Whe Secret of iotating object Images

Using Gyclic Permutation for View-based Pose Estimation

The Key: Cyclic Permutation

The relationship between images

A novel image x is represented as $\boldsymbol{x}=G^{j} \boldsymbol{x}_{0} \quad$ for some j

The matrix G and its decomposition

View Generation

Learn finite samples, Generate many images : $\boldsymbol{x}_{1+0.1 \mathrm{j}}=G^{0.1 j} \boldsymbol{x}_{1}=X_{0} W^{T} D^{0.1 j} W X_{0}^{+} \boldsymbol{x}_{1}$

Pose Estimation

Compare images projected onto the subspace :

$$
\begin{aligned}
\boldsymbol{x} & =G^{j} \boldsymbol{x}_{0} \\
\boldsymbol{x} & =X_{0} W^{T} D^{j} W X_{0}^{+} \boldsymbol{x}_{0} \\
W X_{0}^{+} \boldsymbol{x} & =D^{j} W X_{0}^{+} \boldsymbol{x}_{0} \\
\boldsymbol{x}^{\prime} & =D^{j} \boldsymbol{x}_{0}^{\prime}
\end{aligned}
$$

Find j such that two images in the subspace are close to each other

Target : obj4 in COIL-20

Error :
Max 3.76 [deg]
RMSE $1.23[\mathrm{deg}]$

Estimation error under uniform noise for 20 objects in COIL-20
© Magnitude of uniform noise added

The Secret of Rotating Object Images

- Using Cyclic Permutation
for View-based Pose Estimation -

Toru Tamaki, Toshiyuki Amano, Kazufumi Kaneda

When an object rotates...

View-based pose estimation

Learns the relationship between images (input) and parameters (output)

In and Off: 1DOF rotations

in-plane rotation
about the optical axis of the camera appearance rotates in the image plane

In and Off: 1DOF rotations

in-plane rotation

 about the optical axis of the camera appearance rotates in the image plane

Analitical solutions

Eigenimages are obtained by DFT.
(Uenohara et al., 1998)
(Chang et al., 2000)
(Park, 2002)
(Jorgan et al., 2003)
(Sengel et al., 2005)
But, hopeless for extending off-the-plane rotation.

In and Off: 1DOF rotations

Pose estimation
Parametric
Eigenspace method
(Murase et al., 1995)
linear regression
(Okatani et al., 2000)
(Amano et al., 2007)
kernel methods
(Melzer et al., 2003)
(Ando et al., 2005)
Manifold learning
off-the-plane rotation about any axis in 3D appearance changes due to the object geometry

In and Off: 1DOF rotations

Questions:
Can we represent these images analytically? and How?

What is the key to understand?
in terms of "linear"
off-the-plane rotation about any axis in 3D
appearance changes due to the object geometry

The Key: Cyclic Permutation.

The relationship between images:

$$
\boldsymbol{x}_{j+1 \bmod n}=G \boldsymbol{x}_{j}
$$

A matrix G transforms an image to another:

$$
\begin{gathered}
\boldsymbol{x}_{1}=G \boldsymbol{x}_{0} \\
\boldsymbol{x}_{2}=G \boldsymbol{x}_{1} \\
\vdots \\
\boldsymbol{x}_{0}=G \boldsymbol{x}_{n-1}
\end{gathered}
$$

G^{j} transforms x_{0} to x_{j} directly.

$$
\boldsymbol{x}_{j}=G^{j} \boldsymbol{x}_{0} \quad \underset{j=0,1,2, \ldots, n-1}{ }
$$

Why Cyclic Permutation?

Pose Estimation
Find j such that

$$
\boldsymbol{x}=G^{j} \boldsymbol{x}_{0}
$$

for a given image \boldsymbol{x}
View Generation
Create an image \boldsymbol{x}_{j}

$$
\boldsymbol{x}_{j}=G^{j} \boldsymbol{x}_{0}
$$

for given j

Obtaining the matrix $G \ldots$

Matrix representation

$$
\left[\boldsymbol{x}_{1} \boldsymbol{x}_{2} \ldots \boldsymbol{x}_{n-1} \boldsymbol{x}_{0}\right]=G\left[\boldsymbol{x}_{0} \boldsymbol{x}_{1} \ldots \boldsymbol{x}_{n-2} \boldsymbol{x}_{n-1}\right]
$$

$$
X_{1}=G X_{0} \quad \underset{\text { Using pseudoinverse }}{\square} G=X_{1} X_{0}^{+}
$$

with Column permutation.

But,

Does really G transform \boldsymbol{x}_{0} to \boldsymbol{x}_{1} ?

$$
G=X_{0} M X_{0}^{+}
$$

$$
X_{1} \Longleftarrow X_{0}
$$

Yes, it does!

Block diagonalization

$$
\begin{gathered}
G=X_{0} M X_{0}^{+}=X_{0}\left[\begin{array}{cccccc}
0 & & & & & 1 \\
1 & 0 & & & & \\
& 1 & 0 & \ddots & & \\
& & \ddots & \ddots & & \\
& & & 1 & 1 & 0
\end{array}\right] X_{0}^{+} \\
\\
\\
\\
\\
\\
\\
\end{gathered}
$$

Decomposing the matrix G

$$
\left.\begin{array}{rl}
G & =X_{0} W^{T}\left[\begin{array}{cccc}
1 & & & \\
& A_{1} & & \\
& & A_{2} & \\
& & & \ddots
\end{array}\right] W X_{0}^{+} \\
& D
\end{array}\right]
$$

$$
G^{j}=U_{2}
$$

D^{j}
U_{1}

View generation

Equations for leaning samples

$$
\boldsymbol{x}_{j}=G^{j} \boldsymbol{x}_{0}=U_{2} D^{j} U_{1} \boldsymbol{x}_{0} \quad j=0,1,2, \ldots, n-1
$$

Extend j to arbitrary number

$$
\boldsymbol{x}_{j}=G^{j} \boldsymbol{x}_{0}=U_{2} D^{j} U_{1} \boldsymbol{x}_{0}
$$

Using only finite number of images $\boldsymbol{x}_{0}, \boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{n-1}$,
Generating \boldsymbol{x}_{j} for any j.

Pose estimation

Equations for leaning samples

$$
\boldsymbol{x}_{j}=G^{j} \boldsymbol{x}_{0}=U_{2} D^{j} U_{1} \boldsymbol{x}_{0} \quad j=0,1,2, \ldots, n-1
$$

Estimating j of arbitrary number

\[

\]

What's the power of G ?

Does G^{j} really transform \boldsymbol{x}_{0} to \boldsymbol{x}_{j} ?

$$
G^{j}=U_{2} D^{j} U_{1}
$$

Can G^{j} really produce the back from the front?

Pixel-wise DFT

$G=X_{0} W^{T}\left[\begin{array}{cccc}1 & & & \\ & A_{1} & & \\ & & & \\ & & A_{2} & \\ & & & \ddots\end{array}\right]$ W X_{0}^{+}

DFT
$X_{0} \quad W^{T}$
coefficients

Reconstiruction by DFT basis

Reconstiruction by DFT basis

$$
j=0
$$

Reconstiruction by DFT basis

$$
j=0
$$

$$
\boldsymbol{x}_{0}=G^{0} \boldsymbol{x}_{0}
$$

Phase shift of DFT basis

Continuous phase shift

This is the power of G !

Does G^{j} really transform \boldsymbol{x}_{0} to \boldsymbol{x}_{j} ?

$$
G^{j}=U_{2} D^{j} U_{1}
$$

Can G^{j} really produce the back from the front?

Yes, it does by pixel-wise DFT!

Conclusions

Introduced cyclic permutation to represent images of rotationg object.
Applied to view generation and pose estimation.
Closely related to DFT in pixel-wise for generating novel image by $\boldsymbol{x}_{j}=G^{j} \boldsymbol{x}_{0}$.

