (see, e.g., Cleveland ahd

- Devlin[4], Silverman[20], Rice[16], Ohtaki[18]). For such a
situation, it may be a gdod strategy fo start the analysis by

estimating ¥ rather than n nonparametrically.



The simplest nonparametric estimator of X may be constructed by
making use of replicated observations. Suppose that there are g

distinct sets of replicated observations {(y,,, X,)| 1 < t <m,}, & =
‘ 4t L [’}

1, +++, g, in data. Then, an unbiased estimator‘of Z is given by
(1.3) 2pop = 1 (m,-1)}" (Vg Yo ) (Yge= Ya.)
E 951 i} 0c1t=1 ~4t L4 8t 24
_ ) .
- -1 . . . .
where ¥£- mQ tgl Yﬂt‘ This estimator EfE is refered to as

(Multivariate) Pure error mean square (PEMS) estimator (see, e.g.,
Draper and Smith[7, Secfion 1.5] Weisberg[23, Section 4.3}1).
Unfortunately, this estimator often lose its effectiveness because no
or very few replicated observations are available in most data.
Daniel and Wood [5] suggested the use of an approximate PEMS
estimator. Their idea is to use a clustering algorithm to find the
cases that are almost replicates, and use the variation of the
responses for the almnoest replicates. An'interesting application of
their idea to logistic regression was given by Landwehr et al.[12].
Recently, Gasser et al.[8] and Ohtaki{14] have proposed a class of
estimator of variance in univariate one-dimensional ndnparametric
regression model, i.e., the case of p = 1 and q = 2. Some properties
§f the estimators have been studied by Gasser et al.[8], Ohtaki[14]
and Buckley et al.[3]. In this paper these results in univariate
cases are extended to ones‘in multivariate'situations. The outlin?

- of this paper is as follows: In Section 2 we introduce a class of
nonparametric estimators. The biases of those estimators are studied

and their upper bounds are given in Section 3. In Section 4 we derive



the exact formulas of covariance matrices of.the estimators, and
assess the efficiency by comparing with the best linear unbiased
estimator under the linear regression model. In Section 5 we
investigate some asymptotic behaviors of the estimators and show the
sufficient conditions for consistency or asymptotic normality. 1In
Section 6 we consider the case when q = 2 in detail; we provide a
multivariate extention of the estimators which were proposed in
univariate regression model by Gasser et al.[8] and by Ohtaki[14],
and show that the newly obtained estimators become a natural
extention of PEMS estimator. In Section 7 we propose a new type of
test statistics for assessing goodness of fit of linear models, and
proVe that the'asymptotic null distribution bf the criterion is
N(0,1) under some mild regularity conditions. In Section 8, using
the idea due to Rousseeuw[17], we construct a robust alternative to
the diagonal elements of covariance matrix, and show that the robust

estimator will have a positive breakdown point in some situation.

2. A class of estimators

Suppose that there is a subset K of {1, --+, n} such that every
member i of K has an index-set Ni which specifies a neighborhood of

the design point Xi,~{Xj| j € Ni}' Here it is assumed that i ¢ Ni'

This means that our estimation is based on the cross—varidation
technique which will make the resulting estimate of covariance matrix

more stable. Let yi (i € K) be a linear predictor of yi = (yil’ ?'°,

yip)' which is bésed only on the neighborhood {(y.; Xj)l j€ Ni}. We



write such a predictor as
(2.1) vy, = Y'w,

where wi is an n-component vector whose jth component w,. is nonzero

1]
only when j € Ni' As for the errors Ly =¥ - Yy it 1s easily seen
that
’ = - 2 ’ .

(2.2) E[fifi] ¢y >+ ?i%" _ i€ K,
where £, = E[r;1 = 97(w; - 8,), 8, = (8,,, e 3507, 8;5 1s the

2 - ’ 2 = e
Kronecher delta, cf 1/(1 + w1l ) and "Ti" JYiYi'

The result (2.2) suggests that an estimator of X may be obtained

obtained through averaging c%riri , 1 € K. Adopting the set of

weights {c%}, we/prOpose the following class of estimators of X:

~ -1
(2.3) T, o= ( > c?) > ecér.ri.
g 1€K i€k *-t-

-~

The (j, 4)-element of ZN is expressed as

: " -1
(2.4) oy{j,8) = ( > c?) > cér..r.,., 1 <j, 2 <p.
A iek /  jex T 11

"REMARK 2.1. The estimator Eﬂ of (2.3) is expressed in a matrix
notation as

~

. (2.5) b)

= -ly-
N (trVﬁ) YV

ne

where



(2.86) Vy = 2 cH(w,

- &) (w, - &.)".
¥ ek ~1

1 .1 ~ ~1

The matrix Vﬂ is non-negative definite and its (a,8)-element VaB is

expressed as

‘ - ad _ ad _ a4 4
.(2'7) VB caaaBI{aeK} CaWaBI{aeK} CBwBaI{BEK} +ychyWyawyB’
where I{E} = 1 if the statement E is true, and 0 otherwise.

It is possible to use another sets of weights instead of {c%} in

averaging c%riri (i € K). For example, homogeneous weights n3! (n, is

K K

the total number of elements of K) was adopted_by Gasser et al.[8].
An advantage for using {c%} as a set of weights is that the resulting
estimator of X becomes a natural extension of PEMS estimator. This

| will be shown in EXAMPLE 2.1.

‘Two important special cases of the estimator (2.3) are given

in the following examples.

EXAMPLE 2.1(locally uniform weight (LUW) estimator). Let the

Weight—vector‘Wi in (2.1) be an n-component vector having the jth

element
| 1/ni, if j € Ni’
(2.8) Wij =\
0, if j ¢ N,
where ni denotes the number of elements in Ni' Then, yi = 5(1) =

> yj/ni, so that the resulting estimator can be expressed as
Jen, =
i



~ ni _.1 l 2 ”~ ~
( 2 J 2 ) (yq - ¥30yy - ¥y)°
i€k ni+l i€K i+l‘ - - ~ =

1

1

0y oy-1 — —
[z l) z(yi, _yi)(yi. —Y-)”
i€K ni+l i€ ~ - -

+

i > y.]/(ni+l), i € K. This estimator will be

where y. = EY
-1 jGNi~J

refered to as a locally uniform weight (LUW) estimator.
Consider the situation where every ith set {xj[ j € Ni or j = i}

(i € K) consists of mi replicates and there are g distinct design

points. Then, using the notation in (1.3), we have

m

n,; g 2 g
z = z z (mg‘—' l)/mg‘ = z (m_Q,_ l),
ieK ni+1 =1 t=1 =1
“and
(y; -y, )y, - y.,.)" = (Y= Yo ) (¥pem ¥y.)" .
jeg -1 1 <1 ~ i 051 to1 it <4 ~4t i

This implies that Eﬂ = ZPE‘ Thus, we see that the PEMS estimator
defined by (1.3) is a special case of LUW estimator. Even though PEMS
estimator is generally biased unless underlying regression function

is exactly constant, it has a computational convenience and may also

provide satisfactory information on X in some practical regression

situations.

EXAMPLE 2.2(locally linear weight (LLW) estimator). It may be
noted that the locally linear model may reduce effectively the

possible bias in the resulting estimator of Z, as Stone[22] has

- 97 -



suggested in general context of nonparametric regression. Let yi =
Bixi, where Bi= [bgi)] is the g X p matrix which minimizes

tr (Y

XBi)'Di(Y - XBi)]

y. — B%x.)’ . - Bix.),
ij.(st ~3~1) (;»_’J )
i

_ A S (1)
where Di = dlag[d1 , , dn ] and

ath)

1, if j € Ni’
J

0, if j ¢ Ni'
This linear predictor is based on the least squares estimators in

fitting a linear regression model to the data’{(yj; XJ)I j € Ni}‘

~

Then the predictor is written in the form yi = Y’Wi, and its

weight-vector is given by

(2.9) w, = D.X(X'D.X) ™Xx,, i € K,
~i i i ~i

where A~ denotes a general inverse of A. We note that Wfln = 1,

since X(l) = ln' The resulting estimator of X will be refered to as
a locally linear weight (LLW) estimator and denoted by ZE' Using a

few algebra, we obtain that Zf = ;?E when every ith set {§jl j € Ni

‘or j = i} consists of only replicated design points which are

identical to Xy (i € K). Thus, we see that the LUW estimator is also a

natuaral extension of PEMS estimator.



3. Upper bounds for biases

Let Zx be a nonparametric estimator of X definded by (2.3). A

few calculation yields the following formula for thé expectation of

~

Zﬂ:
~ -1
(3.1) B[R] = X+ (z czj S cdg g
X Njek Y jex tei-i
where
(3.2) g, = Elr;]l = Ely; - y;1 = Ow,.

It is easy to see that the second term of (3.1) is a non-negative

definite matrix, and hence the estimator ZN of ¥ is always positively

~ biased unless £i= 0 for all i € K. The following LEMMAS 3.1 and 3.2

are foundamental in obtaining upper bounds for biases of two

estimators Zﬂ and Zz.

LEMMA 3.1. Suppose that a function f: rRY o Rl is differentiable.

Let Ai = Wif - f(Xi), where f = (f(x,), ++-, f(xn))’ and the weight-
vector wi is given by (2.8). Then
(3.3) IAiI_S *fdi’
q 1
2,72
~ where ¢f = sup { > (ﬁg_f(§)|x=t1 } and di = max [IX. - giﬂ-_
t 2=1 3 =~ = jeNi

Proof. Using a Taylor expansidn of f about X we have



l£(x) - f(xp | < velx - x;0.

Since A, = (1/n.,) > {f(x.) —‘f(x.)}, we have
1 Pjen, 7Y ~1
i

-.1 -
]Ail < yenj ~2 ng x, I < ¥ed;
JGNi

LEMMA 3.2. Suppose that a function £ : RY o Rl is twice

differentiable. Let Ai = wif - f(Xi), where f = (f{x,), =<--, f(xn))’

and the weight-vector wi is given by (2.9). Then

\ 1 —— 2
(3.4) la: | < 3 Yevn, w142,

where ¥, = sup sup lu"H

ul, H is the Hessian of f at x = z, |Jw.ll =
Z u'u=1 = Z -

Z -~ ~1

“~-

Jgigi and ni is the number of elements in Ni'

Proof. Using a Taylor expansion of f about_xi, we have

F(x) = £(x;) + (X - X))’y + 3 (x - x)H (x - x4)

~i i ~i
R (-5 S - i - - _
where ?i - [ exl’ * 8x Jlx=x.’ Hi - Hz. and Z; T2 7 (1 Ti)fi
g’ 'o 21 i

for some T; in (o, 1), 1 =1, , n. Let gi = 3 ((fl ?i) Hl(}fl §i)’»

Tt (¥n_§i) Hn(§n_§i))‘ Since f = f(§i)%n r (X - %n%i)yi * Ry gnd
-Yi%n = 1, we have

Yif = f(%i) + §1(X DiX)'X Digi'



Hence, A; = wif - £(x,) = x;(X"D,X)"X"D;R;, 1 € K. Note that the

largest eigenvalue of DiRlRlDl can be evaluated as follows:

‘ . 1
sup u'D.R.R'D.u = Fsup {2 u.(x; - x,)H (x; - x,)}?
4 uus1 JeN, J'=3 17 73R i

l .
< 7 trD; sup > ouf{(x, - x;) " H(x. - x,)}?
4 u u 1 JGN J . J =) 1

< % n, sup [ max { sup (z’HkX)2

u’u=1 ~1<k<n z’z=1
S ou2(x, - x,)°( 1]’
X us(x, - x,)°(x, - X, }
jen, 1 i J i

< % n; sup sup (u H u)2d4
X u'u=1

1 .02 14
< i yf nidi‘

Hence, we obtain

2 . .
Ai X (XD, X) “X’'D, (DlRlRlDl)D X(X'D, X)

2 4 ” ’ -
Y2 nidi §1(X DiX) X

234,
vf w124

»¥>|H

Applying LEMMAS 3.1 and 3.2 for (3.1), we obtain the following

theorems:

- 11 -



THEOREM 3.1. Let Zﬂ [oﬂ(J 2)] be a LUW estimator of X.
Supppose that the jth and the 4th components "j and Ny of the

regression function n are differentiable, and that

1
2,2 o
¥y = s%p { Z ( kn (X)lX E) o< e, Ca= g, 4.
Then
(3.5) |E[Gﬂ(J,l)] - UJQI < $j¢1hﬂ,
where
’ n, -1 n, 5
(3.6) hy = | 3 z S 4.,
_ U (ieK n.+ 1) iEK[ n.,+ 1 1J

COROLLARY 3.1. The (j,{)-element oﬂ(j,l) of Zﬁ is unbiased if

the jth or the 4th component of the regression function n is exactly

~

constant; therefore, Zﬂ is unbiased if n is a constant function with

respect to Xx.
THEOREM 3.2. Let Ez = [og(j,i)] be a LLW estimator of Z.
Supppose that the jth and the 4th components nj and nl of the

regression function n are twice differentiable, and that

(et)

‘\.

where H is the Hessian of Mo for ¢« = j, &. Then

_12_.



where

1 -1
(3.8) o= L (z c?] S c4n. Iw. 12d%.
4 \iek jeg + -1 i

COROLLARY 3.2. The (j,%)-element 0,(3.2) of %, is unbiased if

the jth or the 4th component of the regression function n is exactly

~

linear; therefore, ZE is unbiased if n is a linear function with

respect to X.

4, Efficiency

In this section, we assume that the distribution of g, (i = 1,
-, n) have finite fourth moments about 0. To give an unified

expression for all third or fourth moments, we use the following

notation:

(4.1) u3(3,k,£)v= E[sijsiksi£]5

(4.2) u4(J.k,£,m) = E[sijsiksigsim],

for i =1, «+«+, n, for 1 £ j, k, £, m < p. First we give a general

-~

expression for the covariances of linear functions of Eﬂ.

THEOREM 4.1; Let Zﬁ,be the estimator of % defined by (2.3).

Suppose that 81’ ., Sn are independently distributed with finite

_13_.



third and fourth moments given by (4.1) and (4.2). If A = [ajk] and B

= [bjk] are any p X p symmetric matrices, then

(4.3) Cov[tr(Aéx), tr(Biﬂ)]

= (trv ) 2[vyv {3 2 22 a,, b, n,(j,k,%,m)
: X NN Tk ¢m Jjk 4m™4

- tr(AZ)tr(BY) - 2tr(ABI)} + 2(trv2) tr (ATBT)

+ 2 2222&- b {JJ. (k,_ﬂ,,m)n(j)’ + U (m,j,k)ﬂ(ﬂ)'}VV
Jkgm JKEm"3 - 3 n X

+ 4tr(A281'v§1)],

where Vﬂ is given by (2.8) and vy is the column vector of the

diagonal elements of Vﬂ.

Proof. Note that tr(AZx) = (ter)‘itr(AY’VxY) and Vﬂ is

symmetric. Then the results follows from THEOREM A.l1 in Appendix.

COROLLARY 4.1. Let oﬂ(j,l), 1 <j, £ £p, be the (j,%)-element
of EH‘
Then, under the same assumptions as in THEOREM 4.1

(4.4) Cov[oﬁ(j,k), oﬂ(l,m)]
= (trVﬁ)‘z[Y’Yx{u4(j,k,ﬂ,m)

T %5k%m T %30%m T “ymex’

j2%m * “5nkge)

(3)

+ (trVﬁ)(a

(k)

+ “3(k’£’m)Yijﬂ + us(J,ﬂ,m)YjVﬂg

- 14 -



* g (m 50V e g (g kv (™)

44V .
* z’geKcaCBuaB(ajlgkagmB * 9indkabes

+

%0850 ms * “xm®iefes’

where u , = (W, - 8 )" (w _véﬂ)'

Proof. The result is obtained from (4.3) by letting A = (§.8 7+

-J<k
» _ r » = - 1 °
§ §J)/2, B = (§£§m+ §m§ }/2 and V (trVﬁ) VN and using the
identities p ™ v aBls 5 car 2
d X . iPic™iB
i€K
COROLLARY 4.2. If 81, s, Sn are independently distributed

according to Np(O, Y), then

(4.5) Cov[tr(Aéﬁ), tr(Béﬂ)] =,2(trV”)‘2[trV§ tr (AIBX)

+ 4tr(AZBq'V§1)],
for any p X p symmetric matrices A and B.

Proof. The result is obtained from COROLLARY A.1 by letting V =

-1
(ter) Vﬂ'

It is interesting to compare ZZ (or Zﬂ) with the best linear

~

unbiased estimator zﬁLUE under the linear regression model. Let VZ

~and Vﬂ be the matrices obtained from the matrix V)J in (2.6) by using

the weight-vectors (2.9) and (2.8), respectively. To compare ZE with

~

ZBLUE’ consider the‘case when the regression function nvis exactly

- 15 -



Jinear, and is given
"E[Y] = € = X8,

where 8 1s a @ X p matrix of unknown parameters. Letting

PX\= X(X’X) !X, the best linear unbiased estimator is given by

ZBLUE:E = Y'(In—PX)Y/(n-Q).

As a criterion for the efficiency'of Zz, we consider the ratio
pg(A) = Var[tr(AZBLUE:g)]/Var[tr(AZZ)],
where A 1s a p X p symmetric matrix. Note that

= 4 ” - _ > I -1 _ rs
(4.8) VgX ichi{DiX(X DiX) Xs éi}{DiX(X DiX) Xy §i} X

and (I - PX)X = On Using these properties and COROLLARY 4.2, we

xXq '’
obtain

- - -2 2 2
Var[?r(AZE)] = 2(trV£) trVEtr(AZ) ,

Var[tr(Aﬁ%LUE:g)] = 2(n-q) " tr(AX)?,

if gis are normally disributed. Thus the ratio pg(A) does not depend

on the choice of A in this situation and is given by
- 2 2 _ - -
Py = {(trV,)2/(trv2)}/(n-q) = v,/(n-a).

As for the range of pz we ‘have the following theorem:

- 168 -



THEOREM 4.2. Let p, = v,/(n-q), v, = (trV )Z/trv2

z’
g = max [w % and
ieK ~
(4.7) U, = max #{8| N g, # ¢} .
: dEK
Then
g Ox

(4.8) (n-q)  !'max{————, 1} < Py < min{ , 11},

(l+gn)Un : n-q

THEOREM 4.2 is a direct consequence of the following lemma:

LEMMA 4.1. Let v

= 2 2 - 2 2
X (ter) /trve, v2 (ter) /trVE and
- 2 2
Vg = (trVﬂ) /trVﬂ. Then
Ox
(1) max{————, 1} < vy £ T,
(l+gn)Un

Proof. Since c% = (1 + Ilwillz)'1 <1 for i € K, we have

trvd = 33 clepllw, - 8,07 (wy - 8,))2

o B
= 22 4c‘*{(w -8 ) (w, - 8,)}2
o B:NgON =4 o8 ~& - ~
94
< 33 cled (1 + Iw 12) (1 + Iwgl?)
x€K B:N NN, =¢ ~a ~

--17 -



= > cé > | c§
€K B:NanNB¢¢

; 2
< mln{(ter) , UntrVﬂ}.

Therefore, it follows that v

¥ > 1 and
2 - 2
vy = (ter) /(UntrVﬂ) = ichi/Un > nK/{(l+gn)Un}"

The remaining part of (i) is proved from the Cauchy-Schwarz

inequality as follows:

(trVJ{)2 = ( > cijQ < ( > l)( > cf) = HK( > c?) < nKtrvj,

i€k 1€K ieK i€K
For the proof of (ii), consider

(4.9) W, = (n-q) (I - Py) - (trVE)'lv

£ £

Since tr(PXVg) = () yields from (4.8), we have

2 _ —ay-2 _ 2 ' -2 2
(4.10) tr’Wﬂ (n-gq) tr(In PX) + (ter) trVE

- 2(n—q)f1(trV£)°1tr{(In— PX)Vg}

i

—- -1 -1 _ _. -1 -1
(n-q) * vy 2(n-q) (ter) trVjg

-1 _ _ -1
Ve (n-q)~*.

. Therefore, noting that trW% > 0, we obtain v, < n-q. Similarly (iii)

is proved by considering

-,18—



(4.11) W, = (n—l)'i(ln - Py y - (trVu)’lv

- 1
where Pln = 4 }

1.
n.n

Similarly the efficiency of Zﬂ may be measured by
pﬂ(A) = Var[tr(AZBLUE:ﬂ)]/Var[tr(Azﬂ)],

where A 1s a p X p symmetric matrix and EBLUE-ﬂ = (n—l)‘lY’(In— P, }Y.

In

It is easily seen that if eis are normally distributed, pﬁ(A) does

not depend on A and is given by
py = {(ErVy)2/trV2}/(n-1) = vy/(n-1).

As for the range of Pg» We have the following theorem:

= (trVﬂ)z/trVZO Then

THEOREM 4.3. Let pEu = vﬂ/(n—l) and v g

U

Uk ' g
(4.12) (n-1) " !-max{ , 1} < Py < min{ , 1}.
2U n-1

n

Proof. The results follows from LEMMA 4.1 and nillwill2 =1

~

(i € K) for 2ﬂ°

5. Asymptotic properties

_It-is easlly expected that the asymptotic behaviors of Eﬂ depend
sensitively on the design of the explanatory variables as well as on

the error distribution. We first postulate the following éonditions

- 19 -



on them.

CONDITION 1. vy = (trVﬂ)2/trVi - +®, as n = +w,

CONDITION 2. There exists a positive number G such that

max n.HWiH2 < G < +o,
i€K -

CONDITION 3. The errors g

17 82, *+++ are independently

distributed with finite fourth moments.

REMARK 5.1. CONDITION 2 is fulfilled fbr a LUW estimator, since

nillwill2 = 1 for all i € K in this case.

In this section the eigenvalues of several symmetric matriées
will be frequently operated; for simplicity, we shall express the jth

largest eigenvalue of a symmetric matrix A as Aj(A).

~

We now prove the consistency of Ex which is given in the

following theorem:

THEOREM 5.1. Suppose that CONDITIONS 1, 2 and 3 hold. Then, the

~

nonparametric estimator Eﬂ of (2.2) is consistent if

(5.1) > EIE. = o(n,), | as n —¥+°°,
ieK"l”l K _

~Where &i = E[ri] for i € K.

Proof. It is sufficient to show that tr(AX) = tr(AZ) as n =+=

in probability, for any symmetric P X p matrix A. First we show that

- 20 -



E[tr(AZx)] -» E[tr(AX)] as n -+». Since I%iAgil < maxlxj(A)Igisi and
. j ~ e

1/(1+G) < ci < 1 for any 1 € K, we obtain from (A.2) in Appendix that

|E[tr(AZN)] - tr(AY) | = [(trvﬂ)‘iE[tr(AY’VxY)] - tr(AY) |

]

l(ter)'i{(trVﬂ)tr(AE) + tr(A1V, )} - tr(AD)|

fl

_.1 I
(trVvy)~!ltr(Ae' V)|

[ S c?)'ll S ¢4 grAt. |

iek 1 jeg t -1t~

< m?XIAj(A)|(1+G)[i §£§i/nK)'

Thus, it follows from (5.1) that E[tr(AZﬂ)] -+ tr(AZ) as n -+w,

Next we show that Var[tr(AZx)] 5 0 as n o+, Since c% < -1 and

’ 2
M I
. . . 1
(3). [ (i), (3).. )7
In | Vyvyl < (077 Vyn v vy
ap2 )3 3
< (ichizij] X (Vvivyd
1 ' 1
” 2 2 2
< [12K§1§i) Dy (V) (ervp) 3=,
Letting A = [?l’ s, ?P]'
(5.2) [tr(AZACVEO | < 5 3 lajZand) vz ()

ik -
< ST |arza l(n(J),Vgn(J)n(k).‘Vzn(k))%
2 2 1252 1T noon i

3 ~
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Therefore, using (4.3) we obtain

var[trv(AZ?] 4 vﬁ1[|§ E % g ajka,@,m‘uél(‘j’k’ﬂ"m) _ {tr(AZ)}2

- 2tr(AY)2]] + 2tr(Ax)?]

- 1 1
v /TR0 /vy (V) /erv 7 (5 kre /)7

1€K"l -1

X ? g % 5 Iajkaﬂml{lus(k.ﬂ,m)l + |u3(m,J,k)I}

+ 4(1+G)2( EKglsl/n ){l (v )/n } 2 Z IaJ Za,|.
1€K™ T

This implies that under CONDITIONS 1, 2 and 3, Var[tr(AZﬁ)] -+ 0 as

n =+e,

Finally, using the Chebychev's inequality, we obtain that for

any € > 0

- Var[tr(Aix)] + {E[tr{A(ﬁ:J'r - 312
Pr{ltr{A(Zx— )} =2 g} < - 0,

82

as n =+«, This completes the proof.

COROLLARY 5.1. Suppose that CONDITIONS 1 and 3 hold and that the

regression function n is differentiable and satisfies

2,1
(5.3) ¥ = sup { 2 ( gn (X)| J }Z7 < 4o, @ =1, °c-, p.
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Then a LUW estimator Eﬂ of 2 is consistent if

(5;4) > d2 = o(nK) as n —+®,
1eK
: Probf. For a LUW estimétor, CONDITION 2 is automatically
fulfilled (see, REMARK 5.1), and it yields from LEMMA 3.1 that under
assumptions (5.3) and (5.4)
0 < zg:g./nK [zxp](‘zd?/n] -+ 0,
o= 1 1€K

as n =+«. Hence, the assertion follows from THEOREM 5.1.

COROLLARY 5.2. Suppose that CONDITIONS 1, 2 and 3 hold and that

the regression function n is twice differentiable and has the

Hessian satisfying

(5.5) Yy = sup sup |u’ H(a) ul
X w'u=1

Then a LLW estimator Zz of X is consistent if

(5.86) > d4 = o(nK), as n o+,
i€K
Proof. For a LLW'estimator; it yields from LEMMA 3.2 that under
the assumption (5.5) and (5.8)
_ . b
0o < I /me < T 3vz)( 3 ag/mg) - o,
i€KX”~ =1 i€eK

" as n -+e. Hence, the assertion follows from THEOREM 5.1.

-~

To derive the asymptotic nbrmality of X

e somewhat stronger
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conditions ‘are needed on the error distribution and on the design;

we now postulate the following conditions:
CONDITION 3%. The errors £, €y, ' are independently

distributed according to Np(O, ).

CONDITION 4. xl(Vﬂ)‘= o(JnK), as n +w,

THEOREM 5.2. Suppose that CONDITIONS 1, 2, 3% and 4 hold. ITf

(5.7) 2 ki = O(JITI;), as n -+,

~

then the asymptotic distribution of Zﬂ = va(zﬂ - 2) 1s normal with

mean 0 and covariances

(5.8) E[ijzﬂm] = ojﬂckm + cjmokﬁ'

Proof. It is sufficient to show that every linear function of Zﬂ
has an asymptotic univariate normal distibution (see, e.g., Raol[l5,
Chapter 8a.2]). Note that an arbitrary linear combination of Zﬂ can

be written as
tr(AZﬂ) = /Gitr[A(Zj -1,

where A be a symmetric p X p matrix. A few algebra yields that the

quantity tr(AZJ) can be decomposed into the following three terms:
. .
tr(AZx) = tr(AZH) + ;x(A) + TN(A),

where
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*

Zx = /3;{(trvﬂ)‘16’Vx$ - 3},

() = JE; tr[AYV, 9]1/trV,,
ey(A) = 2¢$] tr[AY°V, E1/trV,.

Then under CONDITIONS 1, 2 and (5.7) we obtain

_ e A d ,
e ()| = '/”x'tr[Aichi§i§1]l/trvx

< Jog S cilejagl/ 3 o2

jeg -t~ gex t

< m?Xij(A)I(1+G)i§K§£§i//ﬁg

- 0,

as n =»+=, Since Qﬂ(A) is a linear combination of'ai‘s, ¢”(A)'is

normally distrbuted with mean 0 and variance
_ -2 - 2
Var[¢ﬂ(A)] = 4yﬂ(trvj) E[{tr(Aj Vﬂé)} 1.
Since (1+G)~1! < c% <1 (i € K), it follows from (A.5) and (5.2) that
E[{tr(A!’Vﬂg)}zl = tr(AZA!’Vﬁ!)
< (z afZa.)k (V,) S EE..
i~ ~J .1 X jex-1°

"Hence, under CONDITIONS 1, 2, 4 and (5.7) we obtain
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Varle,(A)] < 4(1+G)2(2 a’ Za ]( v/ ](xl(vﬂ)/fﬁgj( 2 g:z./Jﬁgj -+ 0,

J 1€K™~
as n =»>+»=. This implies that ¢J(A) - 0 as n =+x in probability.
Next we show that the asymptotic distribution of tr(AZ}) is
normal with mean_O and variance 2tr(AZX)?2. Let‘¢A(t) be thé

characteristic function of tr(AZ}). Then
(5.9) $,(t) = E[exp{it.tr(Az})}]
_1
= E[exp{it(trvi) Qtr[A(a'Vxé) - (trVﬂ)tr(AZ)]}].

Using an orthogonal transformation of Vﬁ’ we have
(5.10) O tr[A(E°V,E)] = % (Ve ’Ag.
: r Nees oo 4 AVl By A8y

where 8;'s are independently distributed according to Np(O, ).

. . . - *
Considering the transformation ua = 2 78a, g =1, +«++, n, we can

write

11

b i L
- 2A%2 )13 2
(5.11) ?a Aga jglxj(z AY )uaj,

where uaj's are independently distributed according to N(0,1).

Hence, from (5.9), (5.10) and (5.11) we obtain that

, 1 ' 11
$,(t) = E[exp{it(trvj) z g 2, (V) ? xj(27A27)u§j
-_it/G;tr(Az)}}

= E[exp{—itJﬁgtr(AZ)}
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1 : 1 1
. 2y7Z ZATZ Yy 2
X 2 g E[eXp{lt(trvx) Aa(VN)xj(Z AY )uaj}]'

= exp{—itJﬁ}tr(AZ)}

2 _%' % ’12: "%
X ; ? {1 -~ 21t‘(trVﬂ) la(vx)lj(z,AE )} .
‘ 2 2 % % 2
Note that’ g xa(vﬂ) = trVﬂ, z {Aa(Vx)} = ter and 2 {xj(z AZ<)}< =

J
tr(AX)?. Then, using a Taylor expansion of log ¢A(t), we obtain that

for any t € (-e, +e)

= .12 2
log 8,(t) = t2tr (AZ) 2 + g ? Raj(t),
where
3 Siy (sEAsEqs
trv 2 v , A
R () - - 4 (tr J{) {xd( H)} {AJ(Z zZ2)} oo
{1 - 216, t(trv}) 2x (Vy)a, (3243 )}
for some Gt in (0, 1). Since
4.3 2 —% % % % % 2
IRaj(t)l < 3t (trVH) kl(Vx)°maX|k£(2 AT )I{la(Vﬂ)kj(Z AZ?)} 2,

[

it follows that under CONDITIONS 1,2 and 4
12 2R ()] < 22 IR, .(t)]
C!j (o ] Ctj o)

1 1
< %t3(1+G){Al(VN)/JﬁE}-maXIA.(ZfAZ7)Itr(AZ)2 - 0,
i 5

~as n ++». Therefore, we obtain that ¢,(t) - exp[-tr(AY)2t2] as n =+=

for any t € (-«, +»). This completes the proof.
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Using the similar argument as in the proof of COROLLARY 5.1 or

5.2, we obtain from THEOREM 5.2 the following corollaries:

COROLLARY 5.3. Suppose that CONDITIONS 1, 3% and 4 hold and that

the regression function p is differentiable and satisfies (5.3).

Then, the asymptotic distribution of Zﬂ ='Jvﬁ(2ﬂ - %) is normal with
mean 0 and covariances given by (5.8) if > d% = o(Jﬁk) as n -+,

- ieK

COROLLARY 5.4. Suppose that CONDITIONS 1, 2, 3% and 4 hold and

that the regression function p is twice differentiable and satisfies

(5.5). Then, the asymptotic distribution of ZE ="./vg(’2z - 2) is

normal with mean 0 and covariances given by (5.8) if 2 d; = o(JEk)
: - i€K
as n —+®,

6. Some special cases whenlq =2

We will now consider in more detail the case when g = 2. The

data may be described as {(yi, Xi)l 1 < i < n} with Xy = (1, Xi)’.

Without loss of generality we assume that x, £ X, £ +++ < Xn and the

1 2

number of repeated observations at x. is mi, i.e., m; = #{jl Xj = X

b

o1
1 £ j <n}. For simplicity, we denote the observations by (yi, Xi)

instead of (y;, x;) henceforth. Let Ky = {i] m; = 2}, K, = {2, ---,
n-1} ~ Kﬁ. First we define a practical index set Ni for each i € K =

K.“LJKQ° which specifies a neighborhood of X - Let
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{jl Xj = X4, 7 i}, if i € Ky
(6.1) Ni =
{jl Xj = Xj- Or Xy = X;+}, 1f 1 € Kgo
where i = max & and i* = min . For i € Ky, let NI = {jl X =
X <X, Xg>X; -
N i. = = N * .= FEN? H i )
Xi'}’ N = {3l Xy Xi+}, m; - fNi and m, #N;. It is possible

to consider a general estimator ZN of X based on Ni’ i
it is natural to consider a simple class of estimators
on the characteristic of two types of neighborhoods as

i € K = KUK, and given 91 € [0, 1], let

g
c (ry .. (p)y -
(6.2) v = @ Y)Wy
{mi¥i~_ ).fi}/(mi - 1), if 1 €
eiyi—. + (l - gi)yi-#.; lf 1€
) —_— - _1 e
where for i € Kﬁ, vy, = mj (Yi + _E Yj) and for i € K
- JEN.
i
Vo =m;! S y.and y,. =mil 3 y..
= + jen:-d 1 1 jen:-d
i i
Using ri = yi - yi as in (2.3), we define a class
of Z by
(6.3) z, = ( > c?)‘1 S c4r.r?,
G i €K i-isi

- 29 -
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where c% = (1 + Wiwi)_l and is given by

- m- 1 ' .
, 1 m;, if 1 € Kﬂ,
(6.4) ci =
g2 (1"91)2
{1+ + }°t, - if i € K,.
m, - m. ., (4
i i

A special case of this estimator were introduéed by Gasser et al.
[8] and by Ohtaki[14], and a slightly different estimator was
proposed by Rice[16] in univariate regression model. A simple algebra

yvields that

-~

(8.5) - ZG = txZPE~+ (1—rx)29,

= 2 2 - . N ;
where Ty ('E ci)/(.E ciJ, ZbE is the PEMS estlmator (1.3) based on
1EKﬂ 1€K

the data {(yi, Xi)l i€ KK}’ and

>

- 2]-1 4 .
Zy (igK Ci) ichififi°
| g g

~

Thus, we can see that ZG is a natural extension of PEMS estimator.

Note that ZG includes two important estimators as special cases;
adopting Gi = mi_/(mi_ + mi+) vields a LUW estimator, which will be

denoted by Zbﬂ, and adopting Gi = (x, - Xi_)/(xi+ - Xi_) vields a LLW

i
estimator, which will be denoted_by ZGE'

REMARK 6.1. The estimator ZG is expressed in a quadratic form,

A

. ZG = (trVG)‘lY’VGY, where the (¢, B8)-element of VG can be expressed

as follows:
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(6.6) v

oth
4 N1 _ 2 +y~4 2 . N
rCyt Ig(a )Ca‘(l Ba') + Iy(a )Cd+9u+, if « = 8 € K
(ma_l)/ma’ , if « = 8 € K
- ~ om-1 -2 Va4l - 2 +Vad a2
ﬁ et o+ mo2{Ig (e )ed (18 )2 + Tg(a*)ed 02},
if X, = XB, and o # B8,
_ 4 _ -1 _ +yad -1 : = et
Igledey (1-8 Jme+ - I (a®)c .6 .m0, if B = o,
N _ -1 -1 : o ot
Ig(a )Ca+ea+(l aa+)ma ma++’ if B o
\ 0, otherwise,

where for ¥ = 4, ¢, I, = 1 if 1 € K. and 0 if i ¢ Ky

~ ~ ~

| Since ZG (or EGﬂ’ ZGE) is ahspe01al one of Zﬂ {(or Zﬂ’ 22), we
can apply the general theory of Zx in Sections 3 ~ 5 to ZG (or‘EGﬂ,
ZGZ)' However, ZG 1s based on a special index-set Ni and a special

~ ~

-~

predictor Yy and so we can expect’that the assertions and the

-~

conditions in the general theory of Zﬂ can be more Strengthened and

simplified. We shall look these in the following.

LEMMA 6.1. Let ZGﬂ = [GGﬂ(j,l)] be a LUW estimator. Suppose
that the jth and the 4th components nj and N of the regression

function n are differentiable, and that
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‘ _ d . o
(6.7) Vo = sup Il 6 () x| < = =], L.
where
(6.8) h = [ > c?)“1 > c4(x,, - X,-)2.
e ek, ! 1

LEMMA 6.2. Let ZGf = [oGz(j,Q)] be a LLW estimator. Suppose
that the jth and the &th components nj and ni of the regression

function n are twice differentiable, and that

d2 \
(6.9) ¥ =sup |—n_(x)|_ .| < +=, ¢ =3, 9.
o t dx 2 (04 IX—t
Then IE[OGE(.]»-Q')]— ojll < YJYQ,hGﬂ’
where
) ] o

(6.10) h = = ( > c?) LS ef(x,, - X.)2(x, - X,-)2.

GZ 4 ieK i iEKy it i i i

LEMMA 6.3. Let VG be the matrix given in REMARK 8.1 and let

= (trv;)?/trvi. Then it holds that

v G

G .

n - 2

(6.11) v, > .
24 + 40(n-2)°1

G

Proof. Note that
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(6.12) Vg = (2 c%)Q/[ S cj‘j*{l + 219(1*)c;+(1—91+91+)2

i€K ieK

2 -g.)2
87++(1-9,)

o 4 + 4 2
.+ ZIg(l )ciH — } o+ igK ci].
i+l A
Since % < c% < 1 for all 1 € K, a straightforward calculation yields
that

sz(zcgjz/[zzc§+5n)= (zc§]/(2'+ 5n)2 _n-2
i€K i€k i€K 2 —_—
i€K

Hehce we obtain the desired result.

From LEMMA 6.3 it follows that y. -2+« as n -+, and CONDITION 1

G
in Section 5 are satisfied; therefore, we obtain from THEOREM 5.1 the

following theorems:

THEOREM 6.1. Suppose that CONDITIONS 2 and 3 in Section 5 hold.

If 2 Ei&i = o(n) as n -+, then the nonparametric estimator ZG
i€k~~~

deined by (6;3) is consistent.

COROLLARY 6.1. Suppose that CONDITION 3 holds, and that the
regression function n is differentiable and satisfies 3 $§ < +eo,
- o
where &a's are the quantities given by (6.7). Then a LUW estimator

~

zGﬂ is consistent if

2 (X5+ - x,.)% = o(n), as n - +eo,
iGKSP :

Proof. Using '% < c% <1 (i € K), we obtain from LEMMA 6.1 that
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p
z'#é) 2 (Xi+ “X._)z.

(6.13) 0 < J ElE. < 2( . 2
o= i
4

1€K~1 -1

Hence, the assertion follows.

COROLLARY 6.2. Suppose that CONDITION 3 holds, and that the

regression function p is twice differentiable and satisfies > yé <t
‘ - o

where ya's are the quantities given by (6.9). Then a LLW estimator

~

z is consistent if

GZ

> (Xi+ - X,)%(x, - X..)2%2 = o(n), as n -+,

‘Pron, Using a similar argument as in the proof of COROQLLARY

6.2, we obtain from LEMMA 6.2 that

(6.14) 0 < 2E&1E < (UEY 2(x+ - X)) P(xy “Xi°’2'
i€k~ lGK

Hence; the assertion follows.

COROLLARY 6.3. Suppose that CONDITION 3 holds, and that there

exist two numbers a and b such that -« < a < Xi < b < += for all i €

Y

K. Then, EGﬂ is consistent if-the regression function n 1is

~

differentiable on [a, b]l; so is also ZGE if n‘is twice differentiable

on [a, b].

Proof. Let tj (j € Kg) be the jth design point on which no

replicated observation lies, and assume that tl < tz < s < ts and

s = #Kg without loss of generality. Then we have
s-1

(6.15) S (54 - xi_)2 < 3 (tj - t, )2

: . +1 j-1
1eKy _ j=2

- 34 -



s-1 s-1
< 2 t. - t,)2 . -t 2
J_22{( je1 T E)EoE (% 3—1)»} < 43

- 2 - 2 o
< 4(1:S tl), < 4(b a)<c < +e,

and
(6.16) (X, - X, )¥(x, - x,.)2 < 2743 (x,, - x._)*%
iek * 1 = 1 i€k, 1
4
s-1
_ 4 _ 4 o
< 2 (tj+l tj—l) < (b a)? < +e,

j=2
Hence, the assertion follows from COROLLARIES 6.2 and 6.3.

Following similar lines as in the general theory in Section 5,

we obtain thé following theorem:

THEOREM 6.2. Suppose that CONDITION 3% in Section 5 holds.
Then, the asymptotic distribution of JUG(ZG - X) is normal with mean

0 and covariances (5.8) ify S ElE., = o(/n) as n -+,

. 2i2i
.1EK9

In the proof of THEOREM 6.2 the following lemma is essential.

LEMMA 6.4. Let V. be the matrix given by REMARK 6.1, and let

G
kl(VG) be the largest eigenvalue of Vg. Then
11 . 17
(8.17) > n < Al(VG) < y)

Proof. Note that Al(VG) = igﬁzl z % Ve gUnls where Vyg'S are

given in REMARK 6.1. After some straightforward calculations; we can

show that ll(VG) £ 17/4. The left hand part of (6.17) follows from
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1 _1 1 2/pn = :
5" n = 5 (n-2)/nx 2 cZ/n = trvg/n < 2, (V

).
1€K G

Proof of THEOREM 8.2. From LEMMA 6.4, we see that CONDITION 4
in Section 5 is automatically satisfied. Hence, the assertion follows

from THEOREM 5.2.

Using arguments similar to the ones in deriving COROLLARIES 6.1,
6.2 and 6.3 from THEOREM 6.1, we obtain the following corollaries of

THEOREM 6.2:

COROLLARY 6.4. Suppose that CONDITION 3% holds, and that the
same conditions as in COROLLARY 6.1 hold. Then the asymptotic

distribution of JUGﬂ(zGﬂ ~ 2) is normal with mean 0 and covariances

(5.8) if 3 (X,+ - X.,.)2 = o(J/n) as n ~+wo,
, i i .
1€KSP

COROLLARY 6.5. Suppose that CONDITION 3% holds, and that the
same conditions as in COROLLARY 6.2 hold. Then the asymptotic

PN

distribution of ‘/vGﬁ(ZGE - %) is normal with mean 0 and covariances

(5.8) if igK (x;4 - x)2%(xy - x;-)2 = o(/n) as n d+e.
g

COROLLARY 6.6. Suppose that CONDITION 3% holds, and that
there exist two numbers a and b such that -« < a < X5 < b < +o for
all i € K. Then, the asymptotic distribution of JVGﬂ(ZGﬂ - ) is

normal with mean 0 and covariances (5.8) if n is differentiable on

fa, b]; so is also that of JVGﬂ(EGE - 2) if n is twice differentiable

on [a, bl.
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7. Testing gobdness of fit of linear models

In this section we propose a criterion for testing goodness
of fit of linear models in multivariate regression. Assume that the
regression relation can be described as in the model (1.1) and that

the .errors g

1> &y - are independently distributed according to

Np(g, Z).

Suppose that a hypothesized model, say f-Model, is expressed as
(7.1) _ 9 = X_.8,

where Xf is an n X r design matrix induced by a function f = (fl,

sens £ RY » RY, that is
f(x,)”’
(7.2) Xe = | : - [f(l), f(r)]y
£0xy)
where the function f is known, rank(Xf) = r and 8 is an unknown r X p

coeficient matrix. When there are enough replicated observations in

data set, it is possible to test the hypothesis H "Model f is true"

£
by using the Wilks' A-statistics (Wilks[24]) derived below.

‘Let %PE = Y’VPEY/(n—g) be the PEMS estimator defined by (1.3),
where g is the total number of distinct design points in the data.
- Here we assume that n - g > p, and let %f = Y‘(In— Pf)Y/(n—r), where
Pp = Xf(X%Xf)‘JX%. From the géneral theory of multivariate linear

model (see, e.g., Anderson[1], Seber[19], Siotani et al.[21]), the
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likelihood ratio criterion is based on

(7.3) A = ~ -
I(n—g)EpE + {(n-r)%, - (n—g)ZPE}I szl n-r

Under Hf, (n—g)éPE and (n—r)if - (n—g)éPE have independent Wishert
distributions Wp(n—g, %) and Wp(g—r, 2), respectively. Then A has a
A-distribution with degrees of freedom p, g-r, and n-g. For the
tables of the upper quantile values for the A-distribution, see,
e.g., Seber[19]. If the'ratio IiPEI/IéfI is very smaller than the
expected value under Hp, that is, if Iif! is much greater than |£fEl’
we reject Hf and may suspect that there exist some lack of fit in
f-Model. It is noteworthy that the test based on the A-statistic of
(7.3) is equivalent to the well-known classical F-test when p = 1

(see, e.g., Seber[18, Section 4.4]).

The A-test mentioned above, unfortunately, can not be applied if
there are few replicated observations in the data set. This is the
situation we now consider. One possible approach to such a situation
is to use ﬁhe A-statistics défined by replacing iPE by a
nonparametric estimator é ; however, no‘simple expression of the
exact distribution even when Hf is true is available for the
resulting statistics. We now consider the asymptotic distribution of
Iéfl/léxl when n is large. It is seen that after multiplying a
- suitable normalizing constant, ldg{léfl/lixl} and tr(ifiji) - p have

the common asymptotic distribution. So we study the distribution of

the latter statistics.
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THEOREM 7.1. Suppose that 81, 82, e++ are independently

normally distributed with mean 0 and covariance matrix ¥. Let

(7.4) K. = (2p)'1{v;{1 - (n-r)" 1371,

where vy = (trvﬁ)z/trvi. Then under Hf the asymptotic distribution
of

~

= Jfo . -1y _
(7.5) Tf JKr{tr(ZfZH ) p}
is N(0O, 1) if the following conditions are fulfilled:

. - 2 2 w | o
(i) vﬂ = (trVN) /trVX ~+®, gs N S+,

and limsup vﬂ/(n—r) < 1.
n -+

{(ii) There exists a positive number G such that

max nillw.ll2 < G < +o,
i€k ~. '

(iii) ll(vﬂ) = o(JHE) as n S+,

(iv) There exists a positive definite matrix Qf such that

Xfo/n - Qf, as n =+oe,

(V) Let ?i = Xf (yi - §i), i € K. Then

S ele, = o(J/0,), as n s+,
. i i | k
1€K .
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Proof. Note that T, = J/k trl(Z, - Zﬂ)Z‘l{Ip *(Zy - DE )

and from THEQOREM 5.1 ZN + ¥ as n -+« in probability. Hence, the

f
asymptotic distribution of Tf is the same as that of Tf =

/E;tr{z‘i(zf - Zﬂ)}° Letting

(7.3) W, = (n—r)‘l(In - P

-1
? (ter) Y

f) .Hl

t —
we have Tf = /Krtr(Z‘iY’WfY). When the null hypothesis is true, there
, +
eXists an r X p matrix 8 such that 9 = E[Y] = xfe, and hence T, can

f
be expressed in terms of &§ = Y - xfe and decomposed as follows:

(7.4) T; = Ap + 2T, + T,

where By = —JF_(trV )~ ltr(exz 187X,V Xe)s
Tp = —JZ;(trvN)-itr(z 187XV, 8),

and Tp = VR tr(Z716°W,8).

First we show that Af - 0 as n 2+ and rf -+ 0 as n =+eo in

probability. Note that trVN > (l+llwlll2)"1 = n /(l+G) from (ii).
iekK -

Using a similar calculation as in (5.2), we obtain from (v) and LEMMA

3.1 that
P 53 le3te l[n (2 eieivmg) ~ o
JZp i o Y €K~
as n =+«, where 8 = [91, RN Sr]’. We also obtain from (A.5) and

(5.2) that under (i), (ii), (iii) and (iv)
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E[t%] = ur(trvx)—2tr(zf19’X%v§Xfe)

< (2p)'1(1+G)2{Ai(Vﬂ)/JﬁK}[ ? E |932“59 I)(‘Z efe./JEE] - 0,

ieg~t~t

as n =»+», This implies that T -+ 0 as n =+« in probability.

*

Finally we show that Tf is asymptotically distributed according

to N(0,1). Let ¢n(t) be the characteristic function of T;. Then

following similar lines as in (5.9), we can obtain

¢ (t) = E[eXp{itJKrtr(Z'15’Wf5)}]
= m{1l - 2itSxk_x (Wf)}—% .
o ) r o
Hence
log ¢ (t) = - = p I log{l - 21t/ A (W)}
o

Using a Taylor expansion, we have that for any t € (-«, +w)

log{l - Zit/E;ka(Wf)} —ZiJE;ia(Wf)t + 2{J§§xa(wf)}2t2 + R;n)(t)y

where

. (/g 2, (W) }S i

RV (1) -
{1 - 21ed(t)t¢i;ka(wf)}3

LWl

for some Ga(t) in (0, 1). Note that ter = 0 and

trwz = vylo- (n-r)tt o+ 2(n-r) "1 (trvy) " 1tr(PLVy) .

Letting Qf,n = Xfo/n, we have
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- -1 - 1 1
tr(P Vﬂ) = tr{(X ) Xf fo} n- tr(Qf anVJlr f)
js
= n i3 3 m > c4 ,
50 1 €K i 13 1£

where wgﬂ is the (j,4)-element of the inverse of Qe - Hence,
obtain from (i), (ii), (iv) and (v) that

2 1 Yy
(7.5) Ixrter - (2p) 1| *Itr(PfVﬂ)I

p(n—r-vﬁ)trvﬂ

< b (T )3 10001 (3 cie0vm) = o).

— “isi
pJnK n-r-vy i€k
as n =»+». Therefore, letting 5n(t) = % S Rén)(t), we obtain
o
= i _ 21142
log ¢n(t) 1pJKr(ter)t Krp(ter)t + an(t)

R — 2
. Since, under Conditions (ii) and (iii),

JE; mEXIAa(Wf)l < Ji;{ll(VH)/trVﬂ + (n-r) 1}

< (146) /e 7 (3 (V)',)/J_] + o/ (n-r)

- 0(1)(x1(vﬁ)//ﬁg] + 0(1//A) - 0,

as n =+, it follows from (7.5) that

' 4 2 3)¢s
15, (0)] < % p nr(g |2 (W) 1)t

- 49 -

we



% {pKr(trW%)}[JE; mleka(wf)lj - 0,

as n =»+=«, Hence, we have that ¢n(t) - exp(— t2] for any fixed t.

N

This completes the proof.

COROLLARY 7.1. Suppose that every component of f = (fl, cee, )7

is differentiable and satisfies

q 2,1
_ 9 z - e
‘#a - Sup {gl (8—- }f)])f:?) }2 <+, =1, s s

t = X .
- J J
and that the conditions (i), (iii) and (iv) in THEOREM 7.1 are

fulfilled. Let Zﬁ be a LUW estimator of X, and let x =

i,.r
(2p)“1uﬂ(n—r)/(n—r—vﬂ) and vy = (trVﬂ)Q/trVﬁ. If ngd2 = o(JﬁE),

as n =+, then the asymptotic distribution of T

g, f = Vg ET (2T

- p} is N(O, 1) when the hypothesis H, is true.

f
Proof. For a LUW estimator Zﬂ we have that n Hw 2 = 1 for

all i € K, and obtain from LEMMA 3.1 that
r .
0 < 2 eje,/vn, < (az ¢;) 2 d2/¢ )
€K~ =1 1eK

as n ++». Hence, the assertion follows from THEOREM 7.1.

COROLLARY 7.2. Suppose that every component of f = (fl, e, fr)’
is twice differentiable and has the Hessian satisfying

() I

Yo = Sup sup |u'H_ < +w, ¢ =1, <<, r,

x X u u i~ <

and that the conditions (i), (ii), (iii) and (iv) in THEOREM 7.1 are
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"fulfilled. Let ZZ be a LLW estimator of Z and let g =

Z,r
(2p)~"lv,(n-r)/(n-r-v,), where v, = (trv,)2/trv3. I1f 3 d4 = o(v/ng),
L 2 4 b4 2 iex
as n —»+o , then the asymptotic distribution of T J {tr(zfzzi)
- p} is N(O, 1) when the hypothesis Hf is true.

Proof. From the condition (ii) and LEMMA 3.2 we obtain that

0 < Zefe //ng < % G(ély;) (ing;/@)

K,..l i

as n =»+»=. Hence, the assertion follows immediately frdm THEOREM 7.1.

8. Robust estimators of diagonal elements of X

~ ~

A disadvantage of Zx is that Eﬁ has a lack of robustness because
one single outlier may have an arbitrary large effect on the
estimator. For diagonal elements of ¥, i.e. variances of the

~

components of y, using the jth components rij of ri = yi - yi (i € K),

and applying the idea due to Rousseeuw{17], we may construct

a robust alternative estimator ;ﬁ(j,j). The derivation of the robust
estimator 1is based on'an averaging procedure through taking the
median of cirQJ s (i € K) rather than the arithmetic mean of them

(see, Hampell[1l0, p.380]). When errors are normally distributed, the

robust alternative may be given by

~

(8.1) 0@(.]',.]')

2.198 medlan(clrf ).
i€K

Here {1/9°1(3/4)}2 ~ 2.198 1is an asymptotic correction factor,

because
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2.2 : 2y - -1 2
migéan(clrl ;) - ojjmedlan(xl) ij{m (3/4)17%,

as n » +», where ® denotes the standard normal distribution function.

Another robust alternative may be given by an M-estimator which
was introduced by Huber{[11l]. The scale M-estimator for the jth
element of X is defined in our case as follows. Let p be a real

function satisfying the following assumptions.

(1) p(0) = 0;
(ii) p(-u) = p(u);

(iii) 0 £ u £ v implies p(u) < p(v);

(iv) p is continuous;

(v) 0 < a = sup p(u) < +«;

(vi) if p(u) < a and 0 £ u < v, then p(u) < p(v).
Then, the M-estimator of ojj’ say oﬂ(j,j), is defined as the value

of s which is the solution of

ng' 2 p(Jeir

i€K 1 lj

where b may be defined by Em(p(u)) = b.

The degree of robustness of an estimator in the presence of
outliers may be measured by the concept of breakdown-point which was
»introduced by Hample[9]. iDohoho and Huber[B8] gave a finite sample
version of this concept which will be used here. The finite sample
breakdown-point measures the maximum fraction of outliers which a

given sample may contain without spoiling the estimator completely.
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THEOREM 8.1. Let om(j,j) be the estimator given by (8.1). Let
Un be the quantity given by (4.7), and let g be the number of
distinct design points in data. Then the breakdown-point of o%(jsj)

is no less than
([§] 70+ up] /m,

where [t]" and [t]~ denote the operations of rasing to a unit and of

ocmitting fractions on a real number t, respectively.

Proof. Let mY be the total number of outliers. Then the number
of affected elements of {cfrle i€ K} is at most (1 + U, )m* From
the deflnltlon we see easily that ¢ (J j) can not take arbitray large
value when (1 + Un)mT < % - 1 or g%; according as g is even or odd.

Now the assertion follows immediately.

In one-dimensional regression, i.e. the case of g = 2, with no

replicated observations in the data, the breakdown-point of oﬁ(j,j)

* +
is [ % ] /n, where n* is n-2 if n is even, n-1 if n is odd. Hence the
asymptotic value is %

Appendix. Covariances of some qudaratic forms

Let Y = [yl, e L,y

Il]' be ann X p random,matrix such that yl,

Tt Yy, are independently distributed with means Ny " Mg common

covariance matrix > and common third and fourth moments about their

means. The common third and fourth moments are expressed by u3(j,k,£)
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and u4(j,k,£,m) for 1 < j, k, 8§, m £ p, respectively, as in (4.1) and

(4.2).

THEOREM A.1. If A = [ajl] and B = {bjl] are any p X p symmetric

matrices, . V = [Vag] is any n x n symmetric matrix, then

(A.1) ‘ Cov[tr(AY'VY), tr(BY'VY)]
= Y’Y{E E E g ajkblmn4(j,k,l,m) - tr(AZ)tr(BX) - 2tr(AXBY)}

+ 2(trvV2)tr(AIBI)

* 2 z g z 2 ajkbﬂm{ﬂs(k,i,m)rj(‘])’ + ua(m,j’k)g(ﬂ.),}vv
‘) —~—

i m

+ 4tr(AYB9'V2q),

where 14 (nl, LRI nn)’ and v is the column vector of the diagnal

elements of V.

Proof. Letting & = (81, v+, €))7 =Y - 4, we have

tr(AY'VY) = tr[A(9 + &)'V(9 + &)1

= tr(A9°Ve) + 2tr(AQ°VE) + tr(AE°VE).

Note that E[&] = O and E[S(j)e(l)']

nxp I for 1 <j, & < 0p,

- ojl n
' E[sasé] = 6&82 for 1 £ ¢, B < n, and the third and fourth moments

are given by (4.1) and (4.2), respectively. The expectations are

calculated in terms of & and their computations are straightforwardq
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Here we list some fundamental results in the following:

(A.2) E[tr(AY VY)] = (trV)tr(AZ) + tr(Aq4°VSY).

(A.3) E[tr(VE AE)tr(VE'BE)] = Y'Y{§ E E g ajkblmu4(j,k,£,m)
- tr(AZ)tr(BX) - 2tr(AZBX)}

+ 2(trV2)tr(AZBZ) + (trV)z{tr(AZ)tr(BZ)}°

(A.4) E[tr(A9°'VE)tr (B& VE) ]

- S33°3 ajkbﬂmu3(k,£,m)v’Vn(j).
7k - -

4 m
(A.5) E[tr(A9°V§)tr(B9°VE)]l = tr(AIBe9°V3gy).
COROLLARY A.1. If Yy s yn are also normally distributed in

+

THEOREM A.1, then pS(J,k,ﬂ) = 0, p4(3,k,£,m) = ojkoﬂm + Ojiokm
Ujmoﬁk’ and

Cov[tr(AY'VY), tr(BY'VY)] = 2(trV2)tr(AIBX) + 4tr(AZBe°'VZy).

COROLLARY A.2. Let p = 1 in THEQREM A.1. Then, we obtain the
following well-known expression of variance of a quadratic form

(see,e.g., Atiqullah[2], Seber[18, Chapter 1.4]):
Var[Y’ VY] = V’v(;.l4 - 30%) + 2(trvz)o?

+ Apg n’VY + 402n’V2§.
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