Measuring Ball Spin by Image Registration

Toru Tamaki Takahiko Sugino Masanobu Yamamoto

Background

Many factors in sports : score, time, weight, etc.

- considering condition
- measuring speed
- analysing player's motion
- understanding ball spin
usefull for training, improving skill 任ll

Spin of table tennis

- Football (free kick) 300-600rpm
- Baseball (curve) -1800rpm
- Golf 4000-10000rpm
- Tabel tennis -10000 rpm

Spin of table tennis

- Football (free kick) 300-600rpm
- Baseball (curve) -1800rpm
- Golf 4000-10000rpm
- Tabel tennis -10000 rpm up to 8094 rpm for Chinese national team (Qun, 92)

- In 2000, ball diameter was changed from 38 mm to 40 mm to reduce spin and ball speel for making a game more entertaining

Registration of known shape object

3D motion estimation with two successive images of a close-up marked ball

Estimating spin (motion parameters) that minimize the difference between two images by IMAGE REGISTRATION

Assumption : the ball is a sphere (known shape)

Modeling transformations

Q, S : unknown parameters
R, \boldsymbol{T} : given parameters

$$
\begin{aligned}
\boldsymbol{P}_{2} & =Q \boldsymbol{P}_{0}+\boldsymbol{S} \\
& =Q R^{-1}\left(\boldsymbol{P}_{1}-\boldsymbol{T}\right)+\boldsymbol{S}
\end{aligned}
$$

Estimating parameters

 minimize the sum of square of residuals:$$
\min _{\theta} \sum_{i} r_{i}\left(\boldsymbol{p}_{1 \mathrm{i}}\right)^{2} \quad r_{i}\left(\boldsymbol{p}_{1 \mathrm{i}}\right)=I_{1}\left(\boldsymbol{p}_{1 \mathrm{i}}\right)-I_{2}\left(\boldsymbol{p}_{2 \mathrm{i}}\right)
$$

solved by the Gauss-Newton method: to find the parameter $\quad \theta=(Q, \boldsymbol{S})$

Estimating parameters

 minimize the sum of square of residuals:$$
\min _{\theta} \sum_{i} r_{i}\left(\boldsymbol{p}_{1 \mathrm{i}}\right)^{2} \quad r_{i}\left(\boldsymbol{p}_{1 \mathrm{i}}\right)=I_{1}\left(\boldsymbol{p}_{1 \mathrm{i}}\right)-I_{2}\left(\boldsymbol{p}_{2 \mathrm{i}}\right)
$$

Using depth buffer

Transformation from $\boldsymbol{p}_{1 i}$ to $\boldsymbol{p}_{2 i}$ requires depth $Z_{1} Z_{2}$:

3D CG sphere

real image
manaul fitting

Visible test

Find the area for sum of residuals: where visible in both I_{1} and I_{2}.
invisible area

first frame I_{1}

second frame I_{2}
surface normal at $\boldsymbol{p}_{2 i}$ at I_{2} :

$$
\boldsymbol{N}_{i}=\frac{\partial \boldsymbol{P}_{2 \mathrm{i}}}{\partial x} \times \frac{\partial \boldsymbol{P}_{2 \mathrm{i}}}{\partial y}
$$

angle between \boldsymbol{N}_{i} and
viewing direction :

$$
\phi_{i}=\cos ^{-1}\left(\frac{\left|\boldsymbol{N}_{i} \cdot \boldsymbol{P}_{2 \mathrm{i}}\right|}{\left|\boldsymbol{N}_{i}\right|\left|\boldsymbol{P}_{2 \mathrm{i}}\right|}\right)
$$

least square summation:

$$
\sum_{i} r_{i}\left(\boldsymbol{p}_{1 \mathrm{i}}\right)^{2} \text { where }\left|\phi_{i}\right|>\frac{\pi}{2}
$$

Visible test

Find the area for sum of residuals: where visible in both I_{1} and I_{2}.
invisible area

first frame I_{1}

second frame I_{2}
least square summation:

$$
\sum_{i} r_{i}\left(\boldsymbol{p}_{1 \mathrm{i}}\right)^{2} \text { where }\left|\phi_{i}\right|>\frac{\pi}{2}
$$

Visible test

Find the area for sum of residuals: where visible in both I_{1} and I_{2}.

first frame I_{1}

second frame I_{2}

least square summation:

$$
\sum_{i} r_{i}\left(\boldsymbol{p}_{1 \mathrm{i}}\right)^{2} \text { where }\left|\phi_{i}\right|>\frac{\pi}{2}
$$

Overview of registration

Experiments

environment :

- table tennis ball ($\mathrm{R}=40 \mathrm{~mm}$) with ramdom marks at about 1.0 m distane away from the camera
- slightly rotated, moved away from the camera

Convergence of estimation

$$
\boldsymbol{P}_{2}=Q(\boldsymbol{P}-\boldsymbol{T})+\boldsymbol{S}
$$

Convergence of estimation

$$
\boldsymbol{P}_{2}=Q(\boldsymbol{P}-\boldsymbol{T})+\boldsymbol{S}
$$

inital

Convergence of estimation

$$
\boldsymbol{P}_{2}=Q(\boldsymbol{P}-\boldsymbol{T})+\boldsymbol{S}
$$

More improved estimation

Experimental result

5 iterations

$w_{y}=20.7$

61 iterations

	$Q \quad[\mathrm{deg}]$			\boldsymbol{T} [mm]			\boldsymbol{S} [mm]		
	ω_{x}	ω_{y}	ω_{Z}	T_{x}	T_{y}	T_{z}	S_{x}	S_{y}	S_{z}
initial	0.0	0.0	0.0	-9.0	30.0	399.0	-9.0	30.0	399.0
estimated	0.3	-20.7	-8.1	-9.6	29.9	398.2	-10.1	29.5	401.2
(mntinn)							- 40		$\begin{gathered} 2 \cap 7 \\ =I \end{gathered}$

Real Rally of table tennis

Rally images

 of player A

 of player A}

image sequence of table tennis rally taken by a high speed camera (MotionMeter 500) frame rate: $1 / 500$ [s] shutter speed: 1/10000 [s] resolution : 292×110 [pixel]

Rally images of player B

FRAME -001687 TIME -003374

image sequence of table tennis rally taken by a high speed camera (MotionMeter 500) frame rate: $1 / 500$ [s] shutter speed: 1/10000 [s] resolution : 292x110 [pixel]

Rally images

of player B

image sequence of table tennis rally taken by a high speed camera (MotionMeter 500) frame rate: $1 / 500$ [s] shutter speed: 1/10000 [s] resolution : 292×110 [pixel]

Spins of two players

sipn of player A

sipn of player B

Conclusions

- Proposed a method for measuring spin of table tennis ball by image registration with a known shape CG model
- Experimental results : two real images and real rally sequences. Not yet quantitative evaluation.
- DISADVANTAGE :

1. focal lenghth should be known in advance
2. simple shape for modeling object shape
