ズーミング法による船体構造解析の 精度向上に関する研究

(研究課題番号 11650947)

平成11年度~平成12年度

科学研究費補助金(基盤研究(C)(2)) 研究成果報告書

平成13年3月

研究代表者 北村 充

(広島大学工学部教授)

はしがき

船舶に代表される大型構造物の数値解析は有限要素法により行われているが,解の精度は分 割メッシュの細かさに依存する.しかし,大規模な分割メッシュを用いた有限要素解析は大量な 計算時間を必要とするため,実際的ではない.このような問題点を解決するために,ズーミン グ手法が利用されている.ズーミング解析には,ズーミング境界に境界力を与える方法と変位 を与えるがあるが,処理の容易さから,境界変位を与える方法が一般的に用いられる.本研究 では,境界力を与えることによるズーミング解析の精度向上を検討した.ここで最も重要なこ とは,ズーミング境界に与える境界力の算出である.有限要素解析において,要素内部の応力 値は精度よく求めることができるが,要素境界における応力値の精度は低い.この問題を解決 するために,SPR法を用いることを検討した.

第一年度(平成11年度)は,平面応力要素と板曲げ要素を中心として,SPR法を利用した ズーミング解析の検討を行った.SPR法の精度は応力評価点の位置と数,近似関数に大きく依 存することを調査・検討し,四角形双一次要素を用いた有限要素解析においては,2X2のガウ ス積分点を応力評価点とし,完全二次多項式をSPR法の近似関数として選択することにより, 高い精度を有する応力の近似関数を求めることが可能になった.

第二年度(平成12年度)はSPR法により求められた境界力を与えたズーミング解析を船体 構造に適用した.ズーミング境界を挟む要素群からなるパッチ領域を選定し,その領域上に存 在する各要素の応力分布を基にして,SPR法により,連続な応力の近似関数を導いた.ズーミ ング境界上において,この修正応力と基の有限要素解を比較することにより,与える境界力に 含まれる誤差の程度が判断できる.高い精度を有する応力型ズーミング解析を実行するために は、ズーミング解析に与える境界条件は多大な誤差を含んではいけない.求められた誤差量に 基づいて,ズーミング境界を選定することを提案した.SPR法により求められた応力値より境 界力を算出し,境界条件としてズーミング境界に与えた.これにより,高い精度を有する応力 型ズーミング解析が可能になった.要素数4万程度のバルクキャリア初期解析モデルの解析結 果を基にして,高応力部を有する領域を含んだズーミング解析をおこなった結果,提案した応 力型ズーミング将析は,従来から用いられている変位型ズーミング解析の2倍程度の精度を有 することが示された.

斫究組織

研究代表者:北村 充 (広島大学工学部教授) 研究分担者:信川 寿 (広島大学工学部教授,平成12年3月31日退職) 研究分担者:小林真二 (広島大学工学部助手)

研究経費

平成11年度	1,600千円
平成12年度	1,100千円
計	2,700千円

• : .

目 次

٠

•

•		
第1章	緒言	1
第2章	ズーミング解析法 (zooming method)	2
2.1	ズーミング解析の手法	2
2.2	ズーミング解析の問題点	3
2.3	ズーミング解析の留意点	3
第3章	SPR法を用いた応力推定方法	5
3.1	SPR 法利用の背景	5
3.2	SPR 法	6
	3.2.1 応力推定式	6
	3.2.2 最小二乗法の導入	7
3.3	境界条件	8
	3.3.1 分布荷重	8
	3.3.2 拘束条件	9
第4章	数值解析	10
4.1	初期解析	11
4.2	参考解	13
4.3	ズーミング解析	15
	4.3.1 ズーミング領域	15
	4.3.2 ズーミング境界上の応力	18
	4.3.3 SPR法による算出したズーミング境界上の応力の評価	20
	4.3.4 ズーミング解析結果	22
第5章	結言	41

• 、

•

参考文献

••

60

.

• 、

43

ii

第1章 緒言

. .

船舶や自動車などの構造解析(有限要素解析)は非常に大規模であるが,このような複雑な 構造物では応力の分布も大きく変化する.計算機資源を考慮すると,要素数や節点数を少な く抑えながら,高い精度を有する解析を行うことが必要になる.このとき構造物全体を一様の 密度でモデル化するケースは稀であり,ある部分を他の部分よりも詳細あるいは精密にモデル 化するケースが多いと考えられる.この場合の詳細あるいは精密なモデル化とは,高応力部の メッシュを逐次細分割したり,骨組み構造の一部を板構造として解析,板構造の一部を3次元解 析,非線形性の強い領域のみを局所的に非線形解析などを意味する.このような場合に用いる ことのできる特殊な解析手法として順応型要素細分割法やズーミング解析法などがあげられ る.

有限要素法を利用するに当たり、モデル化に伴う誤差、離散化に伴う誤差および数値計算に 伴う誤差が生じる.一般に実用設計の有限要素解析では、要素分割を密にするほど計算結果は 真の解に近づくと思われる.しかし、その反面、数値計算に使用される労力は増大する.数ギ ガバイトの主記憶を搭載したワークステーションを用いた構造解析も可能になったが、その分 扱われる構造物も複雑になったり、非線形解析が行われる様になった.結局のところ、解析者が 満足することができる全体解析を行うことはできず、このような問題点を解決するために重要 と思われる部分を取り出して詳細解析を行うズーミング手法が幅広く利用されている.

ズーミング解析は取り出されたズーミング境界上に変位を与えて解析を行う変位法と境界 力を与える応力法がある.応力を与えたズーミング解析においては,要素間で不連続である応 力分布より境界条件を算出しなければならない.この境界力の算出はズーミング解析の精度を 決定する非常に重要なものである.また,同体変位を除去しなければならないという問題も存 在する.一方,変位境界条件の算出は比較的容易であり剛体変位の除去も不要であることより 一般的に変位法が用いられている.

有限要素解に基づいて,複数の要素から成る領域に応力の近似関数を定める手法であるSPR 法 (Superconvergent Patch Recovery-method) が提案されている.本研究では,SPR法を用いるこ とにより高い精度を期待できるズーミング解析を行うための検討をし,その結果を報告する.

第2章 ズーミング解析法(zooming method)

۰.

2.1 ズーミング解析の手法

ズーミング解析とは比較的粗い分割あるいは低次のモデル化(3次元より2次元、2次元より 1次元のモデル化が低次のモデル化である)による構造全体の解析から出発し、その結果から 構造内部の特定領域(通常は高応力発生部)を取り出し、細分割あるいは高次のモデル化を逐 次施してより精度の高い解を求めてゆく解法手法を言う.その手順は、一般的には以下のよう に記述することができる.

(step1)

全体構造を対象に、比較的粗い要素分割あるいは低次のモデル化により大局的な変形および 応力分布を計算し、高応力発生部を見出すとともにズーミング領域の境界上の節点に与える荷 重や拘束条件(境界条件)を求める。低次のモデル化による解析の場合(すなわち、軸対称構 造を軸対称設構造に、あるいは一般3次元体構造を立体薄板構造や立体骨組構造にモデル化す る場合)、そのモデル化で表現不可能な切欠き部、段付部、小部材などは、省略または簡略化 されることになるが、それがズーミング領域の境界条件にあまりおおきな影響を与えないこと を確認しておく必要がある.

(step2)

高応力発生部を中心とした適切な領域を取り出し、より密な分割あるいは高次のモデル化を 行い、step1で得られた境界条件を与えて局部的な変形および応力分布を計算する.

(step3)

さらに必要な場合は、ズーミング領域における解が収束するまでstep2を繰り返す. ズーミン グ領域に対する境界条件の与え方としては次の2種類がある. 第一の方法は節点荷重を与える 方法である. この場合,変位としては相対変位が得られることになる. また,この方法を用いる 場合,step1においてあらかじめズーミング領域を想定して計算し,節点荷重を出力させてお く必要がある. 第二の方法は節点に強制変位を与える方法である. 変位としては,絶対変位が得 られる. なお,通常の有限要素解析では,全節点における変位が出力されているので,計算結果 を見てからズーミング領域を決めることができる. これら2種類の方法を比較すると,応力の

計算精度の点では前者が勝っていると言われているが使いやすさの点では後者が優れている.

2.2 ズーミング解析の問題点

ズーミング解析法を実際に使用する際の問題点として次に示す点が指摘されている.[2]

(a) 最初の全体解析における分割の細かさがどの程度ならば,以後のズーミングの効果が期待 . できるか?

- (b) ズーミング領域の大きさはどの程度が妥当か?
- (c) ズーミングを何段階も行う場合, 誤差は累積しないか?
- (d) 1回のズーミングにおいて、メッシュをどの程度小さくすべきか?

これらの問題点に対し、以下のような数値実験結果が述べられている.

(a) 円孔や切欠きの応力集中問題では, 応力変化が局所的なので, たとえば, 第一段階では, 円 孔を四角形で近似した粗い分割を行っても, その後の計算結果は, 細かい分割で出発した場合 とあまり変わらないが, 他の構造では最初の分割が粗いと, いくらズーミングを行っても解の 精度が上がらない場合もある.

- (b) ズーミング計算では,境界に与える力あるいは変位が,どの程度,実際の値と一致しているかによってズーミングの精度が左右される.
- (c) ズーミングを何段階も行っていくと, 応力値が一般には増加しながら収束していくが, 応力 分布の形や大きさは必ずしも正解と一致しない. 節点力で境界条件を与えると, 途中で真の解 を追い越して, さらに増加していく場合もある.

(d) 実施した計算例の多くの場合は,各ズーミング段階における要素の大きさを,前段階の約 半分としたが,もっと細かくしたらどうかという問題もある.また,ズーミング境界において 節点数を増加させると,境界の応力分布形状の見当がつけにくい構造では,前段階で節点力の 適切な配分が困難な場合がある.そのような場合は,境界上の節点を少なくして,内部を段階 的に細かく分割する方法もあり得る.

2.3 ズーミング解析の留意点

現在でもズーミング計算の誤差に関する理論的な研究は見当たらないようである.したがっ て,代表的な問題に対する数値実験データを集積し,誤差の傾向を把握することが唯一の手段 となるが,数値実験結果は非常に多様なため,一般性のある結論を得ることは困難と考えられている.ズーミング解析を行う場合の留意点として次に示す点が指摘されている.

- (1) 2.1 節に述べられた step2 に対する step1 の,または step3 に対する step2 の要素分割は,ズー ミング境界の変位あるいは応力が精度良く得られるようにする.
- ·(2) ズーミング領域は,着目部から少なくとも板厚分以上離れた位置までとする.
- (3) ズーミングの際の要素分割は,辺長を1step前のそれの1/2程度にする.
- (4) 要素分割は応力集中部に向かって滑らかに密となるように行う.

- (5) ズーミングの際,境界上の節点を増す場合には,節点荷重または,節点の強制変位量を直線または,滑らかな曲線により補間する.
- (6) 境界条件を節点荷重で与える場合, 剛体運動が生じないような拘束条件を追加する必要が ある.
- (7) 応力は節点の相対変位分から計算されるため,桁落ち誤差を生じやすい.したがって,境界 条件を節点荷重で与える場合,入力の精度を上げる必要がある.

第3章 SPR法を用いた応力推定方法

3.1 SPR法利用の背景

応力法においては、ズーミング境界における応力、つまり境界力を、新メッシュの等価節点 荷重に変換して与える.しかし、要素境界において応力は不連続になるためズーミング境界上 に新たに生成された節点だけでなく、既存の節点の応力値もその精度は悪いため、ズーミング により期待される程、解の精度が向上しないことがある.この問題を解決するためには、ズー ミング境界における応力の精度を向上させる必要がある.

• •

FEM 解析において要素間で不連続な応力をある領域内で連続な関数に置き換える手法として SPR法 [5] が提案されている.この手法を用いることによりズーミング境界の応力を精度よ く向上させることが可能となる.

本研究においては、ズーミング境界上の応力算出にSPR法を用いることにより高精度を期 待できるズーミング解析を行うことを目的とした.

3.2 SPR法

3.2.1 応力推定式

•

SPR法とは,有限要素解に基づいて,複数の要素から成る領域(これをパッチ領域と呼ぶ)に 応力の近似関数を定める手法であるが,本研究では隣接する4要素または2要素をパッチ領域 として得られた応力の近似関数を導入し,以下に示す手法によりズーミング領域の境界上の節 点の応力を算出する.またSPR法の基となる応力評価点として2×2のガウス積分点を用いた.

Fig.3.1 に示すように隣接する4要素(2要素)パッチの各1要素に対する2×2のガウス積分点より成る計16点(8点)での応力値を用いて要素内の応力値を推定する方法を考える.

パッチ内の応力分布を表す近似式として式(3.1)に示すx, yの双一次関数を採用する.

$$\sigma(x, y) = \alpha_1 + \alpha_2 x + \alpha_3 y + \alpha_4 x y \tag{3.1}$$

ここで, α₁, α₂, α₃, α₄は未知数であるが, この決定方法として最小二乗法を用いる.

3.2.2 最小二乗法の導入

式 (3.1) にガウス積分点の座標を代入した値を σ₁, σ₂, ... σ₁₆ とする.

$$\sigma_{1}(x_{1}, y_{1}) = \alpha_{1} + \alpha_{2}x_{1} + \alpha_{3}y_{1} + \alpha_{4}x_{1}y_{1}$$

$$\sigma_{2}(x_{2}, y_{2}) = \alpha_{1} + \alpha_{2}x_{2} + \alpha_{3}y_{2} + \alpha_{4}x_{2}y_{2}$$

$$\sigma_{16}(x_{16}, y_{16}) = \alpha_{1} + \alpha_{2}x_{16} + \alpha_{3}y_{16} + \alpha_{4}x_{16}y_{16}$$
(3.2)

有限要素法から求められたガウス積分点における応力をô₁, ô₂, ...ô₁₆と表すと, 最小二乗法より

$$\sum_{k=1}^{16} (\sigma_k - \hat{\sigma}_k)^2 \longrightarrow minimum$$

を得る.上記の最小化を行うこと,つまり

$$\frac{\partial \sum_{k=1}^{16} (\sigma_k - \hat{\sigma}_k)^2}{\partial \alpha_i} = 0 \qquad (i = 1, 2, 3, 4)$$
(3.3)

となる.これは以下のように表現できる.

$$\begin{bmatrix} 16 & \sum_{k=1}^{16} (x_k) & \sum_{k=1}^{16} (y_k) & \sum_{k=1}^{16} (x_k y_k) \\ \sum_{k=1}^{16} (x_k) & \sum_{k=1}^{16} (x_k)^2 & \sum_{k=1}^{16} (x_k y_k) & \sum_{k=1}^{16} (x_k^2 y_k) \\ \sum_{k=1}^{16} (y_k) & \sum_{k=1}^{16} (x_k y_k) & \sum_{k=1}^{16} (y_k^2) & \sum_{k=1}^{16} (x_k y_k^2) \\ \sum_{k=1}^{16} (x_k y_k) & \sum_{k=1}^{16} (x_k^2 y_k) & \sum_{k=1}^{16} (x_k y_k^2) & \sum_{k=1}^{16} (x_k^2 y_k^2) \end{bmatrix} \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \\ \alpha_4 \end{bmatrix} = \begin{bmatrix} \sum_{k=1}^{16} (x_k x_k \sigma_k) \\ \sum_{k=1}^{16} (x_k y_k \sigma_k) \\ \sum_{k=1}^{16} (x_k y_k \sigma_k) \\ \sum_{k=1}^{16} (x_k y_k \sigma_k) \end{bmatrix}$$
(3.4)

式(3.4)を解くことにより未知数 α_1 , α_2 , α_3 , α_4 が決定され,近似関数が求まる.これにより隣接する4要素内の任意な点において応力を評価することがでる.これを基にズーミング境界上の応力を算出する.

3.3 境界条件

3.3.1 分布荷重

Fig.3.2 に示されるように,前節で説明した式(3.1)にズーミング境界上の節点の座標を代入 することにより求まったズーミング境界上の応力値を使用し,式(3.5)によって求められる等価 節点力をズーミング解析領域の境界辺に負荷する(Fig.3.2 参照).

Fig.3.2 分布荷重から等価節点力への変換

ここで、Lはズーミング境界に隣接する要素のズーミング境界上の節点間の長さ、tはズーミン グ境界に隣接する要素の板厚、またs座標系をFig.3.2に示すようにズーミング境界の辺にそっ て設定する.このとき、境界上において応力の近似式を

$$\sigma = \sigma_1 N_1 + \sigma_2 N_2$$

とすると境界上の節点に負荷する等価節点力F1,F2は

.

$$F_{1} = t \int_{0}^{L} \sigma N_{1} ds$$

$$F_{2} = t \int_{0}^{L} \sigma N_{2} ds$$
(3.5)

により算出される.

ここで N1 と N2 は形状関数である.

$$N_1 = 1 - \frac{\ddot{s}}{L} \quad N_2 = \frac{s}{L}$$

3.3.2 拘束条件

応力法によるズーミング解析においては剛体変位を除去する必要がある.その問題を解決す るためにズーミング境界上の全節点に非常に柔らかいバネを導入する.バネ要素の他端を変位 拘束することにより構造物全体に作用する不平衡力を吸収することができる.Fig.3.3に x,y,z 方向の変位をそれぞれ受け持つ非常に柔らかいバネを示す.この様に多数のバネ要素をズーミ ング境界全体に設置することにより,応力集中を避けることができる.

Fig.3.3 バネ要素による拘束

第4章 数值解析

本章では第3章で述べたSPR法により求めた応力値から算出した節点荷重を境界条件として 与える応力法によるズーミング解析を行い,提案する手法の妥当性について検証する.なお, 解析モデル全体を粗いメッシュ分割で解析したものを初期解析とし,ズーミングの解の比較対 象として初期解析の1要素を4つの要素に細分割したメッシュを用いて全体解析を行ったものを 参考解として,精度を検証する.また,ズーミング解析においては,SPRを用いた応力法によ るズーミング解析以外に,境界条件として変位を与えるズーミング解析も行い両者の違いにつ いて検討する.ABSから提供していただいた解析モデルをFig.4.1に示す.これはBulkCarrier か ら3Holdを取り出したモデル(右舷ハーフモデル)である.解析に用いたBulkCarrier モデルの寸 法を表4.1に示す.

表 4.1: 解析に用いた BulkCarrier の寸法

長さ [m]	幅 [m]	高さ [m]
88.35	22.5	26.3

Fig.4.1 BulkCarrier

4.1 初期解析

Fig.4.2に示す初期解析有限要素モデルに対して中央タンクに荷物を積載し,船尾側のバラス トタンクに海水を満載した荷重条件を与えた.解析モデル全体のMises応力分布をFig.4.3に示 す.

中央ホールドを形成する船首側の横隔壁と内底板の接合部付近で高い応力分布が見られた. 最高応力を示した要素は船首側の横隔壁の二重底部に位置し,その値は3130(kgf/cm²)であった.

表 4.2: 初期解析有限要素モデルの概要

要素数	33698
節点数	19456

Fig.4.2 初期解析有限要素モデル

Fig.4.3 初期解析における Mises 応力分布 (全体)

4.2 参考解

Fig.4.4に細かな分割を施した有限要素モデルを示す.この細分割モデルは初期解析モデルの 1要素を4要素に分割したものである.このモデルによる解析結果を参考解として採用しズー ミング解析結果の精度検証に用いる.

Fig.4.5に解析モデル全体の応力分布を示すが,初期解析と比べてMises応力の最高値が3130(kgf/cm²) から 3420(kgf/cm²) と高くなっている.また最高応力値を示した要素も異なっている.

表 4.3: 参考解有限要素モデルの概要

要素数	112532
節点数	83396

Fig.4.4 参考解有限要素モデル

Fig.4.5 参考解における Mises 応力分布 (全体)

4.3 ズーミング解析

4.3.1 ズーミング領域

ズーミング解析を行うに際し、まずはズーミング解析を行う領域を決定する必要がある.こ こでは初期解析において最高応力が示された船首側の横隔壁と内底板の接合部付近を含む領 域をズーミング領域とする.

ズーミング領域が及ぼす解の影響を検討するためにズーミング境界としてFig.4.6 に示すA, B, Cの境界を選定した.A-Cの範囲をズーミング領域1(Fig.4.7参照)とし,A-Bの範囲ズーミ ング領域2(Fig.4.8参照)とした.後で述べるが,境界Aにおいて,応力の変化は小~中程度であ る.一方,境界Bにおいては応力は激しく変化し,境界Cにおいては比較的緩やかに応力は変 化している.領域1における解析を「ズーミング解析1」とし領域2における解析を「ズーミン グ解析2」とする.

前述のズーミング境界における応力の変化の激しさより,ズーミング解析2の精度はズーミング解析1と比較して劣ると考えられる.

Fig.4.6 ズーミング境界

Fig.4.7 ズーミング領域1

Fig.4.8 ズーミング領域2

4.3.2 ズーミング境界上の応力

ズーミング境界を挟む四角形要素の応力の変化率を以下の方法により定義し,各ズーミング 境界における応力(初期解析結果)の変化率を表4.4に示す.

Fig.4.9 ズーミング境界を挟む応力の評価点

ズーミング境界を抉む四角形要素のうちズーミング領域に含まれる要素の要素中心における 応力を stress_{in}[i]とし、ズーミング領域に含まれない要素の要素中心における応力を stress_{out}[i] とし、ズーミング境界を挟む四角形要素の応力の変化率を式(4.1)によって定義する.

応力変化率 =
$$\frac{\sum_{i=1}^{n} |stress_{in}[i] - stress_{out}[i]|}{\sum_{i=1}^{n} |stress_{in}[i]|}$$
 (4.1)

式(4.1)によって求められた v_x, は境界面の法線方向の直応力であり, A, B, C全ての境界において, その変化率は比較的低い. 一方, T_{x'y'} は境界面に作用しているせん断応力であるが, 境 界Bにおいて, 大きく変化している. つまり初期解析の精度はあまり高くないと考えられる. ズーミング解析 1, 2のズーミング境界 A, B, Cにおける o_x, T_{xy} の変化率を表 4.4 に示す.

ズーミング領域1,2に対するズーミング後のメッシュ分割図をFig.4.10, Fig.4.11 に示し,要素数と節点数を表4.5に示す.参考解の要素数,節点数と比較してズーミング解析1において要

表 4.4: ズーミング境界の応力変化率(%)

	A	В	С
σ_x	4.1	5.0	3.8
$ au_{xy}$	22.0	43.7	17.6

.素数,節点数ともに1/5程度,ズーミング解析2において要素数,節点数ともに1/10程度となっている.

	ズーミング解析1	ズーミング解析2
要素数	21342	10230
節点数	15845	7741

表 4.5: ズーミングモデルの概要

•.

1

.

Fig.4.10 ズーミング解析1の有限要素モデル

4.3.3 SPR法による算出したズーミング境界上の応力の評価

ズーミング境界上の節点に対して SPR 法より算出された応力の精度を以下の方法により評価する.

ズーミング境界上の節点に対して参考解の応力を stress_{ref}[i]とし,同一節点における SPR法 より 算出した応力を stress_{SPR}[i]として,SPR法より 算出した応力の誤差を式(4.2)で表わす.式 (4.2)を用いて 算出したズーミング境界 A,B,Cの各境界上の全ての節点における応力の誤差 を表 4.6 に示す.表 4.4 に示された初期解析の応力の変化率からも想像できるように境界 B にお ける SPR 応力の誤差は一番高いものの 6.4% に抑えられている.このように SPR 法を利用する ことにより 求められたズーミング境界の応力は十分な精度を有していると考えられる.

Fig.4.11 ズーミング解析2の有限要素モデル

誤差 =
$$\frac{\sum_{i=1}^{n} |stress_{ref}[i] - stress_{SPR}[i]|}{\sum_{i=1}^{n} |stress_{ref}[i]|}$$
(4.2)

表 4.6: SPR 法により算出された応力の誤差(%)

	Α	В	С
σ_{z}	2.3	2.0	1.3
$ au_{xy}$	2.6	6.4	2.8

また,応力の変化が激しい内底板の37節点に対してSPR法より算出された応力と参考解の応 力の比較をC断面の境界(Fig.4.12)に対してFig.4.14, Fig.4.15に,またB断面の境界(Fig.4.13)に 対してFig.4.16, Fig.4.17に示す.参考解とSPR法の解はよい精度で一致していることがわかる.

Fig.4.12 C 断面の内底板の 37 節点

4.3.4 ズーミング解析結果

前述のSPR法により求められた応力を境界条件として与えたズーミング解析を行った.以下 の方法でズーミング解析の精度を評価する.参考解の要素中心でのMises 応力を Mises_{ref}[i]と し,同一要素におけるズーミング解析の結果によるMises 応力を Mises_{zoom}[i]とすると,ズーミ ング解析による誤差を式(4.3)で表わす.式(4.3)を用いて応力の比較を行なう領域はFig.4.18 に 示す横隔壁と内底板の接合部を中心とする2186 要素とする.ズーミング解析1,2の初期解析 の誤差結果を表4.7 に示す.ただし初期解析はメッシュサイズが異なるので参考解モデルの4要 素の平均と1要素を比較した.

設差 =
$$\frac{\sum_{i=1}^{n} |Mises_{ref}[i] - Mises_{zoom}[i]|}{\sum_{i=1}^{n} |Mises_{ref}[i]|}$$
(4.3)

表4.7 に示されるように,SPR法を利用したズーミング解析の精度は非常によい.初期解析では,この領域において11.3%の誤差を有していたが,SPR法を用いたズーミング解析により誤 差を1.3%まで減少させることができた. 解の精度はズーミング解析1では,変位法の半分程度

Fig.4.13 B断面の内底板の37節点

に誤差を抑えている.さらに変位法では解の精度の低下が目立つズーミング解析2においても SPR応力法は高い精度を有している.

	初期解析	SPR 法	変位法
ズーミング解析1	11.3	1.30	2.23
ズーミング解析2	11.3	1.92	3.36

表 4.7: 初期解析とズーミング解析における誤差(%)

ズーミング解析1のズーミング領域全体における Mises 応力分布図を Fig.4.19 に示す.比較対 象としてズーミング領域1における初期解析の Mises 応力分布図を Fig.4.20 に、参考解における Mises 応力分布図を Fig.4.21 に、また変位法によるズーミング解析の Mises 応力分布図を Fig.4.22 に示す. SPR法を用いたズーミング解析1における最高応力部を含む横隔壁と内底板の接合部 付近の Mises 応力分布図と二重底の Mises 応力分布図を Fig.4.23 に示す. Fig.4.23 と同領域におけ る参考解の Mises 応力分布図を Fig.4.24 に示す. 同領域における変位法によるズーミング解析の Mises 応力分布図を Fig.4.25 に示す.ズーミング解析2のズーミング領域全体における Mises 応力 分布図を Fig.4.26 に示す.比較対象としてズーミング領域2 における初期解析の Mises 応力分布

図をFig.4.27 に、参考解における Mises 応力分布図をFig.4.28 に、また変位法によるズーミング 解析の Mises 応力分布図をFig.4.29 に示す.次にSPR 法を用いたズーミング解析2 における最高 応力部を含む横隔壁と内底板の接合部付近の Mises 応力分布図と二重底の Mises 応力分布図を Fig.4.30 に示す.Fig.4.30 と同領域における参考解の Mises 応力分布図をFig.4.31 に示す.同領域 における変位法によるズーミング解析の Mises 応力分布図をFig.4.32 に示す.

- :

1

Fig.4.18 誤差評価領域

Fig.4.19 ズーミング解析1のSPR法における Mises 応力分布

Fig.4.20 ズーミング領域1における Mises 応力分布1(初期解析)

ズーミング領域1における Mises 応力分布1(参考解) Fig.4.21

ズーミング解析1の変位法における Mises 応力分布 Fig.4.22

Fig.4.23 ズーミング解析1のSPR法における Mises 応力分布 (応力集中部)

Fig.4.24 参考解における Mises 応力分布 (応力集中部)

Fig.4.25 ズーミング解析1の変位法における Mises 応力分布 (応力集中部)

ズーミング解析2のSPR法における Mises 応力分布 Fig.4.26

ズーミング領域2における Mises 応力分布1(初期解析) Fig.4.27

ズーミング領域2における Mises 応力分布1(参考解) Fig.4.28

ズーミング解析2の変位法における Mises 応力分布 Fig.4.29

Fig.4.30 ズーミング解析2のSPR法における Mises 応力分布 (応力集中部)

Fig.4.32 ズーミング解析1の変位法における Mises 応力分布(応力集中部)

第5章 結言

応力法のズーミング解析においては、境界条件算出に用いる応力が要素間で不連続である が、本研究では有限要素解に基づいて、複数の要素から成る領域に応力の近似関数を定める手 法である SPR法 (Superconvergent Patch Recovery-method)を用いることにより高い精度を期待で きるズーミング解析を実際の船体構造のモデルを用いて行った。

...

ズーミング解析においてズーミング境界の選定が解の精度に大きく寄与すると思われるが本 研究においては応力の変化率の異なる2つの領域を選定し、それぞれのズーミング境界の応力 値算出にSPR法を用いた.ズーミング解析1として応力の変化が比較的緩やかな領域を選定し、 ズーミング解析2として応力の変化がズーミング解析1と比較して激しい領域を選定した.最 も応力の変化の激しかったズーミング解析2のB断面における *τxy*(応力変化率43.7%)の6.4%を 除いて全て参考解の同一節点との誤差を3.0%以内に抑えることができた. 高い精度で応力を推定することができたと言える.

また SPR 法により算出した応力を用いてズーミング解析を行った結果,高応力部周辺の要素に対してズーミング解析1において参考解との誤差は SPR 法によるズーミング解析で誤差 1.30%と,初期解析11.3%,変位法によるズーミング解析1.92%と比べて高い精度でズーミング解 析を行うことができた.また最高応力値(Mises 応力)の比較においても参考解 3420(kgf/cm²)に 対して SPR 法によるズーミング解析 3420(kgf/cm²),初期解析 3130(kgf/cm²),変位法によるズー ミング解析 3410(kgf/cm²)と, SPR 法によるズーミングが高精度であることが言える.

次に、より応力の変化の激しい領域をズーミング領域として選定したズーミング解析2にお いても変位法によるズーミング解析では誤差が3.36%、最高応力3360(kgf/cm²)とズーミング解 析1と比べて精度が低下しているのに対し、SPR法によるズーミング解析では誤差1.92%、最 高応力3430(kgf/cm²)とズーミング解析1と比べてもさほど精度の低下は見られず、より応力の 変化の激しい領域においてもSPR法によるズーミング解析が高い精度を有していることがわ かる、

今後,全てのズーミング領域においてパッチ要素を4要素以上取り出せるとは限らず,4要素 以下のパッチ要素から応力を推定する方法を検討することによりさらに高精度のズーミング解 析が期待できる.

•

1

• .

•

第6章 発表論文

2

.

• :

以下の論文により、本研究の内容を公表した.

- M. Kitamura, H. Gu and H. Nobukawa: 'A study of applying the Superconvergent Patch Recovery (SPR) method to large deformation problem', J. Society of Naval Architectures of Japan, 187(2000), pp.201-208.
- H. Gu and M. Kitamura: 'A Modified Recovery Procedure to Improve the Accuracy of Stress at Central Area of Bilinear Quadrilateral Element', J. Society of Naval Architectures of Japan, 188(2000), pp.489-496.

参考文献

1

・[1] 大坪 英臣, 都井 裕: 段階的解析手法に関する調査

[2] 東大,船研,住重:強度評価目的と有限要素法手法の調査

•

[3]O.C. ツィエンキーヴィッツ R.L テイラー共著:マトリックス有限要素法

[4] 日本機械学会: 計算力学ハンドブック

[5]M.Kitamura,H.Gu,H.Nobukawa: 'A study of applying the Superconvergent Patch Recovery method to large deformation problem', J.Society of Naval Architectures of Japan, 187(2000), pp.201-208

[6]O.C.Zienkiewicz, J.Z. Zhu: 'The superconvergence patch recovery and a posteriori erro estimates, part

I: the recovery techniques', Int. J.Numer. Meth. Engng., 33, (1992), pp.1331-1364

•

[7]M.Kitamura,H.Gu,H.Nobukawa: 'A Modified Recovery Procedure to Improve the Accuracy of Stress at Central Area of Bilinear Quadrilateral Element