Measuring Ball Spin by Image Registration

Toru Tamaki Takahiko Sugino Masanobu Yamamoto

Background

Many factors in sports : score, time, weight, etc.

- considering condition
- measuring speed
- analysing player's motion
- understanding ball spin

usefull for training, improving skill

Spin of table tennis

Spin of table tennis

 In 2000, ball diameter was changed from 38mm to 40mm to reduce spin and ball speel for making a game more entertaining

2003/2/2

Registration of known shape object

3D motion estimation with two successive images of a close-up marked ball

difference

Estimating spin (motion parameters) that minimize the difference between two images by IMAGE REGISTRATION

Assumption : the ball is a sphere (known shape)

Modeling transformations

Estimating parameters

minimize the sum of square of residuals:

solved by the Gauss-Newton method: to find the parameter $\theta = (Q, S)$

Estimating parameters

minimize the sum of square of residuals:

Using depth buffer

Transformation from p_{1i} to p_{2i} requires depth $Z_1 Z_2$:

3D CG sphere

real image

manaul fitting

 Z_1 is given by depth buffer, then Z_2 is computed

Visible test

Find the area for sum of residuals: where visible in both I_1 and I_2 .

invisible area

first frame I_1

second frame I_2

surface normal at
$$\boldsymbol{p}_{2i}$$
 at \boldsymbol{I}_{2} :
 $\boldsymbol{N}_{i} = \frac{\partial \boldsymbol{P}_{2i}}{\partial x} \times \frac{\partial \boldsymbol{P}_{2i}}{\partial y}$

angle between N_i and viewing direction : $\phi_i = \cos^{-1} \left(\frac{|N_i \cdot P_{2i}|}{|N_i||P_{2i}|} \right)$

least square summation:

$$\sum_{i} r_{i} (\boldsymbol{p}_{1i})^{2} \text{ where } |\boldsymbol{\phi}_{i}| > \frac{\pi}{2}$$

Visible test

Find the area for sum of residuals: where visible in both I_1 and I_2 .

invisible area

first frame I_1

second frame I_2

least square summation:

 $\sum r_i (\boldsymbol{p}_{1i})^2$ where $|\boldsymbol{\phi}_i| > \frac{\pi}{2}$

Visible test

Find the area for sum of residuals: where visible in both I_1 and I_2 .

invisible area

first frame I_1

second frame I_2

least square summation:

 $\sum r_i (\boldsymbol{p}_{1i})^2$ where $|\boldsymbol{\phi}_i| > \frac{\pi}{2}$

Overview of registration

Experiments

256×192

camera: Nikon COOLPIX5700

environment :

- table tennis ball (R=40mm) with ramdom marks at about 1.0 m distane away from the camera
- slightly rotated, moved away from the camera

Convergence of estimation

Convergence of estimation

 I_2

Convergence of estimation

More improved estimation

Experimental result

 $w_{y} = 20.7$

 $w_{z} = 8.1$

 $w_{x} = 0.3$

0 iterations

5 iterations

2 iterations

61 iterations

	Q [deg]			T [mm]			<i>S</i> [mm]		
	ω	ω	ω_{Z}	T_{x}	T_{y}	T_{z}	S_{x}	S _y	S _z
init ial	0.0	0.0	0.0	-9.0	30.0	399.0	-9.0	30.0	399.0
estimated	0.3	-20.7	-8.1	-9.6	29.9	398.2	-10.1	29.5	401.2
(motion)		· · · ·					_0 49	-U 20	ר ר ד
								(R = I)

Real Rally of table tennis

Rally images of player A

<u>image sequence of table tennis rally</u> <u>taken by a high speed camera (MotionMeter 500)</u> frame rate: 1/500 [s] shutter speed: 1/10000 [s] resolution : 292x110 [pixel]

Rally images of player B

<u>image sequence of table tennis rally</u> <u>taken by a high speed camera (MotionMeter 500)</u> frame rate: 1/500 [s] shutter speed: 1/10000 [s] resolution : 292x110 [pixel]

Rally images of player B

<u>image sequence of table tennis rally</u> <u>taken by a high speed camera (MotionMeter 500)</u> frame rate: 1/500 [s] shutter speed: 1/10000 [s] resolution : 292x110 [pixel]

Spins of two players

Conclusions

- Proposed a method for measuring spin of table tennis ball by image registration with a known shape CG model
- Experimental results : two real images and real rally sequences. Not yet quantitative evaluation.
- DISADVANTAGE :
 - 1. focal lenghth should be known in advance
 - 2. simple shape for modeling object shape