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ABSTRACT

We reformulate the WKB wave function for a multi-dimensional tunneling sys-
tem, which represents the quasi-ground-state of the metastable vacuum, in a covari-
ant manner. Then we extend the formalism to the case of field theory and develop
a systematic method to construct the mode functions which determine the quan-
tum state after tunneling. A clear interpretation of the resulting quantum state is
given in the language of the conventional second quantization picture. As a simple
example, we apply our method to a scalar field on the background of spatially ho-
mogeneous false vacuum decay. The resulting quantum state is found to be highly
non-trivial, having some similarity with a thermal state. Some implications of the

results are discussed.
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1. Introduction

Our universe is thought to have experienced phase transitions several times and
these phase transitions would have given strong influences on the spacetime struc-
ture of the universe as well as on its matter content. A case of particular interest
is the false vacuum decay during an inflationary sta{ge of the universe, which was
- recently revived in the context of the extended inflation [1] and subsequently in
several other scenarios [2]. Hence it is very important to understand various phe-
nomena associated with such a phase transition. In the case of a first-order phase
transition, it proceeds with nucleation of vacuum bubbles. The rate of nucleation
and the typical size of a bubble can be evaluated by the Euclidean path integral
method developed by Coleman [3] and Callan and Coleman [4]. However, this gives
only the lowest WKB picture of the nucleation process. We expect that the drastic
change of the state durihg the false vacuum decay would excite the fields that inter-
act with the tunneling field. This issue was examined by Rubakov with extensive
use of the method of Bogoliubov transformation [5]. Although his pioneering work
is very much inspiring, it concentrates on evaluating the particle creation rate, but
the concept of “particle” is quite ambiguous in the presence of interaction. Further
in his approach, it is not quite clear what is assumed as a first principle. Recently,
Vachaspati and Vilenkin developed a method to solve the functional Schrodinger
equation in a different way [6]. They set a physically reasonable boundary condi-
tion on the wave functional to construct it and analyzed the quantum state after
tunneling in the context of the O(4)-symmetric bubble nucleation. However, in our
opinion, it is not quite clear how their quantum state is related to the initial false

vacuum state.

In this paper we formulate a method to investigate the quantum state after
tunneling in another approach. We reformulate the method of constructing the
WKB wave function for a multi-dimensional tunneling system. Keeping in mind
that ultimately gravity should be consistently taken into account in the cosmological
context, we develop the formalism in a covariant manner so that it will be applicable
to that case. We then give the field theoretical interpretation of the wave function

in a rather concise form.



This paper is organized as follows. In Sec. 2, we give an alternative derivation
of the multi-dimensional tunneling wave function, which is simpler and clearer than
the exjsfing ones in the literature [7,8,9]. In Sec. 3, we extend our formalism to
the case of field theory and develop a systematic method to construct the mode
functions which determine the quantum state after tunneling. Then the result is
interpreted in the language of the conventinal second quantization picture. We find

the quanfum state after tunneling generally contains a spectrum of field excitations.

In Sec. 4, we conéider spatially homogeneous decay of false vacuum as an ex-
ample of. the field theoretical case. The same problem was examined by Rubakov
[5]. Here we anélyze the quantum state after tunneling in more details by a,doptihg
a model which is much simpler but contains the essence. The resulting spectrum of
excitations is found to have some similarity with a thermal spectrum. Our result is
consistent with Rubakov’s analysis, which is shown briefly in Appendix. va1 Sec. 5,
we summarize our formalism and main results obtained from our simple model.
A more realistic case of false vacuum decay through an O(4)-symmetric vacuum

bubble will be discussed in a subsequent paper [10].

2. Multi-dimensional Tunneling Wave Function

In this section, we derive an expression for the multi-dimensional tunneling wave
function in a covariant manner. The correspondence to the second quantization
picture will be discussed in the next section. Under the WKB approximation, the
method to evaluate the tunneling wave function for a multi-dimensional systeﬁl
was developed by Banks, Bender and Wu [7], Gervais and Sakita [8], and Bitar
and Chang [9]. Extension of this method to field theory, particularly in connection
with instanton physics, was developed by de Vega, Gervais and Sakita [11]. Here we
reformulate the multi-dimensional tunneling wave function in an alternative way,

which we believe is simpler and clearer than the previous ones.

For generality, we develop the formalism covariantly and consider a system

which has the Lagrangian

L=50,,88°9 ~V($)  (a=0,-,D), (2.1
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where ¢¢ are the coordinates of the (D+1)-dimensional space of dynamical variables
(i.e., superspace) and g_ ﬂ(qﬁ) is the superspace metric. In this paper, we assume
that the signature of the metric is positive definite. Note that it will not be the
case when gravity comes into play. The potential V' (¢) is supposed to have a local
minimum at ¢% = 0, which is not the absolute minimum, as shown in Fig. 1.
We call it the false vacuum origin or the false vacuum minimum throughout this
paper. In this section Greek and Latin indices run from 0 to D and from 1 to D,

respectively.

The Hamiltonian operator is obtained by replacing the conjugate momentum
of the Hamiltonian with the differential operator in the coordinate representation.
In general there is ambiguity of the operator ordering. Here we fix it in such a way

that the resulting Hamiltonian takes a covariant form,;.

-~ 2 .
B=-Tg @V, 4V, (2.2

where g®#(4) is the inverse of 9as (9).

Now we construct the quasi-ground-staie wave function using the WKB ap-
proximation, which is defined as the lowest energy state sufficiently localized at the
false vacuum origin, i.e., ¢* = 0. Following the WKB ansatz, the wave function is

assumed to have the form,

Y = RO (2.3)
which should solve the time-independent Schrodinger equation,
HV = EV. (2.4)

We solve this equation order by order with respect to h. We formally divide the
energy eigenvalue F into two parts, £, and E, with O(1°) and O(h'), respectively.
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The equation in the lowest order of i becomes the Hamilton-Jacobi equation

with the energy £ ;

1 L
—EgGﬁVQW(O)V ﬂW(O) +V(¢) = E,. (2.5)
By setting the relation,
d¢°(7) _ abg w0 | "

we get the Euclidean equation of motion,

0 £o%(r) | pa d¢f d¢7 _
—m %o ﬂVﬁV _(2.7)

where I'¢ By is the connection coefficient of the superspace metric 9o Among
solutions of the Euclidean equation of motion which start from the false vacuum
origin and reach the region outside the potential barrier, there is a solution which
gives the minimum action. We call it the tunneling solution and its trajectory the
dominant escape path (hereafter DEP). (It is the path of least resistance [7] or the
most probable escape path [8,9].) We consider the case when E is chosen to be
V(0). Then the tunmneling solution is a half way of the so-called bounce solution
[3]. We can set the Euclidean time so that the tunneling solution leaves the origin,
¢%* = 0, at 7 — —oo, and reaches the turning point at 7 = 0, without any loss of

generahty For later conveniance, we denote the solution along the DEP as ¢§(7).

In the lowest order WKB sense, the tunneling process is described by this
tunneling solution. Integrating the equation derived from Egs.(2.5) and (2.6);

dw(©)
dr

=2(V(¢)-E,), (2.8)

the tunneling rate can be naively evaluated by the ratio of the squared amplitude

at the turning point to that at the false vacuum origin as

T ~ exp (Q(W(o)(—go) - W<°>(0))) . (2.9)
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Next let us turn to the second order Equation;
0 1y, 1 0o &
-V WOV w4 5g"ﬁvav WO = = (2.10)

If solutions of the Euclidean equation of motion (and also W(®)(4?)) are known with
a sufficient number of integral constants in the vicinity of the tunneling solution,
we obtain a congruence of solutions in the superspace. Then we can introduce a set
of new coordinates {A%} := {r, A"} which have one-to-one correspondence to the
original coordinates {$*}, where {\"} are the coordmates labeling different orbits

of the congruence. Using these new coordmates we find

0 0o '
g*f w0 = —
\Y% Vﬂ P log [det(akﬁ’)\/—J (2.11)

where /g is the determinant of g_ 5 Then Eq.(2.10) is integrated as

1 O E
1) = = _ -1 : 2.12
w 3 log [det (3/\'5> \/ﬁ} =T + constant (2.12)

Therefore the wave function to the second lowest order is formally given by

U= ¢ exp [—W(o)(A&)/h + E]_T/h:l,' | (2.13)

At this point, this wave function is a general one and is not necessarily specific to
the quasi-ground-staie wave function. To get the quasi-ground-state wave function,
we need to choose a congruence of orbits parametrized by A™ in the vicinity of the
DEP which satisfies an appropriate boundary condition at 7 — —oo. For this
purpose, first (i) we expand the wave function (2.13) around the DEP, and second
(ii) we require the thus-expanded wave function to have the correct asymptotic
behavior at 7 — —oo, so that it is correctly matched to the quasi-ground-state

wave function at ¢* = 0.



The step (i) can be achieved by using a technique similar to the Fermi-Walker
transport of a vector and by deriving an equation similar to the geodesic devia-
tion equation [12]. Consider a set of orthonormal bases eﬁ‘](‘r) along the DEP;
g, ﬂeﬁ]egj = 5[#][!/]’ where [y] runs through the range 0,1,---,D. For notational
convenience we introduce another set of indices (0, a) to denote [1]. We choose e

to be the unit vector tangent to the DEP ;
Na

o ._
CO - N 3 (2.14)
where
a¢a .
NY = = g*fy WO ~
or 7 VB (2.15)
N?:= N N =V WOvew® =2V - E)).
If we define a differential operator D P /O for a vector X* as
D D_. N_ D X,N? p
ZFxa,_ Dyt x NP _TE_ e 2
67’X : a1_X + NZXﬂOTN N7 87‘N . (2.16)

where D/81 = N*V, is the covariant derivative tangent to the DEP, it is easily
seen that D Feg/ O = 0. Hence we can choose all the basis vectors eﬁ‘] along the

DEP to satisfy

'DF a

At each point ¢ on the DEP, we can find a hypersurface perpendicular to the
DEP, X(g), which is spanned By all possible geodesics tangent to linear combina-
tions of eZ at ¢ at least in a sufficiently small neighborhood of g (see Fig. 2). Then
it is known that there exists an exponential map from the tangent space at g of
¥(gq) to the hypersurface £(g), on which we can introduce the Riemann normal co-
ordinates 7* with the identification e28/04% = 0/d7"; i.e., the bases eg becomes

coordinate bases. Hence we have

(0) '
agva =W . ,e5 = Nyea =0,
n n2=0 ’
2.18
Gh | —w el =, '
617“67]1) a=0 af b ab

where the semicolon denotes covariant differentiation with respect to the metric
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g, ﬁ(qi) Consequently W(©)(A%) is expanded as

w0 = wO(r) + %Qabn"nb e (2.19)

Now let us determine the matrix Q_, and det |5¢“/ AAP | in the expression of

the wave function (2.13). First we set

« . 0%
2% = 3E (2.20)

Then a straight-forward calculation yields the following equation for z%; along the

DEP,

D

Eza}‘ = Na;ﬂzﬂ#,

D? (2.21)
537% =V - R% 5 NN,

where we follow the convention of [12] for the Riemann tensor. The second of the
above equations is similar to the geodesic deviation equation, except for the first
term on the r.h.s. of it because the DEP is not a geodesic. In deriving this equation,

we used the Euclidean equation of motion (2.7), which now should read

D 0¢*

55—V =0 (2.22)

Next we rewrite Eqs.(2.21) in terms of the ordinary partial derivatives along
the DEP, we consider the components of z% (& = 1,2,---, D) projected in the

direction of e ;

2% = K% (7)x%, (2.23)

where x5, is a 7-independent matrix introduced as a normalization factor of K3 (7).
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Then it is straightforward to find the equations for 2% along the DEP;

d |
-d—z",-z = e;"W;aﬂegzbﬁ = Qabzbﬁ , (2.24)
& b 2 b =2 b
77 = Vi ? = N Bygpo?'n = 3N ViVt (2.25)
where
= 4
Vab = €aViap %
R o0 = €SehR,, g, VTN, (2.26)
V=2V,

Note that the matrix K% defined in Eq.(2.23) satisfies exactly the same equations

as z%; does.

Using Eq.(2.24), we express {_, in terms of K3 ; multiplying the both sides of

" the equation by the inverse of z%;, we find

. . 1\ . _
’ Qab = Zaﬁ(z 1)b = Kac (K 1)cb’ . (227)
where the dot denotes 7-differentiation. We also express det |5¢>°’ / a\P l in terms of

K# . In order to do so, we write down the superspace line element in the coordinates

{A*} = {7, A?} in two different ways;

_ 06 0P 5 \o
S —gaﬁmw ———ClAp'd/\

BIND _ 0 a r
dMdA (6aeoﬁ +eaeaﬁ) INE BN (2.28)
= N2dr? + 6, 2%z d A dA™. »

Then equating the volume elements in the two expressions, we find

det (?ﬂ> \ = Nl det zaﬁ|

OMR
= 2V (3~ By) |det K4 (7)]] det x|

Ve (2.29)

Substituting Egs.(2.29) and (2.19) into (2.13), we arrive at a desired expression for
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the quasi-ground-state wave function,

C e—W(o)(r)/heEl r/h
/2 ' .
(V2(V(8,(7)) — By det K ()] detxss]) (2.30)

1
X exp [—En‘qbﬂab('r)] :

Y =

This wave function is the same as that given by Gervais and Sakita [8], assuming

that 7 is O(k'/?).

Now we turn to the step (ii), i.e., the matching condition for the wave function.
As we are interested in the quasi-ground-siate wave function which would be the
ground-state wave function if the false vacuum were the absolute minimum, we
assume that the system can be well approximated by a collection of harmonic
oscillators mear the false vacuum minimum and quasi-ground-state wave function
there can be approximated by the ground-state wave function for this collection of

harmonic oscillators.

Specifically we assume that the potential and the superspace metric have the

following asymptotic forms', respectively, near ¢¢ = 0;

1
V(¢*) — EO — E(Uﬂ)aﬁ(ﬁa(ﬁﬂ, gaﬁ — ggg, (2.31)

p is assumed to be a positive

definite matrix. As we can set ggg =6, 5 without loss of generality, we do so. The

Here ggg is a constant positive definite metric and w,

ground-state wave function for this system is

U= (det %)1/4 exp(—%waﬂgbad)ﬁ), (2.32)

which should be matched to the WKB wave function (2.30).

From the assumption (2.31), the Euclidean equation of motion (2.22) at 7 —

—oo takes the following form,

8 .

67 =(0) 58 (2.33)

Hence with the boundary condition that ¢%(7) — 0 as 7 — —oo, the relevant

~10 -



solution which describes a congruence along the DEP is given by

¢a = (ewr)aﬁcﬂ1

where CP are some constants. Integrating the equation OW(©) /8> = 8> /0T =
waﬂcﬁﬁ , we get | \

WO$) = 2w,,6°9", (239

where we have set W = 0 at ¢ = 0. This implies Q4 9, ﬂegeg. Then from
Eq.(2.27), the asymptotic boundary condition that K%, should satisfy becomes

K% = (°7)" 65, (2.35)
where £, are constants and @ isa matrix defined by
- o B
D = e:‘waﬁeb.
In particular, using the fact that
1 co 10
a g _ 1. a B = 2 2
€0W, 50 = Nzwaﬁqﬁ ¢ = 2a’)_logN ,

we can readily show that the following equality holds in the asymptotic region,

6Trw T

V2V (8() - By

| det K%(7)| = (2.36)

)

where we have used the arbitrariness of x2 (or of £%,) to normalize K%,

Substituting (2.34) and (2.36) into (2.30), and comparing the result with the
harmonic oscillator wave function (2.32), we find
h 1/4
E = ~Trw, ——C—-—=(det3) .
2 | det Xcﬁl T

Thus E| is the vacuum fluctuation energy of the false vacuum. Finally we obtain
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the WKB quasi-ground-siate wave function to the second order as

(det w/‘w) e

) 2(V(4,() - B,)] et ko (o)

’ (2.37)
X exp(—}ll- / dr'2 (V(¢0(T)) - Eo) + —;—Trwf)

-0

X exp (— é-lﬁ-ﬂabn“nb) ,

where Q , is expressed in terms of K%, and it is determined by solving Eq.(2.25)
ab b
with the boundary condition (2.35), i.e., the exponentially decreasing solution as

T — —CQ.

Thus wé have found the WKB wave function in the forbidden region.l How-
ever, what we really want to know is the wave function beyond the turning point.
Following the conventional terminology, we call this classically allowed region the
Lorentzian region, while the classically forbidden region the Euclidean region. The
construction of the general form of the Lorentzian wave function is not much differ-
ent from that of the Euclidean wave function. The essential issue is the matching
condition at the turning point at which the WKB approximation breaks down. Nev-
ertheless, in the case that the potential depends only on 7 but not on #* around the
turning point with a good accuracy, the matching problem reduces to that in the
case of one-dimensional quantum system. Hence, the Lorentzian wave function will
be simply given by the analytic continuation of the Euclidean wave function, i.e.,
replacing the Euclidean time parameter 7 by the Lorentzian time ¢ with 7 — 4.
The matching problem for a general case has not been formulated so far and we

hope to come back to this issue in a future publication.
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3. Interpretation in the Second Quantization Picture

Now we discuss the case of a quantum field coupled to the tunneling field by |
applying the formalism developed in the previous section. Originally this problem
was examined by Rubakov [5], focusing on the particle creation during the tun-
neling. However, as noted before, the concept of particle is quite ambiguous in
the presence of the interaction as in the case of field theory on a curved spacetime |
which has no asymptotically stationary region. Hence we focus on the quantum
state itself and as a specific example of the observables after tunneling, we derive
the equal-time two-point correlation function from the wave functional. Then we

interpret the results in the conventional second quantization picture.

Let us consider the system which consists of two fields, i.e., the tunneling field
"o and another field ¢ coupled to it. Explicitly, we assume the Hamiltonian of the

form

H:H,+H¢,' (3.1)

where

% (Va)2+U(cr)]
X (3.2)
#, = [ @x] 394+ 598 + 3mt(0)67].

Here p, and p 4 e the conjugate momenta of & and ¢, respectively, and we assume
the interaction between the two fields is described by the o-dependent mass term
of ¢; m*(0)¢?/2. We denote the tunneling solution by o (z;7) whose spatial
configuration is completely determined by the single parameter 7. In particular,
7,(Z; —00) = o, where o, is the value of ¢ at the false vacuum minimum. We
neglect the fluctuations of the tunneling field itself, though ¢ may be regarded as

the fluctuating o-field if one replaces m*(o) by U"(,).

To apply the previous formalism to the field theory, we make the following

correspondence,
$5(r) = op(z;7m), 1" — 4(z). (33)
Thus, as much as the fluctuating degrees of freedom are concerned, the extention
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to the field theory is done by replacing the suffix a with the spatial coordinates z.

To find the quasi-ground-state wave functional, we have to solve for the matrix
© K% (7), which we denote in the present case as K(z,y;7). Then, Eq.(2.25) now

reads

H? 5 ‘
o5 + By = m(y(z, 7)) K (@, y37) = 0. (3.4)

The boundary condition is that it decreases exponetially at 7 — —oo. Instead of
directly dealing with K (2, y; 7), we consider a complete set of mode functions 9 (z)

( hereafter z,y, - -+ represent (z,7), (y,7), - -} which satisfy the field equation,

2
[+ A = m oy, )] 9y (e) = 0, (35)

with the condition that they decrease exponentially at 7 — —co. For convenience,
we assume the eigenvalue index k to represent the eigenvalue of a spatial harmonic

functjon Yk(m); i.e., at T — —0co, we assume gk(m) to have the form,

9, (2) — 7Y, (2); w_ = [k + m?(oy), (3.6)

where k? = |k|? and Y, (z) satisfies
A+ K] Y (z) =0,
Then K (z,y;7) can be expanded as

K(m:y;T) = ng(z)Yk('y). . §3'7)

k

In the expression for the wave function given in the previous section, (2.37),
information of the quantum fluctuations around the DEP is essentially contained

in the last Gaussian factor. Hence in the present case, we write the wave functional
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¥ = Fnep |3 [ Padus@ne vinw) (3.

wheie F(r) depends only on the parameter 7 and
O, yi7) = [ Eakla, 50K 57, (39)

and focus on the Gaussian factor. Using (3.7), Q(z, y; T) can be expressed in terms
of gk(z) as
Qz,y;7) = Y 4, (2)g (¥), - (3.10)
k

where g,;1(y) is the inverse of gk(x) such that
> g5t (=)g, () = 8z — ) Pz g7 (2)g,(2) =6, .
gk gk Yy = y H gk gp kp
k

Thus, to obtain the Euclidean wave functional, all we need to know are the mode
functions g, (z).

Once we obtain the Euclidean wave functional, the remaining task is to derive
the Lorentzian wave functional by matching' these two at the turning point 7 = 0.
We denote the latter by ¥, while the former by ¥. As noted in the end of the
previous section, this matching procedure can be quite complicated in general,
but in the present case ¥, is obtained by the analytic continuation of ¥, since |
the matching involves only one degree of freedom that corresponds to the DEP.
Introducing a function 'vk(z) in the Lorentzian region, the complex conjugate of

which, v},(z), is the analytic continuation of gk(z)‘ with 7 — i, we find

¥, = Fli)ep [~ [ Padyéla)nte, 16w ; (3.11)

with

Qz,y;t) = —i y_vk(e)v; 7 (W), (3.12)
k .
where and in what follows the dot denotes the differentiation with respect to f and

z,y,- - represent (z,1),(y,1),---.
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Now we investigate the nature of the quantum state described by ¥,. For
this purpose, let us consider the equal-time two-point correlation function. It is

expressed as

Jdo()¥{g(=), o(1)} ¥,

Gt(z,y) =
9 = T ras(yuye
= (Q(a:, y;t) + Q*(’a:, y;t)) - + (z < ), (3.13)
= (z > o (2)v () - iZz}Z(z)vz_l(y)) - +(z = y).
k 2

This expression, as it is, does not give us much information. The reason is that
although the functions vk(:z:) form a complete set, they are not properly orthonor-
malized. Hence, in order to rewrite Eq.(3.13) in a more comprehensible form, we
introduce a set of normal mode fuhctions uq(z), each of which is a linear combina-

tion of v, (), _ |
ug(z) =Y Afv, (), (3.14)
k

and are normalized as

i / Pa(ug =i (z) = ig()up(2)) = byq (3.15)

We note that, in principle, these functions can be constructed by Schmidt’s orthogo-
nalization procedure, though in practice it may be formidable to do so. Contracting
the both sides of the above normalization condition by the inverse of u,(z) and

wg(y), we find

—zz( iy(e)u *l(y)—u-l(z )= > (@), (316)

Then since ), 9% (z)vy “y) = 2oqiq(z)ug 1(y), the equal-time two-point func-

tion is expressed in terms of uy(z) as

GHey) =Y (uq<z)uz,(y> ; uz,(z)uq(y)). (3.17)

q
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This coincides with the one for the Heisenberg state I‘I)) defined by -
Gg|®) =0,  for Vg, (3.18)

when the field operator q;(z) is expanded as

é(z) = Z (dquq(z) + &Zu’&(x)) : (3.19)

q

where g (&Z) is the annihilation (creation) operator associated with the mode

function u(z) (ug(z))-

Thus the quantum state after tunneling is the “vacuum” with respect to a,
for which u q(m) plays the role of the “positive frequency” function. Note that this
mode function u4(z) is generally different from the true positive frequency function
after tunneling, say wy(z), if it can be defined. This will be the case when m?(o)
approaches a constant sufficiently fast after tunneling. Then u4 () and wg(z) will
be related to each other by a non-trivial Bogoliubov transformation. This implies

the quantum state after tunneling contains a spectrum of excitations of the field ¢.

In the next section, we give an explicit example of such a case.

4. Spatially Homogeneous Decay

In this section, we consider a specific example of the tunneling in field theory
discussed in the previous section. The aim is to demonstrate the significance of our
formalism and to show how non-trivial the resulting quantum state after tunneling
will be, as well as to clarify its relation to the previous work by Rubakov [5] For
si.mplicity, we consider the case when the tﬁnneling solution is spatially homoge-
neous; o = a,(7). This situation can be realized if we consider a spatially closed
universe, or it may be regarded as the limiting case of a sufficiently large vacuum

bubble compared to the scale of interest. Further, for simplicity, we restrict the
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o-dependence of the ¢-field mass, m?(c), to be that given by a step function,

m2 o<l
m2(¢)={ - 0<d) (4.2)

m% (o0 >5).

We assume the false vacuum origin is in the region ¢ (—c0) = o, < & and introduce

the parameter time 7(< 0) which denotes the time at which the mass changes;
0o(7) = 7.

Since we have

[33 + A"— mﬁ_] gk(a:) =0 (r>7),

62+ 8 -m]g (&) =0 (r<7), w2

the (unnormalized) mode function gk(a:) satisfying the boundary condition is easily

obtained as

ew_reik-z ' (T < 1._._)’
g,.(z)= ‘ . 4.3
k( ) (Akew+T+Bke—w+r) ezk-z (7, > 5;), ( )
where w, = 4/k% + m% and

A = ——(w, +w_ o)t

k= 2w ’
1 ] (4.4)

B, = -é———(w+ — w_)elwrtw-)7,

Fortunately, in the present model, the orthonormal mode functions uk(:z:) in the

Lorentzian region are readily obtained from the analytic continuation of gk(x);

—twyt twyt ;
Ae ++Be+ elk:c

uk(l') \/Qw 2 (2,”)3/2

1/ _B2 () * ,/ B2
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where w, (2) is the usual Minkowski positive frequecy mode function,

e—iw+t+z'k-z

w, (2) = —m——. (4.6)
k \/ 2w (2m)3

In this model, since the field after tunneling is a simple massive scalar field,
there is no ambiguity in the concept of a particle. This allows us to compare
our result with that of Rubakov [5]. The number of created particles is definitely

estimated as

g P Dk
el TR

(w.}. —w_)?
- (wy +w_ e+ —(w, — w )

(4.7)

In Appendix, it is shown that this agrees with the result obtained in Rubakov’s

formalism.

Here, we note that the above particle spectrum differs from that in the case
of particle creation due to a sudden change of the mass in the real Lorentzian
spacetime. The latter would be the case if the false vacuum decay were considered
in the classical picture and were assumed to occur suddenly at, say £ = 0; in this

case, the number of created particles would be given by N & of Eq:(4.7) with ¥ = 0.

Let us consider some implications of Eq.(4.7). First note that ¥ <0, hence NV,
decreases exponentially as the absolute value of 7 becomes large. In particular, in
the limit wy > w_, which holds if m? <« mﬁ_ and k2 S mi, Nk takes the same
form as the thermal distribution with temperature T' = 1/(4|7|). However, the

behavior in the large momentum limit differs from the thermal spectrum as -

N, ~ ! for k% > mi (4.8)

ko (4.’:2/Am2)2 elo+lfl — 1
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To gain a bit more insight into the quantum state after tunneling, let us con-
sider the case when the mass difference between the true and false vacua is small;

|Aam?| < mﬁ,‘ Then, the number of created particles becomes

Am2\? ..
N, = ( 4;" ) tont (4.9)

and the energy density due to quantum fluctuations of the ¢-field is given by

T Bk
&= /27;)3+k
0

(z + 2:1:
Am® _tmy s / P Akl 4

(4.10)

327r a:+a:

where z ) :=m +|%[. Thus, the energy density generated through the tunneling is of
O(Am?) if z, S 1, while it becomes negligibly small if 2, 3> 1. Presumably, 1/|7|
is related to a certain mass scale M associated with the tunneling field ¢. Hence,
the particle creation is expected to be rather significant for models with m , S M.
We note that this conclusion qualitatively holds for general values of the masses

m3 as well, though it has been derived by assuming |Am?| < m3.

5. Summary and Discussion

We have developed the formulation to determine the quantum state after the
tunneling in field theory. Our approach is based on the method of the multi-
dimensional wave function. The formulation can be applied to a system in which

the state before tunneling is the quasi-ground-state of false vacuum.

The crucial procedure in our formalism is the method to construct appfopri—
ate mode functions of a quantum scalar field ¢ coupling to the tunneling field o.
This is done as follows. First, we solve the linearized field equation for ¢ in the
background of the Euclidean classical tunneling solution ¢ = o (z; 7) with the con-

dition that the field goes to zero exponetially as the Euclidean time 7 goes to —oo,
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and construct a set of Euclidean mode functions gk(:c). Then the Lorentzian mode
functions vk(m), which describe the quantum state after tunneling, are obtained by
the analytic continuation of gk(a:) with 7 — it and by taking their complex conju-
gates. As these Lorentzian mode functions are not in general orthonormalized, if
necessary we have to construct a new set of orthonormalized mode functions u (z)

by a suitable linear transformation of the original ones.

The resulting quantum state after tunneling is most conveniently described
in the Heisenberg picture. Namely, if we represent the field operator as é(m) =
Zk (&kuk(x) + &I}u’i’(z)), the state is identical to the “vacuum” state annihilated
by the operator a z This state is not the true vacuum state of the field ¢, but is in
general a highly excitated state.

In order to demonstrate the significance of our formalism and to show how
non-trivial the resulting quantum state can be, we have applied it to an example
of spatially homogeneous decay of false vacuum. For simplicity, We have evalu-

2 is a step function of the

ated excitations of a scalar field whose mass square m
tunneling field and undergoes a discrete change during the tunneling process. The
resulting spectrum of excitations has some similarity with a thermal spectrum with
its temperature presumably given by a certain mass scale M associated with the
tunneling field. However, the high momentum distribution is more suppressed than
the latter. As a result, the generated total energy density is determined not by M

but by the difference of m? before and after the tunneling; & ~ Am?.

We should admit the objection, however, that the model analyzéd in the presént
paper is oversimplified and is not directly applicable to a realistic case of false
vacuum decay. In order to show further advantages of our formalism and to derive
results which have more realistic implications, it is necessary to investigate a model
in which the Euclidean tunneling solution is an O(4)-symmetric bubble. This issue

is tackled in another paper [10].
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APPENDIX

In this appendix, we show that our estimate of the particle creation given
in Sec. 4 agrees with the result obtained in Rubakov’s approach [5]. We omit
the details and show only the resulting expression for the particle number in his

approach. In Rubakov’s formalism, the number. of created particles is gi_venAby

K D2
M= (1—92)%’ | (A1)

where D is a matrix given in Eq.(3.19) of [5]. In the case of spatially homogeneous

decay of false vacuum, each k-mode decouples and the matrix D becomes diagonal.
Hence we can treat each mode separately. Since our mode function 9 corresponds
to Rubakov’s mode function g, defined in Eq.(3.8) of [5], we find the diagonal
component of D) with the wavenumber & is expressed in terms of 9, 3

9 — 949 “owy

Dkz— -_— = = 3 . (Az)
g, tw 9, =0 wtw, .

where @ := 5,.gk/gklrzo. For the model of Sec. 4, we have

Ak_Bk

W= ==, .
A +B "+
k k

N

Hence the number spectrum of created particles in Rubakov’s formalism, Eq.(A1),

is calculated to be
~, 2
(@—w,)* B}

“ T (A3)

N =
k 4w

+

This is exactly in agreement with the result given in Eq.(4.7).
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FIGURE CAPTIONS

Fig. 1 Illustration of a potential for a multi-dimensional tunneling system. The

oordinates (¢2, 43, -, ¢) are suppressed.

Fig. 2 Tllustration of a hypersurface orthogonal to the DEP at ¢, spanned by all the
geodesics tangent to linear combinations of basis vectors eg (a = 1,2,++, D)

at g.
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