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The- statistical distribution of baryon-number fluctuations, which may provide a proper initial condi-
tion for the minimal isocurvature scenario, is carefully investigated both analytically and numerically.
For fluctuations associated with power-law inflation, we find that the distribution is highly non-Gaussian
on scales of pregalactic star formation while it is Gaussian on scales of large-scale structure. On the oth-
er hand, in the pure de Sitter universe, it is shown to be Gaussian on any astrophysxcal scale. It is also
discussed why the Gaussian nature appears in these models.
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I. INTRODUCTION

One of the most important problems.in cosmology is to
explain how the observed cosmic structure was formed.
Many ideas have been proposed on the origin of large-
scale structure. Unfortunately, however, we have been
unable to single out the correct model among them due
to the lack of accurate observational data that should
determine the fundamental parameters, such as the Hub-
ble parameter, the density parameter, or the cosmological
constant, not to mention the main ingredient of matter
contents. In this situation, taking both merits and de-
merits of each scenario into account, Peebles and Silk [1]
concluded that the cold-dark-matter scenario in the
inflationary cosmology [2] and the minimal baryon iso-
curvature scenario in a low-density universe surpass oth-
er candidates at present.

The initial condition for the standard cold-dark-matter
scenario is an adiabatic fluctuation with a scale-invariant
spectrum that is predicted by typical inflationary models.
Although its initial condition is well motivated, it as-
sumes artificial biasing, whose physical mechanism is yet
unclear, in the process of galaxy formation. Moreover,
this scenario has other serious difficulties such as too
large velocity dispersion on small scales [3]. It is also
difficult to reproduce very-large-scale structure on scales
over 100 Mpc [4] without contradiction to the observed
anisotropy of the cosmic microwave background (CMB)
radiation on the large scale [5].

On the other hand, the minimal isocurvature scenario
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[6] proposed by Peebles attempts to explain structure for-
mation on a purely phenomenological basis in a low-
density universe, which is supported by recent observa-
tions [7]. Such a low-density universe may be dominated
by baryonic matter since {13~0. 1 is marginally consistent
with the value allowed by the primordial nucleosynthests
argument [8]. This scenario is attractive because the
cosmic structure is formed only by the matter whose ex-
istence we know, i.e., the baryon and the radiation. How-
ever, it assumes very ad hoc initial density fluctuations,
namely, isocurvature fluctuations with a steep spectrum.
Having less power on large scales, this scenario can be
consistent with the observed large-angle isotropy of CMB
[9]. On small scales, the large amplitude of isocurvature
fluctuation allows star formation soon after the recom-
bination of matter. Presumably these stars reionized the
medium in the universe and as a result the small-angle
anisotropy of CMB was smoothed out through diffusion
in the plasma, though the reionization mechanism is not
well analyzed. Still more, a nice feature of large-scale
coherence in the peculiar velocity field can be obtained
[10,11]. In this way, the minimal isocurvature scenario
seems successful. '

Recently, Yokoyama and Suto [10] and Sasaki and
Yokoyama [12] have shown that it is possible to provide’
the baryon isocurvature fluctuations with a spectrum ap-
propriate for the minimal isocurvature scenario in the
context of inflationary cosmology, based on a mechanism
of baryogenesis in which baryon-number fluctuations are
generated through the soft CP violation induced by a spa-

4206 (©1992 The American Physical Society



46 STATISTICS OF BARYON ISOCURVATURE PERTURBATIONS . ..

tially varying pseudo Goldstone field [15]. We note that
a low-density universe is compatible with inflation if the
cosmological constant is nonvanishing. In particular,
Sasaki and Yokoyama [12] have presented a rigorous ex-
pression for the baryon power spectrum in the power-law
inflationary background [13,14]. In their model the pseu-
do Goldstone field is identified with the Majoron field as-
“sociated with a heavy Majorana lepton. The coherent
Majoron field is generated in the inflationary era. The
spectrum of the baryon-number fluctuation was found to

be almost scale invariant on small scales and white-

noise-type on large scales, which is exactly what one
needs for the minimal isocurvature scenario. :

In general the adiabatic density fluctuation induced by
the inflaton field has a Gaussian random-phase distribu-
tion. On the other hand the baryon-number fluctuation
predicted in {10,12] has a non-Gaussian nature because it
is given by a sinusoidal projection of a Gaussian probabil-
ity variable. This may have significant cosmological im-
plications.

In this paper, we investigate the property of the
baryon-number fluctuation.by using both analytical and
numerical methods. In particular, we simulate its proba-
bility distribution on various scales in both configuration
and Fourier spaces using the Monte Carlo method. To
do this we consider not only a fully three-dimensional
model but also a one-dimensional model that reproduces
all the essential properties in the original theory such as
correlation functions, since the latter allows a large
enough dynamic range of scales. ’

The rest of the paper is organized as follows. In Sec.
11, we review the previous results on the baryon-number
fluctuation generated through the aforementioned mech-
anism. A detailed study of the probability distribution of
the baryon-number fluctuation in the power-law
inflationary background is described in Sec. III. The case
of pure de Sitter inflation is described in Sec. IV. Section
V is devoted to discussion and the conclusion.

II. POWER SPECTRUM
OF THE BARYON-NUMBER FLUCTUATION

Following [12], we consider the baryon-number fluc-
tuation given by

Al(x)
S

where A (x) is the Majoran field and f is its associated
mass scale. Assuming A (x) to be an effectively massless
free field by imposing some symmetry, one may €Xpress
the power spectra of baryon-number fluctuations in terms
of the two-point correlation function of 4 (x). In partic-
. ular, in the case of pure de Sitter background or power-
law inflationary background, the expression may be
analytically evaluated. We review these results [10,12,16]
briefly.

The metric of pure de Sitter space time may be ex-
pressed as

ds?=—di*+a()dx?, (2.2)

B(x)=B,sin , (2.1)

where a (1)=e " is the scale factor with H being the Hub-
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ble parameter. The free field 4 (x)is decomposed as
d’k

Ak A (m)explikx)

A(x,n)=f

+a ) Ag(n)*expl —ikx)] , (2.3)

where @, and @ z are the annihilation and creation opera-
tors, respectively, and we have introduced the conformal
time 7, defined by dn=dt/a(t). The mode function
A.(n) is determined from the field equation in the ex-
panding background, and it can be solved under a suit-
able boundary condition
172 ,
H(—nP2HY ) (—km)=—i il

Ap(n)= T

il
4

(2.4)

where H\'), is the (3/2)th Hankel function of the first.
kind and the last approximation is justified if —kn << 1.
The equal-time two-point correlation function of 4 (x) is
given by

(Alr,m) A0,/ f)

=f E—Bk—|A () Pexplikr)/f?
kip <k <kyy (27.[.)3 k
1
=2Bn {——— |,
k]R1r| (2.5)

where kg is an infrared cutoff, kyy is an ultraviolet
cutoff which corresponds to the horizon scale, and
B=H!/87°f* Following the prescription in [12] (see
also Appendix A), we can get the two-point correlation
function of B (x) as _
2B

B, 1
( 0 =— | —=77 2.6
(B(r,B(0,7))=— prESYIE (2.6)
“Then the power spectrum of B (x) is given by
Pylk,m)= [ d*r(B(r,m)BO,7)e”
' 2 B
2By | k| sin(1—B)m
= — | = T(3-2
k3 aH 2(1—5) (3-28)
2 28
By B k
=7 =5 | : 7
(2m) Ay 1 aH} (for B<<1) 2.7

Thus it has no characteristic scale except the horizon
size.

"On the other hand, in power-law inflation, the metric is
given by (2.2) with the scale factor proportional to
(1P (n>0). In terms of the conformal time 7, the scale
factor and the time-dependent Hubble parameter are ex-

. pressed as

B

alg)=———""77. >
1 (_H*,r])l*]/n

14+
n

H(n)= H,(—H,m'"",
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where H, is a constant, and the mode function A4 (7) as Note that we are interested in the range nf(7) <1 from
12 ‘ the cosmological point of view {12,16]. The same pro-
- |7 dure in the pure de Sitter background can be used to
A Y= |— H{(n)X— )3/2H(l) (—km) ce P g
€7 4 R K 32+ in . find the power spectrum of the baryon-number fluctua-
1/n L+ Un tions. The two-point correlation function of B(x) and its
~HO) 1 ~ __iI.i‘__ (2.9)  spectrum are expressed as
T Vg 32 —kny T g3t )
2 2 1/n
r
where we have assumed n >>1. The two-point correla- (B(r,7)B(0,7) =—2iexp [nﬁ(n) e ‘ ]
tion function of A (x) is then expressed as T K
r2 1/n 2 1/n 2.12)
2y 2 — =
(A(r,n)A(O,n)‘/f Y =npB(n) 5 = , and
(2.10) 2 2/n
Pylkym)=— P [ Zds s si |k
where r; corresponds to the infrared cutoff & 3! and |7 A € J, @55 8105 eXp P _
to the ultraviolet cutoff k jy, which is essentially equal to 5 :
the horizon scale. Similar to the case of pure de Sitter . 2mB "B (4 k) (2 13)
background, B(7) is defined by B(7):=H7)/8x*f> T3 e ‘
The expectation value ( A(0,7m)*) is regularized at the
horizon scale as , where k.:=[nB(7)]"”*/|n|. The function J(n,k) has
. L2 ; ; different asymptotic forms on the different sides of &,
( A0,/ f*) =~nfn) ——02— -1 (2.11)  and the power spectrum Pg(k,7) takes the following
form in the two asymptotic regions: .

|

252 —2/n
7°B*
oA L3 for k >>k_,
nk kc .
Pplk)== 12 2 ’ (2.14)
’ ﬂ-Bie"B”” LU 21 | for k <<k
Kk} 3 2e ©”’

Thus on the small scale (k >>k,) the spectrum of fluctuations is almost scale invariant, while on the large scale
{k <<k_) it is white noise. As discussed in [12], the power-law index of n =10~ 20 may provide an appropriate initial
condition for the minimal isocurvature scenario.

1I1. PROBABILITY DISTRIBUTION IN POWER-LAW INFLATION
A. Analytic properties

First we consider a pointwise praobability distribution of B (x). The probability distribution of 4 (x) at a given spatial
point p( 4 (x)) is Gaussian with the average equal to zero and the variance equal to { 4 (x)?). The probability distribu-
tion of B(x) at a given spatial point p(B{x)} is given by
p[—A42/2{( 4 (x)*)]

1

= (—{(—1)"arcsin[B(x)/B, |+ nm}2/2{ Ax)*/f)), (3.1)
[Bi "‘B(X)z]l/z[?.ﬁ(A(x)z/fz>]l/2 ”Asé:zexp { arcsm[ x ] n7T§ X f

p(BGxN= [ dast 5(B,sin( 4 /f)=B(x))

where we have used an identity 8(g(x))=3,8(x ~x,)/|g’(x,) with x,’s being the zeros of g(x). Since Eq. (2.11) is
rewritten as

2/n
¢

kir

(AxP/fP) = (3.2)

b

we find { A(x)2/f?)>>1. In this limit, the summation of n in Eq. (3.1) can be approximated by an integral to yield

1
W[Bi __B(x)l]l/?_

(3.3)

p(B(x))=

y

which has sharp peaks at B(x)==®B,. Thus the probability distribution of B (x) at a given spatial point differs sub-
stantially from a Gaussian distribution.
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The distribution derived above describes the property of the fluctuation at a single spatial point that disregards the
correlation in the neighborhood of the point. In order to investigate the spatial correlation, one needs to know the sta-
tistical properties of the Fourier transform of B(x),B. :

For small scale (k >>k, ), we may separate the long- and short-wavelength parts of 4 (x) as

d3k d3k

A(x,m)= fkm<|k|5k, W[ak Ay (mexplikx)+H.c. ]+ k <Ikl <kyy W[ak A (nlexplikx)+H.c.]

= A(x), +Ax)g, ~ ' (3.4)

where k, is an arbitrary scale with k; >>k,. Since Egs. (2.11) and (3.2) yield (AL /f2) =k, /k)¥" << 1, B(x) may
be expanded as ~

pi—p.sn| AL AEs g Aoy | (A o AG A(x)s
* - f f * f * f f
:é sin Al(x); B A(x)g cos Allx), B lx), +B(x); .
LS " f !

o
where B(x)g is regarded as a small-scale fluctuation  trum becomes white noise there as given by Eq. (2.14).
around a large-scale background value B(x);. The spa- On the other hand, for r, <<r., B(x,r,)=B(x), and the
tial variation of A (x); /f over the scale 1/k, is estimat- ~ probability distribution of B(x,r,) will approach Eq.

ed by the expectation value (3.3).
dag 11" 7.0\ a3 |4l” k>
< dx K, /f >“‘ fkm<|"‘|<ks (27 )° \ f2 ksz B. Numerical model
(K 2/n For the intermediate scale (k ~k_) between the above
= | -Z «<1, (3:6) two extreme cases, we numerically investigate the proba-
n | ks bility distribution. Our numerical method is based on an

observation that a field configuration of 4 (x,n) with
fixed time 7 can be regarded as a Gaussian random pro-
cess with a, and a,::r being the random-phase Gaussian
probability variables. The detail is described in Appendix
hood of radius r~1/k. (<</k.) has almost the same B. Then the baryon*number. fluctuation B(J.() i§ calcula?-
) s ¢ . ed from Eq. (2.1). Calculation of the Fourier integral is
Gaussian nature as  A(x)g/f.  This leads 1o goqe by using the fast Fourier transformation (FFT).
By~B, Ay /ffork>>k.. . ) The tatio of the infrared cutoff and the ultraviolet
For large scale (k <<k.), since small-scale fluctuations  cy¢off, N =k g /kyy, is limited by the available number
of B(x) are 1rre1§vant, a spatially .averaged field should ¢ grid points. Although we can generate the Fourier
give the information of the fluctuation, We define such a modes of A4 (x) within kg <k < kyy, the Fourier modes

while the distribution of B(x), itself is highly non-
Gaussian as given by Eq. (3.3). Thus given a spatial point
x, the distribution of the mean value of B(x), is highly
non-Gaussian but the fluctuation of it in the neighbor-

field by of A (x) out of this range may be essential for those of
~ fdJyB(x —)0(r, —|x —yl) B(x) in kg <k <kyy due to the nonlinear nature of
B(x,r, )= , (3.7) B(x) in (2.1). In preliminary three-dimensional (3D) nu-
fdJyG(ra—lx =yl merical simulations, we could not recover the power

] . spectrum of the two-point correlation function of B(x).
where 0(x) is the step function and r, is the averaging  Thjs discrepancy was due to the lack of a sufficient num-
scale. In fact, this field is composed of the superposition ber of grid points (in our present machine, only N~64is
of B, satisfying k Sr,'. We note that B(x,{n[)=B(x)  available). Therefore, in this section, we analyze a one-

because of the ultraviolet cutoff at the horizon scale. dimensional (1D) space model that supposedly preserves
From Eg. (2.12), the two-point correlation damps ex-  the essential features of the original 3D theory.
ponentially beyond the correlation length r. =1/k.. As We take a 1D model in which the two-point correla-
for the four-point correlation function, it also damps with tion function of 4 {x) has the same form as in the origi-
the characteristic correlation length r, (see Appendix A). nal 3D theory, i.e., (2.10). Since all the n-point correla-

Physically. we expect that all the n-point correlations also  tion functions of the free field 4 (z) are determined by the
damp with this characteristic length r. in general. Thus  two-point function, all the correlation functions of B (x)

for r, >>r,, B(x,r,) becomes an average of a large num-  in the original theory can be reproduced in the 1D model
ber of almost-independent probability variables. There- by this prescription. In this sense, our 1D model is the
fore, from the central limit theorem, we expect that the same as analyzing the full 3D theory along a line.

probability distribution of Blx,r,) will approach a The mode function A;'" in the 1D model can be read

Gaussian distribution. This mutual independence of  off from the integral form of the two-point correlation
B {x) on large scale also explains the reason why the spec- function of A (x) in the 3D theory, Eq. (2.10). The in-
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frared behavior (k—0) of 4, in Eq. (2.9) determines
I+1/n

*
W/47Tk1/2+]/" ‘

It can be shown that this mode function in the 1D model
(3.8) gives the two-point correlation function whose be-
havior is identical with that of 4 (x) in the 3D theory
(see Appendix C).

The spectrum of the fluctuations in the 1D model
PiV(k,m) is given by

PY k)= [ " " dx (B (x,7)B(0,7))e "

4= (3.8)

2 2/n

B ” k
= g nBn) ds coss ex £
k fo P

k

2
*

=:Bk e"‘B(")J(l)(n,k) .

(3.9

Here we have defined a function J''(n,k) in analogy with
Eq. (2.13). As in the 3D original theory, the function
JW(n,k) has different asymptotic forms on the different
sides of k,, where the power spectrum Pg''(k,7) takes the
form

BZ T k —2/n
k*n e "B 7": for k >>k, ,
Pk =~ _, (3.10)
n n
k:e pop S 1| for k<<k, .

Compared with Eq. (2.14), similar properties of the spec-
trum are also manifest in this model. Hence we expect
that basic features of the fluctuation will be understood
with this 1D model.

C. Numerical results

For the 1D model described in the above subsection,
we have carried out simulations with N =10°. The
power-law index of the scale factor has been taken to be
n=6. As a check of our numerical scheme, we have
evaluated the two-point correlation function of B(x) and
its spectrum, and compared the numerical results with
the analytic ones. We show the two-point correlation
function in Fig. 1 and the spectrum in Fig. 2. As is seen
there, our numerical scheme works well.

We have investigated the probability distribution
p(B(x,r,)) as a function of B(x,r,) defined by Eq. (3.7)
for various values of the averaging scale r,. The proba-
bility distribution is depicted in Figs. 3(a)-3(d) for several
typical values of r, in units of .. To exhibit the degree
of deviations from the Gaussian distribution clearly, the
horizontal axis is rescaled so that the variance is equal to
unity, and the vertical axis is rescaled so that the area of
each distribution function is unity. According to the nu-
merical results, the probability distribution of B(x,r,)
changes its feature drastically when r, crosses r,.

In Fig. 2, we have indicated the wave number
k =21 /r, corresponding to each r, of Figs. 3(a)-3(d).
Comparing the averaging scale indicated in Fig. 2 with
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025 T T L — T T

02 1 7
<B(r)B(0)>

0.15 ' :

0.0 0.0 0.2 0.3 0.3 0.4 0.5

FIG. 1. Two-point correlation function of B(x) in the 1D
power-law inflation model. The model parameters are chosen as
n =6 and B(1)=0.01. The dashed line is the analytic expres-
sion (2.12), and the solid line is the numerical result. The hor-
izontal axis is normalized by the box size L, where the periodic
boundary condition is imposed, and the vertical axis by Bi.
The grid number is taken to be N = 10°.

the corresponding distribution function, we find the dis-
tribution becomes Gaussian just when the power spec-
trum becomes white noise at k <<k_ or r >>r,. Vanish-
ing of the correlation on large scale gives rise to the
white-noise spectrum there. At the same time, it also
makes the distribution Gaussian by the central limit
theorem. The above picture was also confirmed in the
case of the power indices of inflation n =4 and n =8.

JING k)

0.1 [

r )y (c)  (b) (a)

0.001 0.01 0.1 t 10 100 1000
klk,
FIG. 2. Function J'"{n,4) as a function of k /k.. The model

parameters are the same as in Fig. 1. The solid line is the result
of the 1D Monte Carlo simulation, while the dashed line is that

‘of numerical integration of Eq. (3.9). The large deviation at the

high-frequency side is due to the finite-volume effect. The ar-
rows {a)-(d) indicate the wave numbers corresponding to the
averaging length scales of the probability distribution
p(B(x,7,)) shown in Figs. 3(a)-(d).
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FIG. 3. Probability distribution p{B{x,r,)) of the baryon-number fluctuation averaged over the same r, in the power-law

inflationary background. The model parameters are the same as in Fig. 1. The averaging scale r, is taken as (a) r,
The horizontal axis is rescaled so that the variance is equal to unity.

110rc, and (d) 680r..

2r., (b) 197, (c)
The actual variances are (a)

=[{B(x)?)/BL]'/2=0.32, (b) 0.16, (c} 0.059, and (d) 0.0012. The vertical axis is also rescaled so that the area of distribution
functlon is unity. The dotted line in each figure shows the Gaussian distribution function that should be realized in the hmxt o P> 0,
and the dashed line is the distribution function in the limit r, <<r_, given by Eq. (3.3).

We have also investigated the probability distribution
in the Fourier space. We have calculated the probability
distributions of the real and imaginary parts of B,. Ac-
cording to the numerical results, each B, seems to behave
just like a mutually independent random-phase Gaussian
variable within the Poisson fluctuation of the numerical
calculations, irrespective of the value of k. If By had the
random-phase Gaussian distribution and if each B, were
independent, the probability distribution of B (x) would
have to be Gaussian too. This contradicts the result in
the configuration space. Thus we conclude that the state-
ment that each B, is independent is wrong and the non-
Gaussian properties are hidden in the higher-order corre-
lations of B,. In fact it is impossible to have B(x)
bounded

L [ Be*dk <B, (3.11)

"4 777
without correlations among B, ’s.

1V. PROBABILITY DISTRIBUTION
IN. PURE DE SITTER SPACE

A. Analytic properties

In the previous section, we have shown in terms of 1D
numerical simulations that the statistical distribution be-
comes Gaussian on scale k <k, though the pointwise dis-
tribution of B{x) is highly non-Gaussian. Here we
present a complimentary apalysis, namely, 3D simula-
tions in the pure de Sitter background.
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We note that the behavior of A (x) and B(x) has
several different features in this space time compared
with the case of power-law inflationary background.
First, B(x) has no characteristic scale such as k.. Its
power spectrum obeys a simple power law |B,|?
ok 73728 as shown in Sec. II. Second, the fluctuations
of A{x)is scale invariant up to a logarithmic factor. Us-
ing the mode function (2.4), we find

1

(A(x)?)= 3
(247)

kUV HZ
A, 2d3%k=—=InN, 4.1
fk!R l kl 471_2 n (

where N =kyy/kz. As before, the ultraviolet cutoff

1 s 1 exp | —
(B2 —BH? 2y V2ro 20°

p(B(x))=

For B<<1, it is almost Gaussian since we have
sin[ 4 (x)/f]~ A (x)/f. Hence B(x) has the same sta-
tistical property as A (x). On the other hand, for p~1,
p(B) is highly non-Gaussian:

1
ﬂ,[Bi _BZ(X)]I/Z )

p(B(x))= {4.3)

In this case, the power Spectrum of B, is steeper than the
scale-invariant one; i.e., the spatial correlation damps
more sharply as the length scale increases.

B. Numerical results |

In this subsection we report the results of numerical
simulations with particular emphasis on the scale depen-
dence of the statistics. The method of simulations is the
same as that in Sec. III (see Appendix B).

Simulations have been done on 128° grids in Fourier
space, corresponding to N =128. We have checked if we
can reproduce the power spectrum | B, |* for two cases of
B<<1 and B=1. In both of these cases, the power-law
behavior |B, |2 <k ~3*? was verified except for a some
deviation observed at k <20k y in the case of S=1.

The pointwise probability distribution p(B {x)) for the
case of B=107? is shown in Fig. 4, for 3=0.02 in Fig.
5(a), and for =1 in Fig. 6(a). The result for f= 1073 in
Fig. 4 is consistent with the Gaussian distribution, as ex-
pected. On the other hand, in the other two cases,
p(B(x)) exhibits a strongly non-Gaussian feature. These
results agree with the analytic formula we have estimated
in the previous subsection. For comparison, we have also
done simulations with &N =64 but found no measurable
difference in the results. This justifies our expectation
that a reliable simulation can be done in the case of pure
de Sitter background, even with a relatively small N.

As in Sec. 111, we have calculated the distribution func-
tion of the volume-averaged field on scale r,, p(B(x,r,)).
The results are shown for $=0.02 in Figs. 5(b) and 5(c),
with r,=5|| and 7, =20/, respectively, and for B=1
in Fig. 6(b) with r, =2|n|. Interestingly, as the averaging
scale r, is increased, the distribution function p(E(x,ra 1))
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kyy is naturally identified with the horizon scale:
kyy=1/Inl. On the other hand, the choice of the in-
frared cutoff k;z depends on scales of one’s interest. For-
tunately, however, the dependence of { 4 (x)?) on kg is
only logarithmic and hence relatively unimportant as
long as N >>1 is satisfied. Thanks to these two proper-
ties, we may extract essential statistical information of
B(x) even if the dynamic range of a simulation is small.
This allows us to perform a reliable fully 3D numerical
simulation with relatively small N. In addition, we can
easily generate various different realizations of the model
by choosing various values of .
From Eq. (3.1), the pointwise distribution is given by

(4.2)

+nmw

2
], o:=V2BInN .

. approaches the Gaussian distribution more rapidly in the

case of B=1, for which the non-Gaussian feature is origi-
nally stronger, than in the case of f=0.02.

This result can be understood by considering the
higher-order correlation functions of B (x), which can be
estimated by the procedure similar to Appendix A. We
find the 2m-point correlation function in de Sitter space

time as
2 mp
* ) (4.4)

4

2
ravg

(s~ | 5] £

j=1

where r,,, denotes a typical length of separation between
x;’s. Thus the higher-order correlations of B (x) decrease
more rapidly as 7,,, is increased and the rate is faster for
larger B. This explains why the spatially averaged field

0.8 ,

"a:iul

4.0 -3.0 2.0 -1.0 0.0 1.0 2.0 3.0 4.0

Blx,rg)

FIG. 4. Probability distribution of B(x) in the pure de Sitter
universe, which is equivalent to Bix,r,) with r,=|nl: The
model parameter is $=107". The grid number is N3=128%
The normalizations of the horizontal and vertical axes are the
same as in Fig. 3. The actual varianceis o5 =0.324. '
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FIG. 5. Probability distribution of B(x,r,) in the pure de Sit-
ter universe with $=0.02. The averaging scale r, is taken as (a)
r. =1, (6) 59|, and (c) 20{7[. Note that B(x,|n|)=B(x). The
actual variances are (a) o5 =0.701, (b) 0.382, and (c) 0.198.
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FIG. 6. Same as Fig. 5, but with 8=1. The averaging scale r,
is taken as (a) r,=In| and (b) 2|y|. The variances are (a)
o5 =0.707 and (b) 0.250.

approaches a Gaussian random field faster for =1 than
for £=0.02.

On the other hand, for 8 <<, the fluctuation of B(x)
is intrinsically Gaussian as discussed préviously. There-
fore the baryon-number fluctuation in the pure de Sitter
universe is always Gaussian on scales beyond a few hor-
izon lengths in the inflationary era, and consequently on
any scale of astrophysical importance.

V. DISCUSSION AND CONCLUSION

In the present paper, we have investigated the nature
of probability distribution of the baryon-number fluctua-
tion B(x) generated at the inflationary era of the
universe, which is a stnusoidal function of a free massless
field 4 (x). :

In addition to analytical investigations that we have
done for some limiting casés; we have carried out numeri-
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cal simulations to clarify the statistical properties of the
baryon-number fluctuation. Simulations have been done
by the Monte Carlo method, based on the observation
that the quantum field A4 (x) on a fixed spacelike hyper-
surface can be regarded as a random Gaussian field.

For the baryon-number fluctuation associated with
power-law inflation, we have considered a 1D model in
place of the original 3D theory, in order to realize a
sufficiently wide dynamic range of Fourier modes. Our
1D model preserves all the essential features of the origi-
nal theory such as the n-point correlation functions. We
have calculated the probability distribution on various
scales in the configuration space.

We have found on small scale (k>>k.), where the
baryon-number spectrum is almost scale invariant, the
distribution is highly non-Gaussian. Since it is peaked
near at the maximum possible value of [B (x|, this model
may result in efficient formation of pregalactic stars,
which is desirable for the mirimal isocurvature scenario
in which reionization of the medium is presumed.

On the other hand, on large scale (k <<k,), where the -

spectrum approaches white noise, the baryon-number
fluctuation is Gaussian. Thus the predicted amplitude of
the large-angle CMB anisotropy calculated by various au-
thors, which is based on the Gaussian statistics and
which imposes presently the most stringent constraint on
baryon isocurvature models, is applicable to our model as
well.

For comparison and completeness we have also calcu-
lated the probability distribution for a fully 3D model,
but in the pure de Sitter background. Interestingly, it
shows a very different behavior from the case of power-
law inflation. In fact, the distribution rapidly becomes
Gaussian as the averaging length exceeds ~20H ~'. This
is because in the pure de Sitter space time each logarith-

J
<exp

2
*

2m

EO’A

j=1

Im

1o

ji=1

<ﬁ B(xj)>=

j=1

}S

g

where 0o
o=(0,0, ...

fexp |

Lo JE(ELEL ...,

>=exp

EO'A IS

j=1

i

takes the value +1 or —1, and the summation is

=1). For the right-hand side, we have

13 00.(A4(x;)4
Ik
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mic interval of length scale gives the same contribution to
the fluctuation of A(x) and it is ultraviolet divergent
without a cutoff. Hence the higher-order correlation -
functions decrease rapidly as the averaging scale in-
creases.

On the contrary, since the fluctuation of A4 (x) is ultra-
violet finite in the power-law inflationary background, the
volume-averaged fluctuation of B{x) is dominated by
large-scale modes. Thus it is not until the power spec-
trum becomes white noise that the d15tr1but1on becomes
Gaussian.

As is seen above, exponential inflation and power-law
inflation have very different predictions on the statistical
properties of the baryon-number fluctuations. We plan to
clarify if it is a generic feature using various functions
other than B (x).
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APPENDIX A

In this appendix, we derive a general form of the
equal-time 2m-point correlation function [17] of B(x) in
the power-law inflationary background and show that in
addition to the two-point function, the four-point func-
tion also damps with the characteristic length 7.

Using sinx =(e®—e ~™)/(2i), the 2m-point function of
B(x)can be written as

> ' (A1)

taken over all the combinations of

(x )/ f5) \ (A2)

n

by taking the source function of A4 (x) as j{x —12;’210 dx —x;)/f (12]. In particulér, the two-point function of
A {x)is given by Eq. (2.10}): '
5 1/n 2 /n
0 Tk
(A Alx;)A( x )/ fH)=np ——’ — | =5 =glry)—glry), (A3)
] ‘

where we have abbreviated (1)

as 3 and defined g(r)i=npBiri/nH"" and = xj—xkl.

By separating the summa-

tion in the right-hand side of Eq. (A2) to j =k and j¥k, we have

m .
2m

I o,

exp

<HB x)>

j=1

2

Jj<k

- [E oo, tm

glro)+mginl)+ S o;o.glrk) ], (A4)
s J <k




46 STATISTICS OF BARYON ISOCURVATURE PERTURBATIONS . ..

where we have set g (r;;)=g (|9|) since |7| is the ultravio-
let cutoff in' this model. For a sufficiently large r,, we
have g(ry)>>1. Hence only the combinations of ¢ that
satisfy

20/0,X—m (A5)

j<k
will contribute to the correlation function of B (x) in Eq.
(Ad). However it can be shown that for all possible com-
binations of o, we have 3; ., 0,04 = —m and the equali-
ty holds only for a combmatxon of o with 21—10 =0,
i.e., a mixture of equal numbers of +1and —1. Thus Eq.
(A4) reduces to
2 enB

*

4

<ﬁB(xj)>':

J=1

, I/n
1. (A8

Xz exp [nf3 3 o0y

j<k

where the prime means the summation is taken only over
the combinations of o with 2 10;=0. Note that the
dependence on "the infrared cutoﬂ" rO disappears in the
correlation function of B(x).

B2enP
4

(B (x)B(x,)B(x;)B(x4)) =2

Now, we write the exponent of the first term in the right-
hand side of Eq. (A9) as

2 3 2 2
—(r 7/"‘+‘I‘ /n rl.{n F{n_*_ 2-{n+r /n)
P |
= ?[(

2
+(riy it = (3 +r’/"

7/"‘1")‘7/"—!‘%3/")‘{"( 3/n_+_r2/n r:jn)

AR

(A10)

Then we can use the triangle inequality on flat space;
ry; T ri32ry, ete, to show the non-negativity of the
terms in the square brackets: ri5"+r3{"—r3{" >0, etc.
The same logic can be applied to the other exponents in
Eq. (A9), and it is easily seen that the equalities cannot
hold simultaneously for any configuration of
x; (j=1,2,3,4). This implies 3. ,0,0.r3"<0 for
m =2. It is then naturally expected that the four-point
function damps with a characteristic length of order r,.
For example, if we choose r,=r;=ry;=r, and r,
=r,4=r33=r,, then the above four-point correlation
function reduces to a product of the two-point functions:

{B(x, )B(xz)B(xJ)B(xJ,))

=3(B(r)B0)){(B(ry)B(0)) . (All)

n
(2 —

B ) 5
(_r”/n_i__r /n+r /11+r) rz_*_r%{rz_r%‘{n)
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For the two-point function (m =1), Eq. (A6) gives

t/n
2enB I‘%—) J

(B{x,)B(x,))= exp , (A7)

—np

and this exponentially damps with the characteristic
length r,:=|7| /(nB)" "%

For a general m, if the exponent in Eq. (A6) is shown
to be negative definite for any configuration of x;, we may
expect that

1/n 1/n
2 2
rjk ravg
2 00 |75 =TmT , (A8)
j<k 7 7

and all the 2m- point functions dump with a length scale
that is of the same order of r,. Here r,,, is an average
length of r j«'s, and the factor m arises from the difference
between the number of combinations of {j,k) with
o; UA——I;mZ, and that of (j,k) with o0
1,2,,,C2=m(m —1). Although the negativity of the
exponent in Eq. (A6) is physically reasonable (otherwise
the correlation will diverge when the system is scaled up),
we have not yet found a convincing proof for this [18].
For the four-point function we can show the negativity
of 3, .40 ;07" as follows. In this case, Eq. (A6) gives

2/ / / 2
rH"—rﬂ"+r,4”+r /”)

B 2/n . 2/n 2/n 2/n 2/n 2/n
(rig" = ris" ey gyt —ry +”34)J

}. (A9

APPENDIX B

In-this appendix, we show that the equal-time distribu-
tion of a free field A4 (x,7n) can be interpreted as a Gauss-
ian random process, in which the creation and annihila-
tion operators of 4(x,n) are regarded as the random-
phase Gaussian probability variables. Qur Monte Carlo
simulations are based on this observation.

For our purpose, we start with a free scalar field
A(x,7n) in g-dimensional flat space, normalized in a box
0=x;,=L (i=1,...,q) with periodic boundary condi-
tions

A(x,n)
+ =

m, = - = ” =
! ¥

(8, Ax, ()

Xexplik, x)+H.c.],
(B1)

where x =(x,... ,my)/L, and

& 8. 1=8, ..
[ A"" km] km'km

We consider a generating functional {17] for the equal-
time correlation functions ™~

Xy b Ky =2 (my,
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Z[j;'q]=<exp f;dqx A(x,n)J(x)D . (B2)

In terms of the mode decomposition (B1), the above ex-
pression reads

Z[j;n]=<exp 3 (@, A, (m)ji, +H.c. ) (B3)
where

1 pL, . .

Jk'":-L’?/z fo dix j(x)exp{—ik,x) . (B4)

On the other hand, using the fact that 4 (x,7) is a free
field, i.e., the action is quadratic in 4 (x,7), Eq. (B2) is
evaluated as i

Z[jim]=exp %foqux dy j(x){ Ax,m) A () Yj(p)
=exp gzukm(n)jkmlz} . (BS)
Then we take a product of Eq. (B5) and unity:
dz, dz}
1= _mm —2 2 , B6
fI’} g exP[ zjlzml } (B6)
where the integration measure dzdz™/mi means

2du dv/w with z=u —iv. If we shift the integration

variables as
Im Iy _%A:m(n).]km d (B7)

Eq. (B5) is rewritten in the form

) dz, dz), R
z(jm=[ 11 T |exp 23 Iz,
Xexp . (B8

>z, A,\.m("/))j,\’."m +c.c.)

Comparison of Egs. (B3) and (B8) shows that all the
equal-time correlation functions are reproduced by the
replacements

akm —Zy

+

a; —zy , (B9
dz, dzh
1 e N A
m m
With the above interpretation, we can regard a

configuration of the field- A (x) as a Gaussian random

YAMAMOTO, NAGASAWA, SASAKI, SUZUKI, AND YOKOYAMA 46

. . i0 .
process. Finally, if we set zm=rmel ™, the probability
measure in Eq. (B9) is rewritten as

e—Zizmiz e—-Zr;l
B * =
——dz,,dz,,"

T

drldf,, . (B10)

Thus the above demonstration shows that 4 (x) has the
random-phase Gaussian distribution.

APPENDIX C

In this appendix, we estimate the two-point correlation
function of A‘U(x) in the 1D model, where the mode
function is given by Eq. (3.8). Like Eq. (2.3} we expand
AM(x,7) as ‘

dk
(2,”.)1/2

AVx,m= [ [a VA (n)explikx)

+a AN expl—ikx)] ,
(o))}

where x and k are one dimensional. Then the two-point
correlation function of 4'"(x,7) is calculated as

1/
<A“'(r)A”’(0)>=—1— ‘”'dkLA,L“lzzcos(kr)
21T l/r'O
:Hi“/ifvlnl costkr) o)
4,”,2 1/rg kl+2/n ’
where ro_l and !n[“ are the infrared and ultraviolet
cutoffs, respectively. Integration by parts of Eq. (C2)
yields
2+2/n /4]
(C2)=——— — B =2ncoskr
472 2 2N
Y Ty _2/”sinkr]
2 1/ry [
’ —2/n
NHiﬁ—E/z - Ll_ L n
- 47;: 2 rg 2
ré i/n rZ 1/n
=afln)| | — - | (C3)
[ n

This is in the same form as Eq. (2.10). The procedure to
find the n-point correlation of B(x) from the two-point
correlation function of A (x) is just the same as in the 3D
case. Thus the n-point correlation function of B(x) has
the same form as that of the full 3D theory.
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