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We study the saturated state of an untapered free-electron laser (FEL) in the Compton regime,
arising after exponential amplification of an initially low level of radiation by an initially monoener-
getic, unbunched electron beam. The saturated state of the FEL is described by oscillations about
an equilibrium state. Using the two invariants of the motion and certain assumptions motivated
by computer simulations, we provide approximate analytic descriptions of the radiation field and
electron distribution in the saturation regime. We first consider a one-dimensional approximation
and later extend our approach to treat an electron beam of finite radial extent. Of note is a result
on the radiated power in the case of an electron beam with a small radius.

PACS number(s): 41.60.Cr, 42.55.—f

I. INTRODUCTION

In this paper we study the saturated state of an unta-
pered free-electron laser (FEL) in the Compton regime.
Guided by the results of simulations starting with a mo-
noenergetic unbunched electron beam and a low initial
level of radiation, we make assumptions which prove to
give an accurate picture of what happens in the satura-
tion regime. The solutions in the saturated regime are
related to the initial conditions by using the two invari-
ants of the motion. We first consider a one-dimensional
approximation, and later extend our approach to treat
an electron beam of finite radial extent, including the ef-
fects of the diffraction of the radiation and the radiation
focusing properties of the electron beam bunched by the
FEL interaction.

The starting point of the analysis is the scaled equa-
tions for the evolution of the one-dimensional electron
distribution and for the monochromatic radiation field.
The notation is that of Bonifacio, Casagrande, and
DeSalvo Souza [1] and the equations are

dO’j _

= = Pi (1.1)
dpj . Ai0; * ,—i0j
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dA —ios )

ar (e7*9) + iAS, (1.3)

where o; and p; are the phase of the jth electron rela-
tive to the radiation and its (scaled) momentum devia-
tion, A is the (scaled) amplitude of the radiation at the
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(scaled) longitudinal position 7 = 2pk,,z, where 2m/k,,
is the wiggler period and p is the Pierce parameter, 6 is
the detuning of the laser, and () is an average over the
electron distribution.

It is easy to show from Eqs. (1.1)—(1.3) that

(ps) + |A]? = C1
and

2

(1.4)

+ 2Im[A(e*7)] — 6|A|? = C; (1.5)
are constants of the motion. For an initially monoener-
getic unbunched electron beam and a low initial level of
radiation, the constants C; and C, are approximated by
zero.

In Fig. 1 we show a typical evolution of the radiation
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FIG. 1. Evolution of radiation field amplitude |A| with 7.
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with 7. The field builds up exponentially as the electrons
bunch. After the bunched electrons are captured in buck-
ets, the radiation oscillates with modest amplitude about
an equilibrium distribution. In Fig. 2 we show the phase
of the radiation as a function of 7. It appears that this
phase is very nearly linear with 7. We shall take advan-
tage of this behavior and recast our equations by writing

A= (P+iQ)e(7=m), (1.6)

where v and 79 are chosen to correspond to the average
slope and intercept in Fig. 2. In fact we will later predict
(Sec. IIIB) the value of v, and it will agree closely with
the value appropriate to Fig. 2.

The saturated state of the FEL is described by oscil-
lations about an equilibrium state [2-5]. This equilib-
rium state corresponds to a steady-state solution of Egs.
(1.1)—(1.3). The proper choice of the equilibrium solution
is significantly restricted [2] by the two invariants of Egs.
(1.4) and (1.5), relating properties of the saturated state
back to the initial conditions at the startup of the FEL.
In Sec. III, we study the properties of the equilibrium
solution. The equilibrium radiation field has the form

A= Py (T, (1.7)

where Py is constant. We introduce the displaced elec-
tron phase ¢;(7) in the equilibrium state

y Eaj+1/('r—'ro)+g, (1.8)
and require v to be chosen such that
(¢) =0. (1.9)

Here the prime stands for d/dr. In the case of zero de-
tuning, § = 0, we find

(sing;) =0, (1.10)
(cos ¢;) = Pg, (1.11)
(#7) = 3F3, (1.12)
v = P2 (1.13)
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FIG. 2. Phase of the radiation field as a function of 7.
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The equilibrium electron distribution has the form

f(¢,¢') = f(H), (1.14)
where
H = ¢'?/2 — 2Py cos ¢. (1.15)
We consider three quite different choices for F(H):
(1) fxkv(H) = Ni6(H — Hp) [Kapchinsky-

Vladimirskiy (KV) distribution(8]],
(2) f-1/2(H) = No(Ho — H)™Y/2,
(3) fB(H) = N3exp(—aH) (Boltzmann distribution).

Surprisingly, we find that in all three cases Py = 0.81, in
good agreement with Fig. 1. Moreover, from computer
simulation results, it appears that the actual electron dis-
tribution arising after the saturation of the initial expo-
nential growth is similar to the Boltzmann distribution.

A simplified model of oscillations about the equilib-
rium state is presented in Sec. IV, based on an ansatz
retaining only a single harmonic:

P(1) = Py + Py cos Qr,
Q(7) = Q1 sinQr,
Bi(7) = o (1) + v(T — 70) + % = ¢;(7) + asinQr.

A more exact treatment is given in Sec. V, using the
Vlasov equation. The coherent frequency €2 is determined
and shown to agree with computer simulation.

The work presented in this paper carries forward that
of Lane and Davidson [2], who used the invariants to con-
strain the equilibrium solutions, relating them to the ini-
tial conditions at startup, and that of O’Neil, Winfrey,
and Malmberg [6] and Mynick and Kaufman [7] in the
treatment of nonlinear beam-plasma interactions. The
equations we use are equivalent to those employed by
Sharp and Yu [4, 5] in their study of the sideband insta-
bility; however, in our case we consider a radiation field
depending on axial coordinate z, but independent of time
t. Sharp and Yu do not use the invariants to restrict the
equilibrium solutions. In this paper we provide explicit
numerical comparisons between our analytical work and
computer simulations, finding good agreement.

The paper is organized as follows. In Sec. II we review
the derivation of the growth rate of the radiation in the
exponential regime. In Sec. III we obtain the differential
equations for P and @ as functions of 7, and discuss the
formulation of the equilibrium distribution in the satu-
ration regime. In Sec. IV we solve these equations for P
and Q as functions of 7 by assuming that the oscillations
about equilibrium are dominated by a first harmonic. In
Sec. V we use the Vlasov equation to explore the co-
herent frequency of small oscillations about equilibrium,
and discuss the stability of these oscillations. In Sec. VI
we utilize numerical simulations to further study the sta-
bility of these oscillations. Theory and simulation both
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show that for the case of interest, the small-amplitude
oscillations are unstable. The moderate-amplitude oscil-
lations observed in the saturated state presumably cor-
respond to saturation of this instability at large enough
amplitude. In Sec. VII we examine the effects of de-
tuning and energy spread. In Sec. VIII we explore the
consequences of using an electron beam with a finite ra-
dial extent. Sec. IX is then a summary of the main
conclusions of this paper.

As a final comment, we note that the practical de-
velopment of FEL devices emphasizes the extraction of
maximum power, which occurs before saturation sets in.
Nevertheless, our analysis of the saturation region may
provide insights into other problems associated with the
nonlinear interaction of a charged-particle beam with its
environment.

II. EXPONENTIAL GROWTH REGIME [9]

We start with a low level of radiation (|4| < 1) and
an approximately uniform distribution in electron phase,
o;. Taking two derivatives of Eq. (1.3) leads to

BA | d?A d?0; do;i\?| _,
-4 s = |==L (= 95 ) | 2.
i T <[dr2 ’(m) ° (21)
Since we are interested only in terms linear in p; and
A here, we drop the quadratic term involving (do;/dr)?
and use Egs. (1.1) and (1.2) to obtain
d3A d?A <
- —i6—— — 1A = 1A% (e” %),
drs gz " iA%(e )
Since the right side of Eq. (2.2) is quadratic in A if
we start with a distribution in electron phase which is

approximately uniform, we obtain the linear equation for
A:

(2.2)

A | _d*A .

_CF; — Z(Sp - ZA =0.
The general solution of Eq.
terms of the form

(2.3)

(2.3) is the sum of three

A=, (2.4)
where the three values of y are the solutions of
pud—6ut+1=0. (2.5)

The exponential-growth solution corresponds to the com-
plex root for p with a negative imaginary part. For zero
detuning (6§ = 0) this is

1 V3
e (2.6)
corresponding to the exponential growth
A~ AgeCE+H)T, (2.7)

For small nonzero detuning (§ < 1), the growth in the
radiation amplitude is approximately
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A~ Aoe’éz(l_%z')"'*'i(%"'%"'%)’. (2.8)
Equation (2.7) [or its generalization in Eq. (2.8) for § #
0] is expected to govern the evolution of Egs. (1.1)—(1.3)
until |A(7)| becomes of order 1, when our assumptions
are no longer appropriate and some form of saturation
will take place.

III. SATURATION REGIME
A. Behavior of the radiation phase

Numerical simulations [10] of Egs. (1.1)—(1.3) starting
with a monoenergetic uniform electron phase distribution
and a low radiation level indicate that the phase of the
complex radiation amplitude A is very nearly linear with
7. A typical result is shown in Fig. 2 for the phase of
the radiation as a function of 7 for a starting radiation
level corresponding to |A| = 0.01. In Fig. 1 we show
the corresponding field amplitude |A| as a function of 7
which clearly exhibits the early exponential growth as
well as the transition to saturation when |A| is of order
1. And in Fig. 3 we show the phase space distribution
of the electrons, which initially were monoenergetic with
a uniform phase distribution, in the saturation regime at
T ~9.

It is clear that the electrons have been bunched during
the buildup of the radiation, and are now oscillating with
fairly large amplitudes. The oscillation of the radiation
shown in Fig. 1 is also of large amplitude (£50%). But
there is a clear indication that some sort of steady state
has been reached in the saturation regime. In fact, simu-
lations show that the steady-state configuration is essen-
tially independent of the initial electron and radiation
configuration, provided we start with an approximately
monoenergetic unbunched electron beam, and a low level
of radiation.

We now rewrite Egs. (1.1)-(1.5) in terms of
P(1),Q(7), and the electron phase §; given by

Bj =oj +v(Tt —70) +7/2. (8.1)
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FIG. 3. Phase-space distribution of the electrons, which
were initially monoenergetic with uniform phase distribution,
in the saturation regime 7 ~ 9.
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In Fig. 4 we show P(7) and Q(7) from the simula-
tion, and in Fig. 5 show the phase-space distribution
in the ﬂ;,ﬁj space at 7 = 10,15, 20,25, 30,35, where
B; = oj +v = pj +v. It is clear that the electrons
have formed a bunch which rotates and oscillates as 7 in-
creases. In Fig. 5, we plot only those electrons which ap-
pear to have been captured in the bucket. Also P(7) ap-
pears to oscillate sinusoidally about an equilibrium value
Py, and Q(7) oscillates about zero (when 79 is chosen
appropriately).

Equations (1.1), (1.2), and (1.3) can now be written as
(11]

/8; = Dj +v,

7 = —2Psin B — 2Q cos 3;, (3.3)
Q' + (v — 8)P = (cos §3;), (3.4)
P' — (v - 6)Q = (sin §;), (3.5)

and the two invariants in Eqs. (1.4) and (1.5) become

B+ P +Q%—v =0, (3.6)
2 2
i%l —v(B;) + 52— — 2P({cos ;)
+2Q(sin B;) — 6(P? + Q?) = C,. (3.7)

Even though we have plotted only those electrons
trapped in the bucket in Fig. 5, we note that all av-
erages must be taken over all electrons, including those
not trapped.

B. Equilibrium distribution [2-5]

As a first approximation, we will assume that the
amplitude of oscillation is small, and we will derive
the properties of the equilibrium distribution, assuming
Cy1 = Cy = 0. Identifying ¢; as the equilibrium electron
phase distribution, and writing P = P, (constant) and
Q = 0, we have

P® , Q@

Scaled Distance 7T

FIG. 4. Evolution of P and Q with 7.

(3.2)

(v = 8)Py = (cos ¢;),

(sin¢;) = 0, (3.9)

and from Egs. (3.6) and (3.7), together with (¢5) =0,
we find

_ p2
V_P07

(3.8)

( ;2) =4Py(cos ¢;) + 26P§ — v/?
=3P — 26P%. (3.10)
For P = Py, Q = 0, we see from Eq. (3.3) that any
function of
H(¢;,8;) = ¢} /2 — 2Py cos ¢ (3.11)

will be a stationary distribution. For the appropriately
normalized KV distribution

frv(95,95) = N6(2Py cos ¢; — ¢;~2/2 — 2Py cos )
(3.12)

corresponding to pendula oscillations with the same max-
imum angle 6y but different phases, we find

(cos¢j) = glf_((rfr:l—)) -1,

where m = sin?(6p/2) and where K (m) and E(m) are the
complete elliptic integrals of the first and second kind.
For the phase space distribution

f-3(¢5,8)) = N( 2Pycosg; — ¢ /2

—2P cos fp) /2 (3.14)
we find
sin 6o
(cos @;) = %
2 :
<¢27 ) =P (811;090 — cos 90> , (8.15)

and for the Boltzmann distribution
F5(6;,8}) = Nexp(—ad /2 + 2aPycos¢;)  (3.16)

we find
_ I1(2aP0)
(cos ¢5) = Io(20Pp)’

(3.17)

Combining Eqgs. (3.8) and (3.10) we have the require-
ments

(cos ¢;) = Po(P§ —6), (3.18)
(#) =3P} — 26F5. (3.19)
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FIG. 5. Phase-space distribution in the
B}, 85 space at T = 10, 15, 20, 25, 30, 35.

Thus the combination of Egs. (3.18) and (3.19) and ei-
ther (3.13), (3.15), or (3.17) determine the value of P,
and 6y (or a) for each distribution.

Let us now consider the case § = 0, in which case we
can write

(#}) = 3Po(cos ;). (3.20)
For the KV beam [8], this requires

2E(m)

Kimy =5~ 5™ (3.21)
which leads to

m =0.433 (KV),

8o = 82.3°, (3.22)

Py =0.813, (H)=—0.218.

For the (Ho — H)~!/? distribution we find tan 6y = —28o,
which leads to

1 2 3
T T T
1 2 3

6o = 105.2° [(Ho — H)~'/?),

P, = 0.807, (3.23)

(H) = —0.212.
For the Boltzmann distribution we require

2aPy = 1.257 (Boltzmann),

Py = 0.809, (3.24)

(H) = —0.214.

Note that, in all cases, we have used (H) = (¢/?)/2 —
2Py(cos ¢;) = —P§/2.

Remarkably, the value of Py is insensitive to the nature
of the distribution. Furthermore, the simulation in Fig.
1 corresponds to an actual value Py = 0.8, in excellent
agreement with the prediction of the three distributions
we have explored. Moreover, from Eq. (3.10), we find
v = P} = 0.66, in good agreement with the result v =
0.70 given in Fig. 2 obtained from the simulation.
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FIG. 6. The three distributions, KV, (Ho — H)/?, and
Boltzmann, plotted as functions of H defined in Eq. (3.11).

We can explore the electron distribution by compar-
ing the results of simulations starting with a low radia-
tion level with the three explicit distributions analyzed
above. In Fig. 6 we show the three distributions as a
function of H defined in Eq. (3.11). In Fig. 7 we show
the electron distributions obtained from the simulation
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for 7 = 10, 20, 30, 40. The background from the electrons
which are not trapped is seen to be more or less indepen-
dent of H, and the distributions of the trapped electrons
seems to most resemble the Boltzmann distribution.

IV. SINGLE HARMONIC MODEL

A. First-order treatment of radiation oscillations

We now explore the oscillations about the equilibrium
by assuming that only a single harmonic of relatively
small amplitude is present. Thus we write

P(r) = Py + P cos Qr, (4.1)
Q(7) = Q1sinQr, (4.2)
B;(r) = ¢;(7) + asinQr, (4.3)

where we have assumed a coherent dipole oscillation of
the electron phase-space distribution. Expanding (sin G;)
to first order in a and using Eq. (3.9), we find

(sin B;(7)) = Ta sin Qr, (4.4)

FIG. 7. Electron distributions obtained
from simulation for 7 = 10, 20, 30, 40 plot-
ted as functions of H.
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where
0.4+
¢ = (cos ¢;). (4.5)

The first harmonic terms in Egs. (3.4) and (3.5) now
lead to

QQ1+ (v—86)P, =0, (4.6)

(v —6)Q1 + QP = —Ca, (4.7)
from which we find

¢(v —6)a P = Qa (4.8)

GTmeor T TE oo

We also average Eq. (3.3) over j and obtain from the
first harmonic

(92 — 2Py%)a = 26Q1. (4.9)
Combining Egs. (4.8) and (4.9), we obtain
(Q2 - 2PT)[Q2 — (v — 6)?] =28%(v — 6)
=28(v — 6)°Py,  (4.10)

where the last form results from using Eq. (3.8). We then
obtain a prediction for €2, the frequency of the oscillations
about the equilibrium in the saturation regime

Q2 =2Pc+ (v—06)2=(PZ-6)@BP¢-6), (411)

where we have used Eq. (3.18) for € = (cos¢;). For
6 = 0, this corresponds to

Q=+3P?>~1.14 (Boltzmann). (4.12)

This prediction is somewhat smaller than the value 2 =
1.25 obtained from the simulation in Fig. 1. A more
accurate determination of the coherent frequency 2 is
given in Sec. V.

Finally, we can also use the first harmonic components
of the two invariants. Not surprisingly, they each repro-
duce Eq. (4.11).

To summarize, we consider equilibrium solutions, and
utilize the two invariants for an initial monoenergetic un-
bunched electron beam and a low initial level of radia-
tion to determine the radiation parameters v, Py, and the
electron phase space averages (cos ¢;) and (4592). We then
consider a first harmonic oscillation of the radiation and
a coherent dipole oscillation of the electron distribution,
from which we determine the oscillation frequency (2, as
well as the relative oscillations amplitudes Py, Q1,a. The
remaining question is to predict the magnitude of the am-
plitude of oscillation which, in fact, is not small.

B. Transition model

An approximate model for the transition to the satu-
ration regime is suggested by the plot of P'(7) vs P(7) in
Fig. 8. It appears that the linear variation, correspond-
ing to the exponential growth regime, is approximately
tangent to the elliptical trajectories which correspond to
the oscillations in the saturation regime. Quantitatively
this requires that the logarithmic growth rate in the lin-

0.2

0.0

dP(t)/dt

-0.24

0.4

T
0.0 0.2 0.4 0.6 0.8 1.0
P(m

FIG. 8. Plot of P'(1) vs P(1).

ear regime, given approximately by Eq. (2.7) for 6§ = 0,
or its equivalent

1dP V3

Pdr = 2°
is equal in the saturation regime to that of the oscillatory
behavior of Eq. (4.1). This leads to the relation

1P _V3_ A
QP 20 ,/poﬁ_pli

which suggests a value P; 2 0.49, about 20% larger than
that seen in the simulation. Also we have from Eq. (4.8),
Q1] = (v/Q)|P1| = 0.28, about 30% larger than that
seen in the simulation. However, the transition region is
undoubtedly more complicated than the simple sudden
change from one behavior to another, and the agreement
is therefore reasonable.

Thus, we confirm the validity of our general picture of
the way in which saturation sets in, although our small
oscillation assumption is only approximately valid. In the
next section, we explore the solutions of Eqs. (1.1)—(1.3)
in the saturation region more rigorously.

(4.13)

(4.14)

V. SMALL OSCILLATIONS ABOUT THE
STATIONARY DISTRIBUTIONS

A. Action-angle variables
We take the stationary-state Hamiltonian to be
B

Hy = - = 2Py cos 3 (5.1)

and introduce the radiation field variable P(7), given by

B(r) = P(r) — Po. (5.2)
Equations (3.2) and (3.3) then become
B" + 2Py sin 8 = —2[Psin § + Q cos 8] (5.3)

For 6§ = 0, Egs. (3.4) and (3.5) lead to
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Q' +vP = (cosB) —vP, (5.4)

and
P —vQ = (sinB), (5.5)

analogous to Eqs. (3.3)—(3.5). The Hamiltonian corre-
sponding to Eq. (5.3) is

H=Hy+V (5.6)
where the perturbation V is given by
V(r) = 2[P(7) cos B — Q(7) sin 3]. (5.7)

The unperturbed stationary system corresponds to the
action-angle variables

- f dB (6, Ho)

Smw( )~ (1= m)K(m)], (5.8)
, _ 2P

=w) = 37 = 3%}’
‘Ho = 4P0m - 2P0, (59)

where m = sin?(8/2), with 6 being the maximum pendu-
lum angle corresponding to a given value of I. Here P, is
considered as a constant, and the stationary phase-space
distribution in the I, space is taken to be

fstationary(ﬂy ﬂ/) = fO(I)

The solutions of the pendulum system can be written
in terms of the Jacobi elliptic functions as

B =2sin"! {\/E sn[(%)K(m)w] } ,
B = +/8Pym cn I:(%) K(m)q/)] .

Using the expansion of the periodic functions sn, cn into
Fourier series [12],

sn (%K(mﬁp) = \/2n_:,rK

(5.10)

(5.11)

(5.12)

f: g"t3 sin(2n + 1)

1— q2n+1 ’
(5.13)

2 2\ g™+ cos(2n + 1)

cn (;K(m)«ﬂ) = Z 1+ g2n+1 J
(5.14)

where

4419
—ex —nK(1—m)
m  21lm?2

=76 [1-!- +—6T+"'], (5.15)

we can write for the harmonic decomposition of the pen-
dulum motion

cosf = i A, (I) cos2ny, (5.16)
n=0

sin8 = i B,.(I)sin(2n + 1)¢, (5.17)
n=0

where A, (I) and B,(I) are related to the coefficients in
Egs. (5.13) and (5.14).

B. Perturbation treatment and dispersion relation
The behavior of the perturbed system is governed by
the Vlasov equation
7] of 42" 0H o f O0H 0 f
ar ' oI 61/) Y E)i

In the Appendix we explore oscillations about the equi-
librium solution by treating f — fo, P(r), and Q(7) as
small quantities. This linearized system has oscillation
modes with frequency €2 given by the dispersion relation

<u - i Sn(Q)) (u - iTn(n)> =02 (5.19)
n=1 n=0

where

=0. (5.18)

(2n)2%wA2 )’ (5.20)

5n(Q) = 2rr/dIfo(I) (@n—)zﬁﬁ

2(4) 2
Th(Q) = 2r / dI fo(z)% ( (253’1“;)2}2 ff;p). (5.21)

Since A, and B,, defined in Egs. (5.16) and (5.17),
are real, stability requires that all solutions for 2 in Eq.
(5.19) be real.

For the normalized é-function (KV) distribution

1
foI) = 5-6(I — Io) (5.22)
corresponding to Eq. (3.12), we have
_d (2n)%wA2
Sn(ﬂ) = UJdHO <(2n)2w2 —Q2 ) (5.23)
. d (2n +1)%2wB?
T = wam, ((Zn +1)2w? — 02 (5.24)

where I = I is given in Eq. (5.8) and where the rela-
tion between Iy, Hp and m is given in Eq. (5.9), with
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P, taken as a constant. Thus d/dHy = (1/4P)d/dm,
and the derivatives in Egs. (5.22) and (5.23) act on
w, Ap(I), Bp(I), where w and I are expressed in terms
of m in Eqs. (5.8) and (5.9).

The exact solutions to Eq. (5.19), with S,(Q) and
To() given by Egs. (5.23) and (5.24) can only be ob-
tained numerically. Moreover, the discussion in Sec. III
and the corresponding simulations show that the elec-
tron bunch will be relatively large, corresponding to a
relatively large value of 6p, the maximum pendulum an-
gle. Nevertheless we can obtain a guide to the location
and stability of the oscillation modes, as well as a useful
starting value for the numerical search for these modes,
by exploring approximate analytic solutions correspond-
ing to the KV distribution for small m = sin%(8,/2).

We start by expanding A, and B, in powers of m.
Specifically we find

16nm™

An = ng =~ 4271.

,n>1, (5.25)

Bn = G2n+1 = 27+ 2, n2> 0. (5.26)

The dispersion equation can then be written more com-
pactly as

v— Y H)v- > H)=0 (5.27)
(p Pe=v?3n) (pP:t;d)
with
w d P*wG}
= - — 0 | ———£ > .

Hp 4Py dm (p2w2 —qz ) P= ! (5.28)

where
/2P,
w(m) = 2K (m)’ (5.29)

Since G?, ~ mP, the dominant term for small m is the
one for p = 1. In this approximation, Eq. (5.27) becomes

v(v — Hy) = Q? (5.30)
with
~ w? aGg? w?
B =) dn - R —ay 8D
and
w(0) = /2F. (5.32)

According to Eq. (5.4), vPy 2 1 for an equilibrium dis-
tribution with small 6y. As a result Egs. (5.30)-(5.32)
lead to

Q0% — 2Py + %)) =0, (5.33)
predicting roots at
Q2 =2P +2, QZ=o0. (5.34)

The root Q4 corresponds to a dipolelike oscillation of

GLUCKSTERN, KRINSKY, AND OKAMOTO 47

both the phase-space density and the radiation. In fact,
this is the small-angle limit of the dipole root in Eq.
(4.11) obtained without a self-consistent calculation. A
more accurate calculation of the root €y requires addi-
tional terms in the expansion near m = 0. Both roots
turn out to be real for small 6y implying stability of the
equilibrium distribution for these modes.

The singular behavior of H, implies the existence of
additional roots of Eq. (5.27) near Q2 = p%w? = 2p?P,.
Inclusion of appropriate terms for small 6y leads to the
conclusion that the root 2; is real but that the roots 2,
p > 2, each have a small imaginary part proportional to
65. These roots appear to be associated with a phase
space distribution where there are p wiggles along the
boundary of the distribution. The growth rate for these
modes is expected to be slow for small §y. These predic-
tions appear to be consistent with the exact numerical
solutions of Eq. (5.27) as well as with several numerical
simulations illustrating the modes. This numerical work
is described in the next section.

VI. NUMERICAL RESULTS

In Figs. 9 and 10 we show the result of a simulation
to check the equilibrium solution for a small pendulum
angle 8y = 3°. Figure 9 shows the corresponding sta-
tionary phase-space distribution and Fig. 10 shows the
equilibrium value of P(7) = Py = 1.00.

In Fig. 11 we explore the oscillation of |A(7)| which
occurs when we start with the phase-space distribution in
Fig. 9, but with P(0)/P, = 0.99. The dipole oscillation
with frequency (2P + v?)'/2 = 1.73 shows clearly, and
appears to be stable. A similar result is shown in Fig. 12
for o = 30° with P(0)/P, = 0.99. But the simulations
for 6y = 55° and 80° shown in Figs. 13 and 14 show an
unstable dipole oscillation.

We then obtained the numerical solution of the dis-
persion equation, Eq. (5.19), and this is displayed in
Fig. 15, where we have only included the dipole term
To. Clearly an instability is predicted for 8y > 50°, con-
sistent with our observations in Figs. 11-14. We then
included several additional terms in Eq. (5.19) and the

L3

> 07

o
204
-40 —
50 0,=3 (deg )
o - 5=0

-80x10 N T T T T T —
-60x10° -40 -20 0 20 40 60
B
FIG. 9. Electron phase-space distribution corresponding

to KV equilibrium solution for small pendulum angle 6y = 3°.
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FIG. 10. Equilibrium value of P(7) = Py for KV equilib-
rium solution with 8y = 3°.
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FIG. 11. Oscillation of |A(7)| about KV equilibrium solu-
tion with 69 = 3°, when simulation started with P(0)/P, =
0.99.
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T 0.972
<
8 0.971
2
£ 0.970~
<
o
5 0.969
53}
0.968 |
T T T 1
0 10 20 30 40
Scaled Distance T
FIG. 12. Oscillation of |A(7)| about KV equilibrium solu-

tion with 8o = 30°, when simulation started with P(0)/Py =
0.99.
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FIG. 13. Oscillation of |A(7)| about KV equilibrium solu-

tion with 6o = 55°, when simulation started with P(0)/Po =
0.99. Oscillation unstable in this case.

results are shown in Fig. 16. The additional modes, near
Q2 = 2p? P, for small 6y, show up clearly for p = 2 and 3,
but it appears that these modes are unstable at all val-
ues of 6. But our starting phase-space distribution does
not contain the “border ripples” corresponding to these
modes and therefore they are not seen in the simulations.
Note also the stable mode with small frequency in Fig.
15, as predicted in Eq. (5.34).

It is interesting to note that the unstable modes in
Figs. 13 and 14 saturate. This is in fact reassuring since
the dipole mode obtained in Sec. IV does not exhibit
unstable behavior. Thus it appears that the instabilities
associated with the roots of Eq. (5.19) are not in conflict
with the observation of saturation of the FEL radiation
with a significant dipole oscillation. From Fig. 14, we
see that the Ref2? = 1.25, in agreement with the start-
up simulation of Fig. 1. The dispersion relation results
presented in Fig. 15 predict that for 8y = 81°,ReQ) =
1.22, in good agreement with the computer simulation.

Finally, we include the prediction of Egs. (3.8), (3.10),
(3.13), and (4.11) for § = 0 to obtain

P,=0.8240
6,=80 (deg), =0
1.0+
€
=<
o 0.8
=l
2
s
E
<
5 0.6
2
i
0.4~
T T T 1
0 50 100 150 200

Scaled Distance Tt

FIG. 14. Oscillation of |A(7)| about KV equilibrium solu-
tion with o = 80°, when simulation started with P(0)/P, =
0.99. Oscillation unstable in this case.
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FIG. 15. Coherent frequency 2 obtained from numerical

solution of the dispersion relation of Eq. (5.19), where only
dipole term Tp has been included. Instability predicted for
6o > 50°, consistent with the results of Figs. 13-16. The
dashed curve represents the coherent frequency found in the
single harmonic model of Sec. IV.

02 — 3P} | (cosd;) = P = 2;((;’)) 1, (1)
4/3
02=3 [2;{5((2)) - 1] . (6.2)

The curve corresponding to Eq. (6.2) is included as a
dashed line in Fig. 15. The result is quite close to the
exact solution for small 6y, and is a suprisingly good ap-
proximation for all 6y.

VII. EFFECT OF DETUNING, ENERGY SPREAD

We return to the treatment in Sec. IV to explore the
effect of an initial detuning and energy spread of the elec-
tron beam. The main change is to include the constant
Cy = €?/2 in Egs. (1.5) and (3.7), where

&% = (p?)]r=o (7.1)

is the initial mean-square (scaled) energy spread. Thus,
for the Boltzmann distribution we find from Egs. (3.7),
(3.8), (3.10), and (3.17)
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FIG. 16. Coherent frequency €2 obtained from numerical
solution of the dispersion relation of Eq. (5.19), including
several additional terms.

() = = = 3P4~ 26PF + &, (7.2)
_ I1(26¥P0) _ 2
(cos¢j) = To(2aBy) — Py (P — 6). (7.3)

The solution of Eq. (7.2) and (7.3) for Py as a function
of 6, for €2 = 0, is shown as the solid curve in Fig. 17.
In addition we show results for simulations with 2 = 0,
which agree reasonably well with the predictions. At this
point we should point out that Egs. (7.2) and (7.3) have
been derived under the assumptions that all electrons
have been captured by the bunch. In fact, only about
80% of the electrons are captured for €2 = 0. If we as-
sume that the 20% which have not been captured are
uniformly distributed in ¢; and have values of p; which
remain small, we estimate that Py would be reduced from
the value predicted by Egs. (7.2) and (7.3) by about 6%
for § = 0, which may be the reason the simulations for
€2 = 0 are mostly below the curve.

The situation is somewhat more ambiguous for €2 =
0.5, where only about 70% of the electrons are captured,
and for €2 = 1.0 where only about 50% of the electrons
are captured. We see clearly from the simulations that P,
decreases as €2 increases. Any analytic treatment would
require some way of predicting the fraction of the elec-
trons which are captured as a function of § and €2, as
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FIG. 17. Solution of Egs. (7.2) and (7.3) for Py as a func-
tion of 8, for €2 = 0, is plotted as solid curve. In addition,
results from simulation are also shown.

well as the way in which Eqgs. (7.2) and (7.3) should be
modified to take into account the untrapped electrons.
This is a subject for future study.

VIII. ELECTRON BEAM WITH FINITE
RADIAL EXTENT

We shall now extend the single harmonic model in-
troduced in Secs. III and IV for the one-dimensional
FEL dynamics to the two-dimensional case of an elec-
tron beam with finite radial extent. We ignore betatron
oscillations, assuming the electron beam has no angular
spread, but include the diffraction of the radiation and
the radiation focusing properties of the electron beam
bunched by the FEL interaction.

A. Equations of motion and invariants

We consider a fixed electron-beam density profile, u(r).
The equations for the electron motion are

G’;- = Pj, (81)

Py = —Ae'% — A¥e™', (8.2)
where the scaled amplitude of the radiation A(r,7) de-
pends on both the scaled longitudinal position 7 = 2pk,, 2
and the scaled transverse coordinates r = /4pk,k.rq,
where k, is the resonant radiation wave number and ry4
is the unscaled transverse coordinate vector. The wave
equation in the case of zero detuning is

A" —iVZA = u(r){et9), (8.3)

where V2 = §2/0r? + 8%/0r2 is the two-dimensional
Laplacian in the scaled transverse coordinates r =
(r1,72), and r = 4/ 7‘1i + rg is the magnitude of the vector
r.
Equations (8.1)—(8.3) have two invariants of the mo-
tion. We can use Eqs. (8.2) and (8.3) to obtain
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u(r)(p;) = —B%(AA*) —iV . (AVA* — A*V4). (84)

Integrating over d?r then leads to the vanishing of the
divergence term, and the first invariant

/ ~ rdrl(p;)u(r) + |47 = Cv. (8.5)

A similar analysis leads to the second invariant
oo
/ rdr((p?)u(r) — 2i(AA™ — A*A") — 2|V APY] = Cy.
0

(8.6)

Comparing these results with the one-dimensional invari-
ants of Eqs. (1.4) and (1.5), we see there is a new term
in the second invariant, |V A|?, and the electron averages
are weighted by the transverse electron beam density.
Each invariant is expressed as an integral over the elec-
tron beam and radiation radial densities.

As in the one-dimensional treatment of saturation, we
extract a phase factor and write

A(r,7) = [P(r,7) 4+ iQ(r, 7)]e™ () (8.7)
and introduce the electron phase §; given by
Bi = o; +v(T —10) +7/2. (8.8)

We asume v is independent of r; hence using Eq. (8.3)
we can write [11]

Q'+ vP — V2P = u(r){cos B;), (8.9)

—P' +vQ — V2Q = —u(r){sin §;). (8.10)
The equation for the electron phase becomes

By = —2Psin g; — 2Q cos §3;, (8.11)

and averaging over the electron longitudinal-phase-space
distribution at each radius, we obtain

(Bj) = —2P(sin ;) — 2Q(cos B;). (8.12)
The first and second invariants are written as

/00 rdr[(B5)u + P24+ Q% =C (8.13)

0
and
/oo rdr[ (B2 u — v?u — 2v(P? + Q%) — 2(VP)?
0
—-2(VQ)? - 4(PQ' — QP')] = C,. (8.14)

The constants C; and C, are taken as zero corresponding
to an initial electron distribution with the correct energy
and no energy spread and a very low initial radiation
amplitude.
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B. Equilibrium solutions

We now consider the description of the equilibrium
state. Let ¢; denote an equilibrium electron phase dis-
tribution, and take P = Po(r) and Q = 0. From Egs.
(8.9) and (8.10) we find

vPy(r) — V2 Py = u(r){(cos ¢;), (8.15)

(sing;) = 0. (8.16)

Utilizing (¢;) = 0 and the first and second invariants of
Egs. (8.13) and (8.14) with Cy = C3 = 0, we obtain

/rdrP(?:V/ rdru,
0 0

oo [e ]
/ rdr(¢})u = / rdr[v?u + 2vP? + 2(V P)?).
0 0

(8.17)

(8.18)

It follows from Eq. (8.11) that for any given r, any func-
tion of

H(¢;, ¢;’3"') = ¢;‘2/2 — 2Py(r) cos ¢

will be a stationary distribution. For example, one could
consider the KV distribution

fiv(95, @}37) = N(r)8] 2Po(r) cos ¢ — ¢12 /2

(8.19)

—2Py(r)cosbp(r)].  (8.20)
In this case
¢(r) = (cos ¢;) = 25((;3) -1,
m = sin® 9"7("), (8.21)
(@) = 4Po(r)[e(r) — co(r)],
co(r) = cosbo(r) =1 —2m. (8.22)

In the discussion which follows, we shall explore the
consequences of the simplifying assumption that 6, is in-
dependent of r, which of course also implies m, €, and cg
are 7 independent. In this case Eq. (8.15) becomes

vPy(r) — V2Py = u(r)g, (8.23)
and the invariants can be expressed in the form
o0
/ rdr Pg
v=Lto (8.24)
/ rdru
0

and

o0
2(c — 200)/ rdrubPy
l/2 = 9] 0 9 (8.25)

/ rdru
0
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where we have used Eq. (8.23) in Eq. (8.18) to derive
Eq. (8.25).

‘We now consider the electron beam density to be given
by

u(r) = {(1) AN (8.26)
In this case the solution of Eq. (8.23) is
¢/v)[1 — zK1(z)] )], r<R
Py(r) = {(c/?%[/y)xz (;ggo(()\(/\gz) ),] : ; R (8.27)

where z = \/VvR. The two invariants of Egs. (8.24) and
(8.25) can be expressed as

;—: = 2z K, (z)I2(x), (8.28)
E(—CZ—:;CQ) = 2:11K1 (.’E)IQ(QI) + 2.’EI1(.’E)K0(:C). (8.29)
From Egs. (8.28) and (8.29), we obtain

c _ IQ(IL‘)Kl (.’L‘)

2~ T L@@ (830

The one-dimensional results of Sec. III are recovered in
the limit £ = /¥R — co. From Eq. (8.27) it is seen that
Py(r) 2 ¢/v = B, (independent of ) inside the electron
beam, and Py(r) = 0 outside the electron beam, except in
a region Ar ~ v~1/2 near the edge r = R. In the  — oo
limit, Eq. (8.28) becomes v® = . Hence, using ¢ = v Py
we find v = P and ¢ = P$, the one-dimensional results.
Also, when z — oo, Eq. (8.30) implies ¢ = 4c¢p which is
the one-dimensional result of Eq. (3.21), so one obtains
the one-dimensional values m = 0.433, 6y = 82.3°, and
Py = 0.813 given in Eq. (3.22) for the KV distribution.

C. Single harmonic model

As in the one-dimensional case discussed in Sec. IV,
we assume that the radiation amplitude oscillates with
a single harmonic about the equilibrium value, but in
this case the equilibrium value as well as the oscillation
amplitude depend on radius. We assume, however, that
the oscillation frequency is independent of radius. Thus
we write

P(r,7) = Po(r) + &(r)e’™ + £*(r)e™*¥ 7, (8.31)

Q(r,7) = (r)e ™ +7*(r)e= T,

where 2 may have a positive imaginary part describing
the damping of the oscillations resulting from the radi-
ation of energy out of the region occupied by the elec-
tron beam. The spirit of Egs. (8.31) and (8.32) is that
&(r) and n(r) are first order, and we neglect second-order
terms. Moreover, we ignore second and higher harmon-
ics.

We make a similar assumption about the electron
phase (3;, writing

(8.32)
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B; = ¢; + a(r)e*V + a*(r)e” VT, (8.33)

where ¢; is the equilibrium phase discussed in Sec.
VIIIB, and a(r) is the first-order amplitude of the co-
herent dipole oscillation mode of the electron beam in
longitudinal phase space. We also employ the approxi-
mations

(cos B;) = (cos ¢;) =7, (8.34)

(sin B;) = Tla(r)e®?” + a*(r)e~ ¥ 7], (8.35)

Using expansions of Egs. (8.31)—(8.35) in the wave
equations (8.9) and (8.10), we find

(V2 = v)&(r) = in(r), (8.36)

(V2 = v)n(r) = —iQ&(r) + cu(r)a(r). (8.37)

Similarly, utilizing the expansions of Egs. (8.31)—(8.35)
in the pendulum Eq. (8.12), we obtain

[Q? — 26Py(r)]a(r) = —2en(r). (8.38)

Now eliminating a(r) in Eq. (8.37) by using Eq. (8.38),
we derive

(V2 — v = 2X(")In(r) = —iQE&(r), (8.39)
where
=2
A(r) = #gl’)o(r)' (8.40)

The coherent oscillation frequency Q and the oscillation
amplitudes £(r) and n(r) are determined from solving the
eigenvalue problem specified by Egs. (8.36) and (8.39).

D. Large electron-beam radius

In order to proceed further, we must now obtain the
eigenvalue Q from the solution of Egs. (8.36) and (8.39).
Since A(r) in Eq. (8.40) depends on 7, even under the as-
sumption that € is independent of r, solution of the eigen-
value problem is difficult. However, results can be ob-
tained in a straightforward manner in the limit R — oo.
We shall examine this limit to see if physically sensible
results are obtained.

When z = /VR in Eq. (8.27) is much larger than
unity, we find that Py(r) = ¢/v = P, (independent of r)
inside the electron beam and Py(r) = 0 outside the elec-
tron beam, except for a region Ar ~ v~1/2 near the edge
r = R. Hence, for £ >> 1 we can make the approximation

A, T<R
Alr) = {0 r>R, (8.41)
where
=2
[
A= Z 2R (8.42)

Furthermore, for large z, Eqs. (8.28) and (8.29) lead to
the one-dimensional results v = P¢, ¢ = P§ with
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m = 0.433, 6y = 82.3°, P, =0.813 (KV)  (8.43)

as given in Eq. (3.22).

We now must solve Egs. (8.36) and (8.39) for constant
X in order to obtain an equation for the frequency £2.
Outside the electron beam we have from Egs. (8.36) and
(8.39) with A(r) =0,

V(¢ +in) =x(Qxv)(Exin), r>R (8.44)
so that
2 = AKy(pr/R) + BH® (qr/R), r>R,  (845)
on = AKo(pr/R) — BH{® (qr/R), r>R,  (8.46)
where

p=vVQ+vR, ¢g=vVQ— VR, (8.47)

and where Héz) has been chosen to correspond to an out-
going wave. Note that there is both a guided and prop-
agating component in Egs. (8.45) and (8.46).

Inside the electron beam, we also have two Bessel func-
tion solutions, which depend in this case on A given in
Eq. (8.42). We write

¢ = Cly(ar/R) + DJo(Br/R), (8.48)

iQn = (a®/R? — v)CIy(ar/R) — (8%/R? 4+ v)DJo(Br/R)

(8.49)

where
?/R? = V2 + A2+ v+ A, (8.50)
B2/R? =/Q2+ A2 —v— A (8.51)

Continuity of &,7n,d¢/dr,dn/dr at r = R leads after con-
siderable algebra to

A~ N A

(@+@) (P +p?) (J-K)({-H)

@ - ka-n P
where

. pKyp) o aHS ()

=kw " T B (8.53)

. ale) . BIB)

=7 7= % (8:54)

In the limit R — oo, it turns out that p,q,a each
approach oo, but 8 remains finite. To confirm this, we
use the limiting values

K—-—p,H——ig,>a asR—>oco  (855)

and neglect 3 compared with p, g, in all terms except
J. In this way we find

J+p  —(a—ig)p?
J +iq (a —p)g?

(8.56)
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or

1, i
=+ 8.57
213 (8.57)

1_ Jo(B) _

J o BILB)

1

1
a

Since a~!,p~1, ¢! approach zero proportionally to R~!,
we see that 8 — sp,, the zeros of Jy(s). In fact, setting
B = s1 + 6, where s1 = 2.405, we find

101
ﬁzsl(1+———+1>_
o

ot (8.58)

Using the one-dimensional values v = P¢,¢ = P§,Q =
V3P, we find A\ = P} [Eq. (8.42)], o® = 4P3R?
[Eq. (8.50)], p* = (V3 + 1)P¢R? [Eq. (8.47)], and
¢*> = (v/3—1)P2R? [Eq. (8.47)]. The terms in o~ ! and
p~! are small compared to unity and can therefore be ig-
nored in Eq. (8.58). However, the term in ¢! introduces
damping arising from electromagnetic energy propagat-
ing out of the region occupied by the electron beam. The
net frequency shift due to the finite, but large, electron-
beam radius is obtained from Egs. (8.50) and (8.51),
writing

2ve?
2 2_pafa2_,2_

B°a* =R (Q e . 2EP0> . (8.59)
Using Eq. (8.58) together with ¢ = P3,v = PZ, Eq.
(8.59) can be rewritten as

02 2 4 302 2i

— — = 1+—). 8.6

92—-2P5‘(Q 3Py) L < +q) (8.60)
Finally we obtain

252 24
Q=V3P: + — (1+—————>, 8.61
® " 3V3R? PoR(v/3 —1)1/2 (8.61)

corresponding to a frequency shift proportional to R~?
and a damping rate proportional to R~3.

E. Small electron-beam radius

Let us now consider the limit z = /vR — 0. The
small argument approximations to the Bessel functions
are

T 1 zL
Il(x)zi , Kl(x)%;—-?,
2
L(z)~ %, Ko(z)~4n(2/z) — 8],
8

where vg = 0.577 is the Euler constant and
L=In(2/z)+ % - &

When z = /VR is much smaller than unity, we see from
Eq. (8.27) that P, is approximately constant within the
electron beam. Specifically, it has the limiting form

ZR2L

Py~
0 2

_ (8.62)
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Using Eq. (8.28), we derive

¢R
v, (8.63)
and from Eq. (8.30), neglecting L~! compared to unity,
Z ~ 2cp. (8.64)

Now employing Egs. (8.21) and (8.22) one obtains
o =T71°, co=0.32, ¢=0.64. (8.65)

We recall [1] that the scaled electric field A is related
to the actual electric field E by

|E|?2 = 4mpnoW|A|?, (8.66)

where ng is the peak density of the electron beam and
W = ymc? is the average electron energy, with ¢ being
the velocity of light. The power in the guided radiation
is

* c
Prag = /0 27rrddrdE|E|2, (8.67)

where the dimensioned radial coordinate 74 is related to
the scaled radial coordinate r via

r = \/4pkyks Tq4. (8.68)

Using Eqgs. (8.66) and (8.68) in Eq. (8.67) leads to

cngW [ 2
rad = ———— 2nrdr Py. .
Prad Tk, Jo 7r dr P (8.69)
From Eq. (8.24), we observe
e *° cR
27r/ rdr P = 27r1// rdru= 7(7rR2) (8.70)
0 0

where Eq. (8.63) has been used. It now follows that

Proa = vpP. ~ %DPE, (8.71)
where P, is the electron-beam power,

P, =I)W/e, (8.72)
I is the electron current,

Iy = en,cmR2, (8.73)

Ry is the dimensioned electron-beam radius related to
the scaled radius by [13, 14]

R? = 4pk,k, R3, (8.74)
and (in mks units)
2Zy K> I]"?
—o,p— | 2620 Rt 8.75
D =2oR [ﬂmc21+K2'y (8.75)

is the scaled current defined in Ref. [10]. Note that D is
independent of the electron-beam radius, and hence so is
B,,q in Eq. (8.71) for the limit R <« 1. From Egs. (8.71),
(8.72), and (8.75) it follows that for small electron-beam
radius
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Prag o I (8.76)

The average energy lost by an electron from startup to
saturation is determined from [1]

Axy;
(o) = <FJ> = —v. (8.77)
Using Egs. (8.63) and (8.77) we find
Avy; _ . C
< ” >— vp R —ZD, (8.78)

consistent with Eq. (8.71). The energy spread at satu-
ration is determined from

2
([ (2] ) om

where the second equality follows from Eqgs. (8.22) and
(8.64). Now using Eqgs. (8.62) and (8.76) we obtain for
Rx1

2, 71/2
< (él _ <ﬂ>) >] ~eDVI. (8.80)
v y

The size of the radiation mode is seen from Eq. (8.27)
to be given by

TEM = —% (8.81)

Introducing the actual size (r4)gMm in dimensioned units,
we observe that

1 2
rém = 4pksku (ra)in = - ~ =, (8.82)
where we used Eq. (8.63). Hence,
(ra)em =~ S (8.83)
VEM T eDkuks '

Note that the size of the radiation beam given in Eq.
(8.83) is independent of the electron-beam radius in the
small electron-beam size limit.

Let us conclude this discussion of the small electron-
beam radius limit with a brief consideration of the dipole
oscillation mode described by Egs. (8.44)—(8.54). In the
limit R — 0, we observe that p, q, o each approach zero,
but # may remain finite. This is true because it turns
out that A, as defined in Eq. (8.42), is negative and
approaches zero slowly, as the reciprocal of a logarithm.
We find

o? ~ vR?, B% ~ 2|)\|R?,
a2 +q2 ~ QRz, a2 —P2 ~ —QR2,

K1 zln§+‘/E,
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T
a0

A'~mni
n2+’yE+ D)

I ~a?/2.

It follows that in the limit R — 0, the dispersion rela-
tion of Eq. (8.52) becomes

1 1 2
= + —_~ = 9
K H J
yielding
. Jo(B)
In )+ 2vyg +im/2 = . 8.84
(pg/4) + 2E +im/ VAT (8.84)

Since the left-hand side of Eq. (8.84) diverges as R — 0,
one solution corresponds to 8 = (3; = 3.83, the first zero
of J1(B). In this case

2¢R?
2 _ 2 _ - 2
B = 2R = p—as = (3.83)°. (8.85)
Using Eq. (8.62) for Py, we find
0% =&R%(L - 2/6%) =2 R*(L — 0.14), (8.86)

where the logarithmic factor L was defined preceding Eq.
(8.62).

Let us now solve Eq. (8.84) more accurately by ex-
panding about 8 = ;. We find

1 (-1 i
ﬁ._ﬂl:EliE_*_?_L—?]’

where L; = In(pg/4) + 2ve. As a consequence it is seen
from Eq. (8.86) that © has a positive imaginary part of
order R/(In R)%/2.

There are other solutions of the dispersion relation,
Eq. (8.52), but we shall not consider them here. To
understand the coherent dipole mode oscillation better,
it seems necessary to compare the analytic results with
simulations.

(8.87)

IX. SUMMARY

Starting with the equations of Bonifacio, Casagrande,
and DeSalvo Souza [1] we explore the behavior of an un-
bunched electron beam interacting with a low amplitude
of radiation. The level of radiation grows exponentially
causing the electrons to bunch. When the bunching sat-
urates, the radiation amplitude starts to perform what
appears to be oscillations in the saturation region. By
making an assumption regarding the phase of the radi-
ation which is suggested by the simulations, we predict
the general features of the electron bunching, average ra-
diation amplitude, and the frequency and magnitude of
the oscillations of the radiation amplitude which are in
good agreement with the results of detailed simulations
of the starting equations.

We consider three quite different equilibrium electron
phase-space distributions, and find the surprising result
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that the equilibrium radiation amplitude Py = 0.81, in-
dependent of the distribution. In addition, from simu-
lations of startup from an initially unbunched electron
beam and a small radiation amplitude, we find that the
saturated state is described by oscillations about a dis-
tribution similar to the Boltzmann distribution. This
observation might provide the starting point for a future
investigation.

In the case of the KV distribution [8], we use the
Vlasov equation to study the stability of the oscillations
about the equilibrium state. For a small bunch (6p small)
the oscillations are stable. However, for a large bunch
(6o = 81°) required by the invariants in the case of start-
up from an unbunched electron beam and a low radiation
amplitude, the coherent dipole oscillation mode is found
to be unstable. We believe that the moderate ampli-
tude oscillations, observed in the simulation from start-
up with an unbunched electron beam and a low radiation
amplitude, correspond to the stabilization of the dipole
mode at large oscillation amplitude. The real part of
the coherent dipole mode frequency is in good agreement
with the oscillation frequency observed in the saturated
state. There are some instabilities in the higher-order
coherent oscillation modes, but these are not seen in the
simulations since they are not stimulated by our starting
conditions.

Finally, we extend the analysis to the two-dimensional
case of an electron beam with finite radial extent. We find
an equilibrium guided solution and oscillations about it.
There are two types of oscillation modes, one guided and
one corresponding to radiation propagating to r = oo.
The escape of radiation from the electron beam leads to a
damping of the oscillations. Explicit results are obtained
in the limits of large and small electron-beam radius.

In saturation, the output power has contributions from
the equilibrium (z-independent) mode and the coherent
dipole oscillation (2-dependent) mode. In the case of
startup from an unbunched electron beam and a low ini-
tial radiation level, the saturated power P,,q4 in the equi-
librium mode is given by [Eq. (8.71)]:

Prad/Pe =vp, (91)

where P, is the power in the electron beam. In general v
can be determined by solving Egs. (8.21), (8.22), (8.28),
and (8.30). In the limits of large and small electron-beam
radius

v =0.70 , Ppa/P. =0.35D/R (R>> 1) (9.2)

and

v =0.32R, Pa/P. =0.16D (R< 1) (9.3)

where D [Eq. (8.75)] depends on the electron-beam cur-
rent, but is independent of the radius, and the scaled
electron-beam radius R is related to the dimensioned ra-
dius Rg4 by Eq. (8.74),

R? = 4pk, k. R3. (9.4)

In the limit of small radius, we find that the equilibrium
mode power P,,q increases with current I according to
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Prog o I3/2, (9.5)

a current dependence intermediate between the incoher-
ent (o) and fully coherent (IZ) limits.

Comparison of the two-dimensional analysis with com-
puter simulations is an interesting subject for future in-
vestigation.
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APPENDIX: DISPERSION RELATION FOR
SMALL OSCILLATIONS

The behavior of small oscillations about the equilib-
rium solution is governed by the Vlasov equation

af , OHOf BHOf _
ar oI oy oy ol

Using the Hamiltonian in Egs. (5.6) and (5.7) and lin-
earizing the distribution function in the form

f(d)aI,T) = fO(I) + fl(wyl;’r)a
we find in the linear approximation

3f1 tw 8fi _ 8V dfo
)k

Using Egs. (5.7), (5.15), and (5.16), we find

3] f1 ofi
+
N

(A1)

(A2)

(A3)

—2P fo(I) i [2nQA,, sin 2ny

n=0

+(2n + 1)RB, cos(2n + 1)¢], (A4)

whose solution is

i, I; 1) = =2P f{(I) Z[ C,, cos 2nv) + D, sin 2ny

n=0
+E, cos(2n + 1)y
+F, sin(2n + 1)4], (A5)
where Eq. (A4) requires that
Cl +2nwD, =0, D! - 2nwC, = 2nPA,, (A6)
E) + (2n+ 1)wF, = (2n + 1)QB,,
—(@2n+1wE, =0. (A7)

We now assume an oscillation mode for P,Q,C,,
Dy, Ey, F, of the form exp(—i€27) and find

2wPA
2”_“’1) =C, = (2n)"wPAn

Q T (2n)2w? — Q2 (A8)
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—(2n + 1w

2n + 1)2wQB
iQ En=Fn—(n JwQBn

T (2n+1)22-Qy° (49)

We must now relate P and Q to the perturbed distri-
bution by using Egs. (5.4) and (5.5). After performing
the integration over ¢, and integrating by parts over I,
we obtain

—iQQ+ [v=)_ S.(Q)| P =0, (A10)
n=0
QP+ |v— ZTn(Q)} Q=0, (A11)
n=0

where
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(A12)

Sa() =2 [ dlfoll) 17 [ (2n)2w 42 ] ,

(2n)2w? — 2

2(4) 2
To(Q) = 27 / dIfO(I)(% [ (2(51;12202 ]_9’;22} . (A13)

Finally, Eqs. (A10) and (Al1l) yield the dispersion rela-
tion for the oscillation modes,

[u - i sn(n)] [u - iTn(Q)} =02, (A14)
n=1 n=0

whose solution determines the modes of oscillation. Since
Ap and By, defined in Egs. (5.16) and (5.17), are real,
stability requires that all solutions for 2 in Eq. (5.19) be
real.
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