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Heavy particle dynamics in liquid Se: Inelastic X-ray scattering
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The dynamic structure factor of liquid Se was measured at 523 K using high-resolution

inelastic X-ray scattering. Anomalous narrowing of the spectrum was observed at 15 nm−1,

where the static structure factor S(Q) exhibits a weak shoulder, but the elastic part of the

dynamic structure factor S(Q,E = 0) exhibited a strong maximum. The second frequency

moment, which is estimated from only the quasi-elastic peak, is consistent with the motion of

rigid six-atom clusters, while a formal agreement with the first-moment sum rule is preserved

by the appearance of a weak intramolecular mode at 30 meV.
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Sum rules for the dynamic structure factor, S(Q,E), where Q and E represent the momen-

tum and energy transfer, respectively, are indispensable for understanding liquid dynamics.1–4)

For example, the normalized second frequency moment of S(Q,E) expressed as

ω2
0(Q) = kBTQ2/(mS(Q)), (1)

where kB , T , and m represent the Boltzmann’s constant, absolute temperature and parti-

cle mass, respectively, predicts that S(Q,E) should be very narrow at the S(Q) maximum

in monatomic simple liquids. In fact, narrowing occurs in many simple liquids including liq-

uid metals with a large first maximum in S(Q). This phenomenon is known as de Gennes-

narrowing.2)

There are other monatomic liquids that exhibit moderate oscillations in S(Q), which

means that the first peak is not very large as compared to that in simple liquids. Liquid (l-)

Se is one such case. Se forms two-fold coordinated polymeric molecules in both crystalline

and liquid states. Crystalline Se, stable at ambient conditions, has a trigonal form wherein

three-fold helical chains are hexagonally arranged.5) The chain molecule has a bond length of

0.237 nm, a bond angle of 103◦, and a dihedral angle of 102◦. The valence configuration of
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Se is 4s24p4 with two of the 4p electrons in bonding states and the other two forming a lone

pair. The exchange repulsion between the adjacent lone pairs in the chain causes these angles

to stabilize at approximately 90◦.

The regular arrangement of chains in the crystal breaks upon melting; however the chain

structure is largely preserved in l-Se as indicated by diffraction measurements.6, 7) Other meta-

stable crystalline states are composed of Se8 ring molecules, including α- and β-monoclinic

Se.5) The similarity between the medium-range correlation in l-Se and the monoclinic crystals

was pointed out6) and it is now accepted that in the liquid state, segments with ring-like and

helical chain-like configurations are randomly distributed along disordered chains. The average

chain length in l-Se was estimated from the viscosity data,8) and varied from approximately

104 atoms at the melting temperature of 490 K to approximately 800 atoms at 650 K.

Several researchers have studied the coherent dynamics of l-Se using inelastic neutron scat-

tering (INS)9–11) and a classical molecular dynamics simulation.12) The vibrational density of

states reported shows maxima at approximately 30 meV and the lower energies correspond-

ing to stretching, bending, and torsional modes in the disordered chain molecules.10) Now we

have measured S(Q,E) of l-Se at 523 K in the Q range from 1.8 to 42.3 nm−1 over ±40 meV,

using high-resolution inelastic X-ray scattering (IXS); anomalous narrowing was observed at

15 nm−1 where S(Q) does not have a maximum but has a weak shoulder. We will show that

the present result is interpreted on the basis of the ω0(Q) sum rule by eq. (1).

This experiment has been conducted at the high-resolution IXS beamline (BL35XU) of

SPring-8 in Japan.13) Backscattering at the Si(11 11 11) reflection was used to provide a beam

of 3 × 109 photons/s in a 0.8-meV bandwidth onto the sample. The energy of the incident

beam and the Bragg angle of the backscattering were 21.747 keV and 89.98◦, respectively. We

used ten spherical analyzer crystals at the end of the 10-m horizontal arm. The spectrometer

resolution depended on the analyzer crystal and was 1.5-1.8 meV at the present experimental

set up. The resolution function was obtained from the measurements of polymethyl methacry-

late (PMMA). The momentum transfer resolution ∆Q was 0.6 for Q lower than 5.5 nm−1,

and 1.0 nm−1 at higher values of Q.

The Se sample of 99.999% purity and 0.04-mm thickness was mounted in a single-crystal

sapphire cell,14) which was contained in a vessel with wide windows made of thin single-

crystalline Si. The vessel was filled with 2 bar of He gas of 99.9999% purity in order to reduce

evaporation of l-Se. The IXS spectra of l-Se were measured at 523 K. Scans performed over

the range from -40 to 40 meV required 3 h, and the total data collection times were 24, 18

and 36 h for the momentum transfers of Q < 5.5 nm−1, 6.7 < Q < 11 nm−1 and Q > 11

nm−1, respectively. The backgrounds were measured at 298 K.

We subtracted the background with absorption correction and normalized the spectra by

the energy integral of I(Q,E) – I(Q). In order to reveal the overall features of S(Q,E) of
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l-Se at 523 K, we plot I(Q,E)/I(Q)×S(Q) on the E-Q plane in Fig. 1. After normalization

of the atomic form factor and polarization factor, the I(Q) value agrees nicely with the value

of S(Q) obtained from the static measurements shown in Fig. 2(a). It is noticed that in Fig.

1, the first peak in the elastic part I(Q,E = 0)/I(Q)×S(Q) is higher than the second one,

while the first peak in S(Q) is lower than the second one, as seen in Fig. 2(a). The first peak

position in the elastic part shifts to 15 nm−1, which is lower than Q1 = 20 nm−1, the first

peak position of S(Q). The present result suggests that S(Q,E) is significantly narrow at 15

nm−1. S(Q,E) obtained from INS11) also has a profile similar to the present result.

To evaluate the narrowing at 15 nm−1, we analyzed the data in the framework of gen-

eralized hydrodynamics.4) Within the generalized Langevin formalism, the classical value of

S(Q,E)/S(Q) can be expressed using a complex memory function M(Q, t). Using the real

(M̃ ′(Q,E)) and imaginary (M̃ ′′(Q,E)) parts of the Fourier-Laplace transform of M(Q, t), we

obtain the expression4)

(
S(Q,E)
S(Q)

)ME

=
π−1ω2

0(Q)M̃ ′(Q,E)
[E2 − ω2

0(Q) + EM̃ ′′(Q,E)]2 + [EM̃ ′(Q,E)]2
. (2)

We used the viscoelastic model and assumed a memory function with a structural relaxation

time τ(Q) because it provided reasonable fits with χ2 per degree of freedom of approximately

1, although including a second structural relaxation process would have slightly improved the

χ2 value. Consequently, the total memory function is expressed as

M(Q, t) = (γ − 1)ω2
0(Q)e−DT Q2t + (ω2

� (Q) − γω2
0(Q))e−t/τ(Q), (3)

where ω�(Q) is the fourth frequency moment and it is related to the sound velocity of an

infinite-frequency limit v∞(Q) = ω�(Q)/Q. DT and γ are the thermal diffusivity and specific

heat ratio, respectively. They were deduced from the thermodynamic data15–17) and their Q

dependence was neglected. The contribution of the thermal relaxation process to the total

memory function was less than 5% in the present analysis. In order to fit the experimental

data using this model function, the above expression was modified to satisfy the detailed

balance condition and convolved with the resolution function. The parameters ω0(Q), ω�(Q),

and τ(Q) were optimized.

We calculated the longitudinal current-current correlation function J(Q,E) =

(E/Q)2 S(Q,E) using the deconvoluted model function and took the peak position as the

energy of the propagating modes ωp(Q), which is related to the effective sound velocity

vp(Q) = ωp(Q)/Q. Figure 2(b) shows E − Q dispersion obtained from the viscoelastic model

function. In the low Q region, ωp(Q) disperses faster than the adiabatic sound velocity of 1040

m s−1,16) following the broken line at approximately 1500 m s−1. v∞(Q) deduced from the

optimized ω�(Q) at low Q is approximately 2000 m s−1, while the isothermal sound velocity

deduced from ω0(Q) was approximately 900 m s−1. As shown in Fig. 2(c), τ(Q) at the lowest
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Q is approximately 2 ps. These results suggest that l-Se lies in the viscoelastic regime even at

the lowest Q.

We found the discrepancy between the optimized value of ω0(Q) and the value calculated

from eq. (1) using S(Q) obtained from a neutron scattering experiment,18) as shown in Fig.

2(b). The first minimum at 15 nm−1 obtained from eq. (1) is shallow. However the optimized

ω0(Q) value has a deep minimum at 15 nm−1 and smaller values than the solid line for Q > 7

nm−1. How can we understand the present discrepancy in ω0(Q)? Near the narrowing region

around 15 nm−1, our data have excellent statistics and, as shown in Fig. 2(a), the integral

of S(Q,E) agrees with S(Q).6, 7, 18) In addition the viscoelastic formula conserves ω0(Q) and

ω�(Q).

We have investigated the origin of the apparent discrepancy between the optimized value

of ω0(Q) and eq. (1). In order to calculate the value of ω0(Q) more precisely from the observed

S(Q,E), we deconvoluted the IXS spectra using the model function consisting of Gaussian

peaks.19) Here, we do not suggest that the number of Gaussian peaks is equivalent to that of

the excitations, but we use the expansion using the error functions to approximate the observed

I(Q,E)/I(Q) values. We determined the number of Gaussian peaks in each spectrum on the

condition that the value of χ2 per degrees of freedom is reasonable. Figure 3 shows the best

fits of I(Q,E)/I(Q) at 15 nm−1 using the viscoelastic and Gaussian model functions. Both

models reproduce the quasi-elastic peak at the center, but the viscoelastic model cannot access

the small peaks at ±30 meV corresponding to the stretching mode. We evaluated ω0(Q) from

the deconvolution using the Gaussian model function and found that it is in better agreement

with that denoted by the solid line in Fig. 2(b).

These results imply that when the quasi-elastic peak is broad, the fraction of the small

peak at 30 meV to ω0(Q) is small, and the viscoelastic and Gaussian models yield similar

results. However, when the quasi-elastic peak becomes anomalously narrow, the small peak

at 30 meV largely contributes to ω0(Q) and the integration removing it yields a much smaller

ω0(Q) value. These facts suggest a rigid molecule. Previously, the molecular mass of l-N2 was

obtained20) by the application of the first frequency moment sum rule for S(Q,E) that did

not include the high-energy region in which the stretching mode existed.21) Similarly, for Se,

we calculate the Q dependence of m using eq. (1) and estimate the effective mass meff (Q)

from the comparison of the ω0(Q) value optimized from the viscoelastic model with the solid

curve shown in Fig. 2(b). Figure 4 shows that the meff (Q), which is denoted by solid circles, is

approximately six atoms at 15 nm−1 where anomalous narrowing occurs. The large meff (Q)

value is located just around 15 nm−1, while in the other Q region, the meff (Q) obtained from

the viscoelastic model is less than two. Meanwhile, meff (Q) calculated using ω0(Q), including

the excitation at 30 meV, shows less anomaly at 15 nm−1.

We consider the physical origin of the large meff (Q) at 15 nm−1 in l-Se obtained from the
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viscoelastic model. It is noteworthy that a small shoulder exists in S(Q) at 15 nm−1, as seen

in Fig. 2(a). For S(Q) of molecular liquids, the oscillations expressing interatomic correlation

are well reproduced using the function sin(Qd)/(Qd), where d is the interatomic distance.22)

Because the function has the first maximum at Qd = 2.5π, we estimate d = 0.52 nm at

15 nm−1. The covalent bond length of l-Se is approximately 0.235 nm. The second-neighbor

distance within a chain is approximately 0.37 nm, and the clear second peak in the radial

distribution function in l-Se indicates that the bond angle is maintained at approximately

100◦.6, 7) Likewise, a valence force field model12) suggests that the bond and dihedral angles

are distributed around the crystalline values in l-Se to minimize the rotational potentials.

The distance of 0.52 nm is approximately equal to the fourth-neighbor distance in both chain

and ring molecules. The fourth neighbor is crucial to distinguish between helical-chain and

ring-molecule configurations because atoms from the first to the third neighbors are arranged

in similar configurations on the same plane in both these molecules. Thus, the position of

the fourth neighbor determines the configuration of a segment in the disordered chain: helical

chain type or ring type. The meff (Q) value of approximately six atoms around 15 nm−1

suggests that chain- and ring-like segments cooperatively move like a rigid molecule under the

propagation of longitudinal waves due to a barrier in the rotational potential. Furthermore,

the broad maximum observed in meff (Q) at around 15 nm−1 indicates that the segments at

a distance smaller than that of the fourth neighbors contributed to the narrowing, too.

We note that a large effective mass in l-Se was reported by Chiba et al.,11) who analyzed

S(Q,E) at high Q (Q > 70 nm−1) using a free-particle approximation to model their INS

spectra. They reported effective masses of 1.7 and 3.5 atoms deduced from the width and

recoil energy, respectively. They pointed out that the large effective mass reveals information

on the character of the covalent bonds around a struck atom. Although this hints conclusions

similar to the results of our experiment, their relatively small effective mass may be attributed

to their measurement points at the high Q, corresponding to a smaller length scale.

In conclusion, we measured S(Q,E) of l-Se using high-resolution IXS and found that the

quasi-elastic peak becomes anomalously narrow at around 15 nm−1 – the location of a small

shoulder in S(Q). The sum rule of ω0(Q) predicts narrowing at Q1 in simple liquids.2) We show

that anomalous narrowing occurs where S(Q) is not very large, indicating the presence of a

rigid cluster with a large effective mass in the polymeric liquid. At large Q values (Q→∞), the

effective mass should certainly be unity because there is no distinction between free particle

motion and the molecular modes. However, at finite Q, the separation of the stretching modes

from the quasi-elastic peak in l-Se allowed us to evaluate the particle mass by the application

of the second frequency moment sum rule and find peculiar dynamics in the covalent liquid.
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Fig. 1. Overall features of I(Q,E)/I(Q)×S(Q) of liquid Se at 523 K
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Fig. 2. (a) Static structure factor S(Q) (solid curve) and the integrated intensity of S(Q,E) (open

triangles) normalized by the square of the atomic form factor and polarization factor. (b) ωp (solid

circles) and ω0 (open triangles) at 523 K obtained from the least-squares fits using the viscoelastic

model. Also shown are ω0 deduced from eq. (1) using S(Q) obtained by neutron scattering (solid

curve) and dispersion with a slope of 1500 m s −1 (broken line). (c) τ (Q) at 523 K.
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Further, S(Q,E)/S(Q) deconvoluted using both these models are shown at the bottom.
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