[JOURNAL NAME HERE] | www.rsc.org/[JOURNAL]

Quantitative estimation of NH_3 partial pressure in H_2 desorbed from the Li-N-H system by Raman spectroscopy[†]

Satoshi Hino,^a Takayuki Ichikawa,^{*^b} Norio Ogita,^a Masayuki Udagawa^a and Hironobu Fujii^b

^a Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8530, Japan.
^b Materials Research Center, N-BARD, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526, Japan.
Fax: +81-82-424-7486; E-mail: tichi@hiroshima-u.ac.jp

Receipt/Acceptance Data [DO NOT ALTER/DELETE THIS TEXT] *Publication data* [DO NOT ALTER/DELETE THIS TEXT] DOI: 10.1039/b000000x [DO NOT ALTER/DELETE THIS TEXT]

The partial pressure of NH_3 gas estimated by Raman spectroscopy indicates that ~0.1% NH_3 is inevitably contaminated in H_2 desorbed from the hydrogen storage material composed of LiH and LiNH₂ at any temperatures up to 400 °C in a closed system.

A solid-state hydrogen storage among the various storage methods¹ is now expected as the safest and most effective way of routinely handling hydrogen, and an ideal solid hydrogen-storage material store minimum 6.5 wt.% and at least 65 g/L of hydrogen, and desorbs hydrogen at 60 - 120 °C.² Since Chen et al. reported that the Li-N-H system was one of the promising novel hydrogen storage materials,³ many scientists have focused on this system, because it possesses quite high potentials on the viewpoint of hydrogen capacity and its reversibility. Especially, we have paid attention to a mixed system of lithium hydride LiH and lithium amide LiNH₂, and have found that hydrogen was stored up to 6.5 wt.% according to the following reaction,⁴

$$LiH+LiNH_2 \leftrightarrow Li_2NH + H_2 \tag{1}$$

Subsequently, we have clarified that the above hydrogen desorbing reaction proceeds with the following two elementary steps⁵;

$$2\text{LiNH}_2 \rightarrow \text{Li}_2\text{NH} + \text{NH}_3$$
, and (2)

$$LiH + NH_3 \rightarrow LiNH_2 + H_2. \tag{3}$$

That is to say, at first, LiNH₂ decomposes into lithium imide Li_2NH and NH_3 with an increasing temperature, and then, the generated NH_3 molecule reacts with LiH and transforms into $LiNH_2$ and H_2 gas. If the reaction completely progress according to the above description (1), we expect that the H_2 gas is only desorbed from the mixture. However, the experimental results^{6,7} indicated that a quite small amount of NH_3 were desorbed with the proceeding reaction. From those results, two possibilities can be considered with respect to the NH_3 emission: One is originated in kinetic properties, where a prompt transfer of the NH_3 molecule between two solid phases, from $LiNH_2$ to LiH, is not completely performed at a finite temperature. Another is originated in thermodynamic properties, where a very low partial pressure of

 NH_3 gas should coexist with the main H_2 gas pressure in an equilibrium condition due to the reaction (2).

To clarify which is realized in two possibilities, the equilibrium partial pressures of NH₃ and H₂ emitted from the mixtures with different ratios of LiH to LiNH2 were simultaneously estimated in a closed system by Raman scattering spectroscopy in this work. The knowledge of the emitted NH₃ partial pressure in the equilibrium condition is quite important for developing the M-N-H system as one of the promising hydrogen storage materials because the contamination with a small amount of NH₃ in desorbed H₂ gas is a serious problem in a practical use for the polymer electrolyte fuel cells (PEFCs). According to Rajalakshmi et al, there was a noticeable decrease in performance of PEFCs with >10 ppm NH₃ concentration, and beyond 20 ppm the poisoning effect was no longer reversible.⁸ A possible mechanism by which NH₃ would affect the PEFCs performance could be its reaction with the protons on the membrane, forming NH₄⁺ and decresing membrane conductivity.9

It is well-known that some analytical methods, such as thermal desorption mass spectroscopy (TDMS), gas chromatography (GC), infrared spectroscopy (IR) and Raman spectroscopy can be used for determining mixed-gaseous components. However, it is difficult to detect a small amount of NH₃ gas simultaneously with hydrogen gas by the GC experiment due to its strong polarity. Also, the H-H stretching mode in hydrogen gas is infrared inactive for the IR analysis. Therefore, the above two methods are not suitable for simultaneous analysis of NH₃ and H₂ components. The TDMS measurement can be performed for qualitative analysis of the mixed-gaseous components. However, it is to be noted that a quantitative analysis is quite difficult because the NH₃ molecule has many fragment ions like N, NH and NH₂ after ionization. Among some analytical methods, the Raman spectroscopy is the most applicable for simultaneous and quantitative analyses of NH₃ and H₂ mixed gaseous components because both the stretching modes of the N-H in NH3 and H-H in H2 are Raman active. In principle, the intensity of Raman-scattered light depends on the densities of scatterers like NH3 and H2 molecules. Therefore, the molecular densities can be regarded to directly give the corresponding partial pressures at low pressure range¹⁰. Thus, we can evaluate their partial pressures from the intensity peak areas for each species in the mixed-gases by the Raman scattering analysis. Indeed, the use of Raman spectroscopy for determining partial pressures of gasses, equilibrium constants, thermodynamic functions and stoichiometric coefficients in gaseous reactions has been established.¹¹ In this study, the Raman spectra were examined

[†] Electronic Supplementary Information (ESI) available: Schematic diagram of the apparatus and desorption mass profile of the mixture of 1:1 mixture of LiH and LiNH₂ with/without TiO₂ as a catalyst. See http://www.rsc.org/suppdata/xx/b0/b000000x/

^{*} tichi@hiroshima-u.ac.jp

This journal © Royal Society of Chemistry

Communication

on the mixed gases of NH_3 and H_2 desorbed from the closed system with the ball milled mixture of LiH and LiNH₂ or 2LiH and LiNH₂, in which the two kinds of gases are emitted with an increasing temperature.

Starting materials, LiH (Sigma-Aldrich Co.) and LiNH₂ (Strem Chemicals Inc.) with 95% purity each and 1 mol % TiO₂ (Millennium Chemicals Inc., 82.8%) as a catalyst were mixed by mechanical milling method. The ratios of LiH to LiNH₂ were fixed at two different values of 1 : 1 and 2 : 1. The ratio in the former sample is an ideal ratio of the reaction (1), while the latter system contains twice excess LiH compared to LiNH₂ in molar ratio. The reason is because excess LiH might prevent the NH₃ emission, assuming a slow kinetics of the reaction between LiH and NH₃. However, if the amount of NH₃ emission is independent of the amount of LiH, we can judge that the NH₃ emission would originate in the thermodynamic equilibrium state of the Li-N-H hydrogen storage system.

Before heating the ball milled mixtures for proceeding of the H_2 desorption reaction (1), the sample cell was evacuated down to a few Pa order. As the optical cell is located far from the heater, the Raman-scattered light is derived from gas molecules at room temperature. The light source is an Ar ion laser (Spectra-physics Inc., Stabilite 2017) operated at 488.0 nm with the output power of 300 mW, and Raman spectra were analyzed by a triple monochromator (JASCO, TRS-600) with a liquid-N₂ cooled charge coupled device (CCD) detector (Princeton Instruments Inc. model LN/CCD-1100-PB). Accumulation time and number were, respectively, 200s and 5 times for N-H totally symmetric stretching mode region, and those were 50s and 1 time for H-H stretching mode one.

Prior to the measurement of Li-N-H system, we confirmed that it is possible to quantitatively estimate the partial pressure of NH_3 and H_2 in an artificial gas mixture of the 1:1 molar ratio. First, the Raman spectrum from each pure gas of NH_3 or H_2 was monitored to determine the each relation between the integrated peak intensity and the pressure obtained from the pressure sensor. Next, the Raman spectroscopic intensities of N-H and H-H stretching modes in the gas mixture were derived, and then, the partial pressures of NH_3 and H_2 were calculated by use of above relation. As shown in Fig. 1, the partial pressure ratio of NH_3 and H_2 could indicate almost 1:1. Furthermore, the calculated total pressure, that is the

Fig.1 The relations between calculated pressures and observed pressure of the 1:1 gas mixture of NH_3 and H_2 . Dotted lines indicate ideal total or partial pressures (calculated pressure) corresponding to real pressure (observed pressure).

2 | [JOURNAL], 200X, 00, 0000

www.rsc.org/[JOURNAL] | [JOURNAL NAME HERE]

Fig. 2 Collected Raman spectra of the desorbed gas from the mixture of 1:1 LiH and LiNH₂ (a:NH₃, b:H₂) and 2:1 LiH and LiNH₂ (c:NH₃, d:H₂). Observed peaks are originated in totally symmetric stretching mode of NH₃ (a and c), and stretching mode of H₂. (b and d) Extra peaks at ~4118, 4135, 4153 in (b) and (d) are originated in the rotation of the H₂ molecule. In those four figures, the Raman spectrum at the highest temperature is shown at the top and the others are drawn in the order of the decreasing temperature from the upper side.

sum of the partial pressures, was confirmed to be consistent with

the pressure measured by the pressure sensor (see also Fig. 1). Therefore, it was clear that the quantitative analysis of partial pressures of Raman active mixed gases method can be easily performed by Raman spectroscopy.

Fig. 2 shows collected Raman spectra from NH₃ or H₂ gas emitted from the ball milled mixture of LiH and LiNH2 with the 1:1 and 2:1 molar ratios at various temperatures. We can see that the integrated peak intensities corresponding to NH₃ and H₂ increase with the increasing temperature. From these results, the partial pressures of the mixed gases were estimated from the integrated peak intensities in the collected spectra. Fig. 3a shows the partial pressures of the emitted gases from the LiH and LiNH2 mixture in the 1:1 molar ratio as a function of reaction temperature. The amount of emitted H₂ slightly increases with the increasing temperature up to 250 °C and drastically increases from 275 °C. The total pressure monitored by pressure sensor was almost equal to the deduced partial pressure of H₂ gas, indicating that almost all the emitted gas is H₂. The partial pressure of emitted NH₃ (shown in the inset) is ~0.1% of that of desorbed H_2 at more than 275 °C, and increases with that of H2 desorption. For the ball milled mixture of 2LiH and LiNH₂, as is seen in Fig. 3b, both the NH₃ and H₂ partial pressures were almost the same as in the 1:1 mixture.[‡] Actually, the NH₃ and H₂ desorption profiles in the TDMS measurements, which were obtained in previous works, were

[JOURNAL NAME HERE] | www.rsc.org/[JOURNAL]

Fig.3 Calculated pressures of the emitted gases from the mixtures of LiH and LiNH₂ (a; 1:1, b; 2:1) in heating process up to 400 °C. The NH₃ / H₂ ratios are also shown. Inset shows NH₃ emission in an enlarged scale.

similar to the behaviours of the partial pressures.⁶ This suggests that the quite small amount of NH_3 emission is not originated in the lack of LiH in the mixture, and is essential for the reaction (1) in the closed system as one of the equilibrium characters. As the PEFCs performance with 0.1% NH_3 should be poor,¹² some countermeasures like an NH_3 trapping filter must be considered in use of this kind of H-storage materials.

In conclusion, we performed the evaluation of the simultaneous partial pressures of the mixed gases of NH_3 and H_2 by means of Raman spectroscopic analysis. The emitted gases from the mixtures of LiH and LiNH₂ with 1 : 1 and 2 : 1 molar ratios in the closed system at any temperatures up to 400 °C were estimated to be composed of 0.1% NH_3 and 99.9% H_2 , The 0.1% NH_3 impurity is inevitable in the closed system, because the NH_3 emission properties might be originated in the thermodynamic characters in the Li-N-H hydrogen storage system.

This work was carried out by the NEDO project "Development for Safe Utilization and Infrastructure of Hydrogen Industrial Technology" in Japan and the Grant-in-Aid for COE Research (No. 13CE2002) of the Ministry of Education, Sciences and Culture of Japan. The authors gratefully acknowledge Dr. H.Y. Leng, Dr. N. Hanada and Mr. S. Isobe for their help.

Satoshi Hino, ^a Takayuki Ichikawa,*^b Norio Ogita, ^a Masayuki Udagawa ^a and Hironobu Fuiji^b

⁶ Graduate School of Advanced Sciences of Matter, Hiroshima University,
1-3-1 Kagamiyama, Higashi-Hiroshima 739-8530, Japan.
^b Materials Research Center, N-BARD, Hiroshima University, 1-3-1
Kagamiyama, Higashi-Hiroshima 739-8526, Japan.
Fax: +81-82-424-7486; E-mail: tichi@hiroshima-u.ac.jp

Notes and references

‡The data below 1 kPa mainly have errors of ~ 100 Pa at each point, and the difference of the background lines for both the NH₃ partial pressures should not be essential properties. Because, the relation between the peak intensity area and the NH₃ pressure was derived from the mesurements in a few kPa order of NH₃ by use of the pressure sensor which covers a pressure range from 0 to 500 kPa in an absolute value.

- 1 A. Züttel, Naturwissenschaften, 2004, 91, 157-172.
- 2 W. Grochala and P. Edwards, Chem. Rev., 2004, 104, 1283-1315.
- 3 P. Chen, Z. Xiong, J. Luo, J. Lin and K. Tan, *Nature*, 2002, **420**, 302-304.
- 4 T. Ichikawa, S. Isobe, N. Hanada and H. Fujii, *J.Alloys Compd.*, 2004, **365**, 271-276
- 5 T. Ichikawa, N. Hanada, S. Isobe, H. Leng and H. Fujii, *J. Phys. Chem. B*, 2004, **108**, 7887-7892.
- 6 P. Chen, Z. Xiong, J. Luo, J. Lin and K. Tan, J. Phys Chem. B, 2003, 107, 10967-10970.
- 7 Y. Hu and E. Ruckenstein, J. Phys. Chem. A, 2003, 107, 9737-9739.
- N. Rajalakshmi, T. Jayanth and K. Dhathathreyan, *Fuel Cells*, 2003, 3, 177-180.
- 9 F. Uribe, S. Gottesfeld and T. Zawodzinski, Jr., J. Electrochem. Soc., 2002, 149, A293-A296.
- 10 C. Wang and R. Wright, J. Chem. Phys., 1973, 59, 1706-1712.
- 11 S. Boghosian and G. Papatheodorou, J. Phys. Chem., 1989, 93, 415-421.
- 12 H. Soto, W. Lee, J. Zee and M. Murthy, *Electrochem. Solid-State Let.*, 2003, 6, A133-A135.

This journal © Royal Society of Chemistry