The Secret of Rotating Object Images

Using Cyclic Permutation for View-based Pose Estimation

The Secret of Rotating Object Images

– Using Cyclic Permutation for View-based Pose Estimation –

Toru Tamaki, Toshiyuki Amano, Kazufumi Kaneda

HIROSHIMA UNIVERSITY

NAIST

HIROSHIMA UNIVERSITY

When an object rotates...

Images are taken.
They make a manifold...?

camera

urns

around!

What are these images?

View-based pose estimation

Learns the relationship between images (input) and parameters (output)

In and Off: 1DOF rotations

in-plane rotation

- about the optical axis of the camera
 - appearance rotates in the image plane

off-the-plane rotation

6/30

 about any axis in 3D
 appearance changes due to the object geometry

In and Off: 1DOF rotations

in-plane rotation

about the optical axis of the camera

appearance rotates in the image plane

Analitical solutions

Eigenimages are obtained by DFT. (Uenohara et al., 1998) (Chang et al., 2000) (Park, 2002) (Jorgan et al., 2003) (Sengel et al., 2005) But, hopeless for extending off-the-plane rotation.

In and Off: 1DOF rotations

Pose estimation

Parametric **Eigenspace** method (Murase et al., 1995) linear regression (Okatani et al., 2000) (Amano et al., 2007) kernel methods (Melzer et al., 2003) (Ando et al., 2005) Manifold learning

off-the-plane rotation

9/30

 about any axis in 3D
 appearance changes due to the object geometry

10/30

In and Off: 1DOF rotations

Questions:

Can we represent these images analytically? and How?

What is *the key* to understand? • in terms of "linear"

off-the-plane rotation

about any axis in 3D
appearance changes due to the object
geometry

The Key: Cyclic Permutation.

The relationship between images:

$$\boldsymbol{x}_{j\!+\!1\,\mathrm{mod}\,n}=\!G\boldsymbol{x}_{j}$$

A matrix *G* transforms an image to another:

$$egin{aligned} oldsymbol{x}_1 &= Goldsymbol{x}_0\ oldsymbol{x}_2 &= Goldsymbol{x}_1\ dots\ oldsymbol{x}_0 &= Goldsymbol{x}_{n-1}\ G^j ext{ transforms }oldsymbol{x}_0 ext{ to }oldsymbol{x}_j ext{ directly}\ oldsymbol{x}_j &= G^joldsymbol{x}_0\ oldsymbol{y}_j &= 0, 1, \end{aligned}$$

Why Cyclic Permutation?

Pose Estimation • Find *j* such that $\boldsymbol{x} = G^{j}\boldsymbol{x}_{0}$ for a given image x**View Generation** Create an image x_i $\boldsymbol{x}_j = G^j \boldsymbol{x}_0$ for given j

 $0 \le j < n$

12/30

 $oldsymbol{x}_j$,

 \boldsymbol{x}_1

 x_0

 $oldsymbol{x}_{n-1}$

 x_2

 $oldsymbol{x}_{n-2}$

Obtaining the matrix $G \dots$

Matrix representation

$$\begin{bmatrix} \boldsymbol{x}_{1} \ \boldsymbol{x}_{2} \dots \boldsymbol{x}_{n-1} \ \boldsymbol{x}_{0} \end{bmatrix} = G \begin{bmatrix} \boldsymbol{x}_{0} \ \boldsymbol{x}_{1} \dots \boldsymbol{x}_{n-2} \ \boldsymbol{x}_{n-1} \end{bmatrix}$$
$$\begin{bmatrix} \begin{bmatrix} \boldsymbol{x}_{1} \ \boldsymbol{x}_{2} \dots \boldsymbol{x}_{n-2} \ \boldsymbol{x}_{n-1} \end{bmatrix} = G \begin{bmatrix} \begin{bmatrix} \boldsymbol{x}_{0} \ \boldsymbol{x}_{1} \dots \boldsymbol{x}_{n-2} \ \boldsymbol{x}_{n-1} \end{bmatrix}$$
$$\begin{bmatrix} \boldsymbol{x}_{1} \ \boldsymbol{x}_{0} \end{bmatrix} = G \begin{bmatrix} \begin{bmatrix} \boldsymbol{x}_{0} \ \boldsymbol{x}_{1} \dots \boldsymbol{x}_{n-2} \ \boldsymbol{x}_{n-1} \end{bmatrix}$$
$$\begin{bmatrix} \boldsymbol{x}_{1} \ \boldsymbol{x}_{1} \dots \boldsymbol{x}_{n-2} \ \boldsymbol{x}_{n-1} \end{bmatrix}$$
$$\begin{bmatrix} \boldsymbol{x}_{1} \ \boldsymbol{x}_{1} \dots \boldsymbol{x}_{n-2} \ \boldsymbol{x}_{n-1} \end{bmatrix}$$
$$\begin{bmatrix} \boldsymbol{x}_{1} \ \boldsymbol{x}_{1} \dots \boldsymbol{x}_{n-2} \ \boldsymbol{x}_{n-1} \end{bmatrix}$$
$$\begin{bmatrix} \boldsymbol{x}_{1} \ \boldsymbol{x}_{1} \dots \boldsymbol{x}_{n-2} \ \boldsymbol{x}_{n-1} \end{bmatrix}$$
$$\begin{bmatrix} \boldsymbol{x}_{1} \ \boldsymbol{x}_{1} \dots \boldsymbol{x}_{n-2} \ \boldsymbol{x}_{n-1} \end{bmatrix}$$
$$\begin{bmatrix} \boldsymbol{x}_{1} \ \boldsymbol{x}_{1} \dots \boldsymbol{x}_{n-2} \ \boldsymbol{x}_{n-1} \end{bmatrix}$$
$$\begin{bmatrix} \boldsymbol{x}_{1} \ \boldsymbol{x}_{1} \dots \boldsymbol{x}_{n-2} \ \boldsymbol{x}_{n-1} \end{bmatrix}$$
$$\begin{bmatrix} \boldsymbol{x}_{1} \ \boldsymbol{x}_{1} \dots \boldsymbol{x}_{n-2} \ \boldsymbol{x}_{n-1} \end{bmatrix}$$
$$\begin{bmatrix} \boldsymbol{x}_{1} \ \boldsymbol{x}_{1} \dots \boldsymbol{x}_{n-2} \ \boldsymbol{x}_{n-1} \end{bmatrix}$$
$$\begin{bmatrix} \boldsymbol{x}_{1} \ \boldsymbol{x}_{1} \dots \boldsymbol{x}_{n-2} \ \boldsymbol{x}_{n-1} \end{bmatrix}$$
$$\begin{bmatrix} \boldsymbol{x}_{1} \ \boldsymbol{x}_{1} \dots \boldsymbol{x}_{n-2} \ \boldsymbol{x}_{n-1} \end{bmatrix}$$
$$\begin{bmatrix} \boldsymbol{x}_{1} \ \boldsymbol{x}_{1} \dots \boldsymbol{x}_{n-2} \ \boldsymbol{x}_{n-1} \end{bmatrix}$$

with Column permutation.

0

1

 \mathcal{M}

0

10

1

0

 $G = X_1 X_0^+ = X_0 M X_0^+$

 $oldsymbol{x}_{n-2}$

 X_0

 \boldsymbol{x}_1

 \boldsymbol{x}_{0}

 $X_1 = X_0 M$

Block diagonalization

Decomposing the matrix G

View generation

Equations for leaning samples

$$\boldsymbol{x}_{j} = G^{j} \boldsymbol{x}_{0} = U_{2} D^{j} U_{1} \boldsymbol{x}_{0}$$
 $j = 0, 1, 2, ..., n-1$

Extend j to arbitrary number

$$\boldsymbol{x}_j = G^j \boldsymbol{x}_0 = U_2 D^j U_1 \boldsymbol{x}_0 \qquad 0 \le j < n$$

Using only finite number of images $x_0, x_1, ..., x_{n-1}$, Generating x_i for any j.

Pose estimation

Equations for leaning samples

$$m{x}_{j} = G^{j} m{x}_{0} = U_{2} D^{j} U_{1} m{x}_{0}$$
 $j = 0, 1, 2, ..., n-1$

Estimating j of arbitrary number

 $\boldsymbol{x} = G^{j}\boldsymbol{x}_{0} = U_{2}D^{j}U_{1}\boldsymbol{x}_{0}$ $U_{1}\boldsymbol{x} = U_{1}U_{2}D^{j}U_{1}\boldsymbol{x}_{0}$ $U_{1}\boldsymbol{x} = D^{j}U_{1}\boldsymbol{x}_{0}$ $\boldsymbol{x}' = D^{j}\boldsymbol{x}'_{0} \leftarrow$

Compare two images projected in the subspace

$$\boldsymbol{x}_{j}' = U_{1}\boldsymbol{x}_{j}$$

 $0 \leq j < n$

An image in the subspace

What's the power of G?

21/30

 $oldsymbol{x}_{j}$,

 x_1

 x_0

 $oldsymbol{x}_{n-1}$

 x_2

 $oldsymbol{x}_{n-2}$

Does G^j really transform \boldsymbol{x}_0 to \boldsymbol{x}_j ?

 $G^j = U_2 D^j U_1$

Can G^j really produce the back from the front?

Reconstruction by DFT basis

Reconstruction by DFT basis

Reconstruction by DFT basis

30/30

Phase shift of DFT basis

Continuous phase shift

This is the power of G!

Does G^j really transform \boldsymbol{x}_0 to \boldsymbol{x}_j ?

 $G^j = U_2 D^j U_1$

Can G^j really produce the back from the front?

32/30

Yes, it does by pixel-wise DFT!

Conclusions

Introduced cyclic permutation to represent images of rotationg object. Applied to view generation and pose estimation. Closely related to DFT in pixel-wise for

generating novel image by $x_j = G^j x_0$.

