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A method to determine the quantum state of a scalar field after O(Q)-symmetric bubble nucleation 
has been developed recently. The method has the advantage that it concisely gives us a clear picture 
of the resultant quantum state. In particular, one may interpret the excitations as a particle creation 
phenomenon just as in the case of particle creation in curved spacetime. As an application, we 
investigate in detail the spectrum of quantum excitations of the tunneling field when it undergoes 
false vacuum decay. We consider a tunneling potential which is piecewise quadratic and hence, is 
simple enough to allow us an analytical treatment. We find a strong dependence of the excitation 
spectrum upon the shape of the potential on the true vacuum side. We then discuss features of the 
excitation spectrum common to general tunneling potentials not restricted to our simple model. 

PACS number(s): 04.62.+v, 98.8O.Cq 
I. INTRODUCTION 

There is a growing interest in the quantum state of 
a scalar field inside a vacuum bubble that appears af- 
ter false vacuum decay. This is because the spacetime 
region inside the bubble may be considered as a homoge- 
neous and isotropic open universe and, when combined 
with a class of inflationary models, there is a possibility 
that our universe is entirely contained in a single bub- 
ble and the present large scale structure of the universe 
with a low density parameter 020 - 0.1 may be explained 
[l-ti]. In the standard scenario, inflation solves both the 

horizon aid flatness problems simultaneously. But’ in 
the new one-bubble scenario, these problems are solved 
by two different inflationary stages of the universe. In 
the first inflationary stage, the universe is in a false MC- 
uum. If this stage lasts long enough, the universe may be 
approximated by a de Sitter spacetime with high accu- 
racy when the false vacuum decay occurs through quan- 
tum tunneling. This implies that the decay is mediated 
by the O(4)-symmetric Euclidean bounce, which conse- 
quently ensures that the spacetime after the decay has 
O(3,l) symmetry [7]. In other words, the region inside 
a nucleated bubble is a homogeneous and isotropic open 
universe. Then if the vacuum energy inside the bubble is 
nonvanishing, the second inflationary stage follows and a 
large amount of entropy will be produced at the end of 
the second inflation to solve the flatness problem.’ 

In order for this one-bubble inflation scenario to be 
successful, it is then a matter of great importance if the 
quantum fluctuations of a scalar field inside a nucleated 
bubble can account for the observed large scale structures 

of the universe as well as for the detected anisotropies 

‘Here by the flatness &the universe we mean no is not 
greatly different from unity. 
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of the cosmic microwave background. As has been cal- 
culated in Refs. [4,5], the information of the quantum 
state at the beginning of the second inflation inside a 

nucleated bubble remains until today and is reflected in 
the cosmic microwave background (CMB) anisotropies on 
large angular scales, particularly in those corresponding 
to supercurvature scales at matter-radiation decoupling. 
It is thus of particular interest to clarify properties of the 
quantum state inside a nucleated bubble and how they 
are brought forth through false vacuum decay. 

In one of our previous papers [8], we have investigated 
this problem by assuming that the quantum state is in the 

Euclidean vacuum (Bunch-Davies vacuum). This means 
that we have neglected the effect of quantum excitations 
through tunneling process but only taken into account 
the $ect of the background spacetime curvature. Al- 
though one can construct a model in which this is a good 
approximation, such as the one advocated recently by 
Linde [6], it will not be so if there is only one scalar field 
and it is responsible both for the false vacuum decay and 
for the second inflation. 

On the other hand, efforts to understand the quantum 
excitations during tunneling process were first made by 
Rubakov [9] and then by Vachaspati and Vilenkin [lo]. 
Subsequently, based on the multidimensional wave func- 
tion approach [ll-131, we have investigated quantum ex- 
citations produced through false vacuum decay [14,15]. 
In particular, in [15], we have presented a systematic 
method to evaluate the degree of quantum excitations 
and calculated the excitation spectrum for simple mod- 
els. However, there we have made several assumptions 

which may not be relevant for the one-bubble inflation 
scenario. One of them is the neglect of the background 
spacetime curvature. Another is that we did not consider 
the excitations of the tunneling scalar field itself but some 
other one that couples to the tunneling field through the 
mass term. Although these simplifications made it easy 
to understand gross features of the quantum state inside 
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the bubble, we have to admit that it is far from complete. 
For example, if one considers the excitations of the tun- 
neling field, there exists inevitably a region of negative 
mass squared around the top of the potential barrier and 
that may affect the results seriously. 

In this paper, as a step toward full understanding of 
the matter, we extend our previous analysis [15] and in- 
vestigate the quantum excitations of the tunneling field 

itself through false vacuum decay. However, for simplic- 

ity, we neglect the background curvature and assume the 
Minkowski background. The paper is organized as fol- 
lows. In Sec. II, to make the paper self-contained, we 
briefly review our formalism for determining the quan- 
tum state after false vacuum decay. Our formalism uses 
the fact that the excitations can be concisely described in 
the language of particle creation due to a varying mass, as 
that in curved spacetime. In Sec. III, we present a model 
of the tunneling potential which is piecewise quadratic, 
hence is simple enough to allow an analytical treatment 
but is expected to retain the essential feature specific to 
the excitations of a tunneling field. Then we express the 
resulting quantum state in the language of particle cre- 
ation and give a complete (but complicated) formula of 
the particle spectrum ‘for this model. In Sec. IV, based 
on the formulas derived in Sec. III, we evaluate the parti- 
cle spectrum for various model parameters in detail. For 
limiting values of the parameters, we give analytical ex- 
pressions for the particle spectrum. For other values of 
the parameters we show the results obtained numerically. 
In Sec. V, we discuss the possible role of discrete modes 
which are associated with the vibration of the bubble 
wall. Although these modes cannot be interpreted as 
particle modes, we argue that they will also contribute 
to the quantum state inside the bubble but those with 
spherical harmonic indices e = 0 and 1, which represent 
translational degrees of freedom of the bubble location 
and give rise to divergence in the two-point function, will 

be absorbed into the metric perturbation when gravita- 
tional degrees of &eedom are taken into account. Finally, 
Sec. VI is devoted to a summary and future issues. 

Throughout this paper, the metric signature for 
Lorentzian spacetime is (- + ++) and the units R = 1 
and c = 1 are used. 

II. REVIEW OF FORMALISM 

To begin with, we give a brief sketch of our method 
for solving the evolution of the quantum state through 
false vacuum decay. We use the multidimensional WKB 
wave function approach originally developed by Banks, 

Bender, and Wu [ll] and de Vega, Gervais, and S&ta 
[12], and recently elaborated by us [13]. We consider 
a scalar field C#J in Minkowski spacetime whose action is 
given by 

s= d% -&#J P&V(4) , 
J [ 1 (2.1) 

where V(4) is a tilted double-well-type potential as 
shown in Fig. 1. We consider the situation in which the 
field is initially at the false vacuum (4 = $F) and decays 
FIG. 1. The potential of the tunneling field. 

toward the true vacuum (4 = &) by quantum tunneling. 
In order to trace the evolution of the quantum state 

through false vacuum decay, we construct a quasi- 
ground-state wave functional which is an energy eigen- 
state of the time-independent Schrsdinger equation and 
is exponentially close to the would-be ground state wave 
functional if 4 = C$F were the absolute minimum of the 
potential. That is, denoting by 1%~) the quasi ground 
state, we have 

&P=EQ , 

E = 
I 

d3x V(&) 

+(the zero point energy at false vacuum) 

(2.2) 

where 

q = (4(.,Iq > 

~:=J$*[~(t~)z+a;:(~)’ 
%=I 

1 

+v(4) I (2.3) 

We solve Eq. (2.2) in the WKB approximation. In 
the lowest WKB order, q is completely dominated by 
field configurations that satisfy the field equation for 4. 

Introducing a parameter T (the WKB time variable), the 
classical field configurations +B(x, T) satisfy 

3 @4B $+e dV(4B) _ o 
i=l ax”2 d4B ’ (2.4) 

where T = 7 < 0 for classically forbidden field con- 
figurations and T = it (t: real) for classically allowed 
field configurations. We call 7 the Euclidean time, and 
t the Lorentzian time. As we consider the wave func- 
tional which describes false vacuum decay, the relevant 
classical solution is the O(4)-symmetric bounce solution 
[7] which depends on the spacetime coordinates only 
through T2+x2. The bounce solution c$B(T~+$) gives ic 

sequence of field configurations which describes the tun- 
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False Vacuum 

FIG. 2. A schematic picture of the bounce solution 
neling process. In the classically forbidden region, at 
T + -co, the field is at false vacuum. As 7 becomes 
larger, a bubble of true vacuum appears in the false MC- 
uum background and grows until 7 = 0. At 7 = 0, which 
corresponds to the turning point in quantum mechan- 
ics, the field configuration is joined to those described by 
the analytic continuation of the bounce solution to the 
Lorentzian time: 7 --f it. Since we are interested in the 
state after false vacuum decay, the corresponding wave 
functional is given by taking t > 0. A schematic picture 
of the bounce solution is drawn in Fig. 2. For conve- 
nience, we call 7 < 0 the Euclidean region and t > 0 the 

Lorentzian region, and denote them, respectively, by E 
and M. 

In the next WKB order, quantum fluctuations around 
the bounce solution come into play. Setting # = 4~ + cp, 

the WKB wave functional to, this order is given by [12, 

131 
d3Xd3y~p(X)n(X,y;T)~P(~) 1 (2.5) 
where 

0(x, y; T) := 
I 

d3k 
&n&T) e-1 

aT Sk (Y,T) (2.6) 

The function gk(x,T), which we call the mode function, 

satisfies the field equation for ‘p on the background 4~~ 

I 

a= 
8; c&i 2 - V”[~B@‘~ f x”)] a&T) = 0, 

kl 1 
(2.7) 

and the inverse g;l(x, T) is defined by 

I 
d%gk(x, T)gl;,‘(x, T) = 63(k - k’) (2.8) 

To solve Eq. (2.7), we need to s& an appropriate bound- 
ary condition. At false vacuum 4~ = $F (T = 7 + -ca), 
the second line of the wave functional (2.5) must coincide 
with that of the would-be ground state at false vacuum. 
This requirement determines the boundary condition at 
7+-ooas 

g&7) + e--ik,x+-r ( (2.9) 

where wk := 
J 

k2 + V”(C$F). In the Lorentzian region 

M, the function gk(x,it) is given by the analytic contin- 
uation of gk(x, 7) through 7 = 0. After all, the problem 
of constructing the WKB wave functional Q reduces to 
the problem of solving Eqs. (2.4) and (2.7). 
In M, the state of ‘p described by the second line of 
Eq. (2.5) has a simple interpretation. In the second 
quantiaation picture (regarding t as real physical time), 
cp is represented as a field operator: 

rp(x,t) = / d3k[wc(X>tP(k) + 4x, t)b+(k)l , (2.10) 

where bk and bl are the annihilation and creation oper- 

ators, respectively, relative to a state 16) annihilated by 
bk, and an overbar denotes complex conjugation. The 
mode functions uk(x,t) satisfy the field equation and 
are normalized with respect to the Klein-Gordon inner 
product, but are not necessarily positive frequency func- 

tions. Hence the “vacuum” 10) annihilated by b(k) is 
not generally an eigenstate of the Hamiltonian unlike the 
Minkowski vacuum IO). The former is a squeezed state 
over the latter, given by a Bogoliubov transformation, 
and contains a nonvanishing spectrum of excited parti- 
cles. It is known that the wave functional for the state 
16) is given by 

(vP(.)lq m =P -; 
1 JJ 

d3=k+4fG>Y~ tb(y) > 1 
(2.11) 

where 

qx,y; t) := 
I 

1 h&q -1 
d3ki at q- (Y>i) (2.12) 
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This expression is nothing but the second line of Eq. (2.5) 

if uk(x,t) is identified with gk(x,it). Since a(x,y;t) 

is invariant under linear transformations of &(x,it), we 

then conclude I.&, t) = Ck, ck,+gk< (x, it) for some ckkr 
with detak, # 0. Thus the quantum state of ‘p after 
tunneling is a squeezed state over the Minkowski vacuum 
determined by the mode function uk(x, t). 

In order to find the mode function uk(x, t), it is conve- 
nient to use the coordinates which respect the symmetry 
of the background &, i.e., O(4) in & and O(3,l) in M 
[15]. In the Euclidean region E, we use (&,xE,~,v) 

where (0, v) are the usual two-dimensional spherical co- 
ordinates, and (&,xE) are related to T = 1x1 and 7 as 

T = &sinxE, 7 = +$COSXE, 

OsXE+ Ol&<cc 

Then the Euclidean metric takes the form 

(2.13) 

dsi = d& +&(d& +sin2x~dQ2). (2.14) 

In the Lorentzian region M, we have two distinctive 
spacetime regions characterized by the action of O(3,l). 
They are separated by the light cone that expands from 
T = t = 0. The spacelike region is called the (spheri- 

cal) Rindler space and the (future) timelike region the 
Milne universe. Since we are interested in the quantum 
state inside the bubble, we focus on the region corre- 
sponding to the Milne universe. Then the coordinates 
in the Milne universe are obtained by the replacement 
(&, XE) + (-it, ix), which yields 

T = Esinhx, t = Ecoshx, 

O<<<co, o<x,<co (2.15) 

The metric of the Milne universe is given by 

d& = -d[’ + E2(dx2 + sinh’xd@. (2.16) 

It is to be reminded that 4~ is constant on the & =const 
(or c =const) hypersurface. With these coordinates the 
Laplacian (or d’Alambertian) which appears in the field 

equation is rewritten as 

in the Euclidean region, and as 

(2.18) 
‘&d&E) --f -%p(mE~) for SE -+ 00. (2.25) 

in the Lorentzian region, where Lk is the Laplacian on 
the unit two sphere. 

As the O(4)-symmetric bounce solution is considered, 
Eq. (2.4) reduces to 

[ 
g + $&] h3(&) = V’(h?KE)) I (2.19) 

in E. The boundary condition is 

@E&E) -+4F for &+c% 

2(O) = 0. (2.20) 

In M, the equation for 4~ is obtained by replacing & 
by -it in Eq. (2.19), which describes the evolution of 
C#IB inside a nucleated bubble. 

Given the background solution $B, we need to solve 
for a. For this purpose, we expand gk(x, it) in terms of 
harmonic functions on the three-dimensional unit hyper- 
boloid, 

which is an eigenfunction of the Laplacian operator -L2 
with eigenvalue 1 + p’, 

-LZY,, = (1 + P2)YpCm (2.22) 

Then *(x,2) is expanded as 

a&4 = lm+: Ww~~)~,cmK,x,@ 

%h(l>X>~) = yYp&n), (2.23) 

where we have associated the complex conjugate of uPi,,, 
with gk in accordance with the general discussion. We 
mention that p corresponds to a comoving wave number 
in the Milne universe and p = 1 to the spatial curvature 
scale on the [ =const hyperswface. We then-consider 
the analytic continuation of “plm to the Euclidean region 

by [ + i& (0 I &) and x -+ -ix~ (0 < XE < 7r/2). In 
E, Eq. (2.7) for gk reduces to the equation for Gp(&) := 

Fp(&), 

[ 
& + & & + $ - V”[b(t~)] 1 G&-E) = 0 

(2.24) 

It has been shown that the boundary condition (2.9) for 
gk(x,~) at 7 + -co means the regularity of gk on the 
7 < 0 half of the complex 2’ plane. Since f&ix~) is 
regular for 0 I XE I n/2, this condition is translated to 
the boundary condition for Gp(&) that [15] 
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In M, Fp([) is given by solving Eq. (2.24) with FE 
replaced by -it and with the asymptotic boundary con- 
dition FP(<) = G&it) at < + 0. As 6 + co, the bounce 
solution C&X(<) undergoes dampted oscillations around 

the true vacuum 4 = 4~. Therefore, at t -i co, F&) 
will generally have the form 

FPK) = +GfP(F) + +x(E) 3 (2.26) 

where 

j,(E) = ~e~wj;)(ME), MS = V”(&). (2.27) 

Note that &,(t) is the positive frequency function for the 
Minkowski vacuum [15]. That is, one can expand the 
field operator as 

and the Minkowski vacuum is annihilated by a,~,. On 
the other hand, as mentioned previously, the quantum 
state after tunneling is a “vacuum” state IO) specified 

by regarding F*(c) as the (unnormalized) “positive fre- 
queney” functions. The orthonormalized positive fre- 
quency mode functions are then given by up?,,, with K 
replaced by 

W) = ‘. (2.29) 

Thus the spectrum of created particles n, observed by the 
Minkowski vacuum observer in the asymptotically future 
region is given by 

(qa;&ppvmp) = np6(P-P’), np = 
,cdc2:,2 - 1 

(2.30) 

III. SOLVABLE MODEL 

In this section, applying the formalism reviewed in the 
previous section to an analytically solvable model, we de- 
termine the quantum state of the tunneling field inside 
a nucleated bubble. Specifically we consider a potential 
which is piecewise quadratic; we match a convex poten- 
tial with V”(4) = -p2 for ~$2 < 4 < & to concave 
potentials with V”(4) = rn2 for 4 < 42 and V”(4) = MZ 
for 4 > C#Q. We require that the potential V(4) and its 
first derivative V’(4) be continuous everywhere. For con- 

venience, we choose the true vacuum to be at the origin, 
4~ = 0. Then the potential V(4) is given as 
where 

a=p=+M= , 

b=+?+M2) ) 

c=/?+M’- $(&+& , 

(rn2 + A“) (3.2) 

We note that the field value at false vacuum is 4~ = 
-c&/m’ and that at the peak of the potential barrier 
is bp = a&/p’. A sketch of the potential is drawn in 

Fig. 1. The requirements that the potential energy at 
false vacuum V(qbp) be higher than that at true vacuum 
li(&) and that the peak of the potential barrier must 
exist between the two vacua lead to the constraints on 
the parameters, 

Here we need to comment on the scaling property of 

this system. Under the rescaling given by 

4+s6, 4%-+9#% (i=L% 

z -+ 9’2, 

m -+ mfg’, P + idg’) M -+ Mlg’, (3.4) 

the action scales as 

0 

2 
s-+ $ s. 

Thus the system is transformed to the same system but 
with a different Planck constant. Since the decay rate of 
the false vacuum is determined by the value of the action 
of the bounce solution, the tunneling rate changes under 
this rescaling. However, as the field equation is invariant, 
the particle creation rate does not change. Thus every 
rescaled model is equivalent with each other as long as 
our interest is restricted to the particle creation. There- 
fore specifying the only three nondimensional parame- 

ters, say, m/M, p/M, and &/~1 is sufficient for our 
purpose. 

A. Bounce solution 

First let us consider the bounce solution. In our po- 
tential model, we m&y regard the bubble wall to be the 
spacetime region surrounded by the spheres at & and 
& where & = c++B(&) (i = 1,2). So let us call & and 

(2 the inner and outer radii of the wall, respectively. 
With this definition, the wall is nothing but the nega- 
tive mass-squared region. Here we tacitly assumed that 
the wall is entirely contained in the Euclidean region E, 
0 < .$ < & < co. But there exists a case in which 
the wall extends to the Lorentzian region M. Since the 
scalar field C$B can get over the potential barrier only in 
&, the outer edge of the wall & must be in E, but the 
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inner edge of the wall & can be either in & or in M. 
We call the former the EE case, while the latter the EL 
case. We first consider the EE case. The EL case will be 
discussed at the end of this subsection. 
For the potential (3.1), Eq. (2.19) reduces to Bessel’s 
differential equation. Therefore the bounce solution 
LB which satisfies the boundary condition (2.20) 
takes the form 
where J,, and N,, are the Bessel functions of the first 
and second kinds, respectively, and I, and K, are the 

modified Bessel functions of the first and second kinds, 
respectively. There are six unknown (nondimensional) 
variables in the above: A, BI, ‘B2, C, M&, and M&. 

As the potential is constructed to be smooth to its first 
derivative, 4~~ d4~fd&3 and d24B/d<,$ must be continu- 
ous everywhere. Requiring tbis continuity at the junction 
points CE = & together with the equalities 4; = 4~(&) 
(i = 1,2) leads to the algebraic equations 

1 = A(MG)-‘L(Mh) 

where the second equality in the first line of each set 
of the equations is the continuity of 4~, the second 

line is that of d&/d&, and the third line is that of 
d/d&(&‘d4gfd&). Of course, these equations are not 
independent of each other; the third lines of each set can 
be derived from the rest of equations. Hence there are six 
independent equations which are necessary and sufficient 
to determine A, BI, Bz, C, M&, and M&. 

The analytic continuation of this bounce solution to 
M is given by the replacement of 5~ by -y as before: 

4&C = WW1J&W4~ (3.9) 

As the oscillation around the true vacuum attenuates, 

4~ does not reach the junction point 41 any more in M. 
Hence 4~ is confined to the region V”(4) = MZ and 
there is no additional particle creation after tunneling in 

this case. 
Here it is to be noted that the equation for the mode 

function Gp(&) [Eq. (2.24)] is expressed not in terms of 
the original potential parameters mfM, pfM, and 42141 
but rather of parameters which specify the wall config- 
uration. In the present case, the wall configuration pa- 

rameters are m/M, p/M, M&, and M.$. Thus instead 
of the original potential parameters we may regard these 
four parameters as those that specify the model, three 
of which can be given freely. A convenient choice ~for 
the discussion given below is to give m/M, MG, M&x. 
With this choice we find that p/M is determined from 
the four equations consisting of the second and third lines 
of Eqs. (3.7) and (3.8), despite the fact that there are five 
unknowns A, BI, Bz, C, and p/M. This is because these 

four equations are homogeneous with respect to A, BI, 
Bz, and 6’. In fact, from the condition that there exists 
a nontrivial solution for A, BI, Bz, and C, we can derive 

the equation to determine b/M: 
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The fact that p/M is determined in this manner can be 
explained by taking the derivative of the equation for the 
bounce (2.19): 

[ -& + g + V”(EE) 11 = 0, 1 (3.11) 

where 4 := &‘=d&/d&. The function I/J satisfies the 
boundary condition 

1/, -+O for & + Oand co, (3.12) 

and it has no node. This is just the condition that the 
ground state wave function for a one-dimensional quan- 
tum mechanics with the potential 15/(4E$) + TV” 

should have zero energy eigenvalue. Given mfM, M&, 
and M&, this condition is exactly what is expressed by 
Eq. (3.10). Moreover, from the above analogy with qua+ 
turn mechanics it is clear that p cannot exceed the order 

of l/(&2 -Cd. 
Now let us discuss the EL case in which the inner edge 

of the wall is in the Lorentzian region M. In this case 
the bounce solution 4~ is given by 
4B(tE) _ B(PSE)-~J+~EE) + ;, 0 5 &s < c-2 I 
-- 

41 C(~E)-'KI(~E)- 5, 52 <FE < 03, 

(3.13) 

with the junction conditions 

2 = C(6)-‘K,(m&) - $ 

= (ILSZ)-~BJI(ILFZ) + ;, 

For the same reason as in the EE case, we have three 

independent equations and there are the same number of 
unknowns B, C, and M&t. 

The analytic continuation of this bounce solution to 

M is 
4d-a = %4)-‘~1(~t) + ; > OSF<&, 
41 

(3.15) 

WW-*JdW + Az(W-‘N&K), tl 5 t < 00, 
with the junction conditions 

1 =B(PW~A(L&) + ; 

= &(MEl)-‘J&W) + Az(MW’W%), 

BL(rG) = AlJ&Wl) + &N&Wd 

BI&&) = ~[AlJ~(MG) +AdV&Wl)l. (3.16) 

Here again only three of the above equations are inde- 
pendent and the unknown parameters are AI, AZ, and 
M&, assuming B is known by solving Eqs. (3.14). 

As in the EE case, we may choose the wall conligura- 

tion parameters, m/M, M&, and M& as independent 
model parameters. As before, p/M is determined from 
the last two equations of (3.14). Specifically the equation 
to be solved is 
Ks(&)Jz(~&z) = $z(&z)Jd&). (3.17) 

Thus in the EL case p/m is independent of M& and 
is given as a function of rn&. More precisely, a close 
analysis of Eq. (3.17) reveals that &I varies from j,,, N 

3.8132 to j,,? - 5.1356 as rn& varies fro& zero to infinity, 
where &,,, 1s the n-th zero point of the Bessel function 

J&). 

B. Mode functions and particle spectrum 

As we have found the background solution 4~3, we now 
turn to the equation for the mode function, Eq. (2.24). 
As in the case of the bounce solution, Eq. (2.24) reduces 
again to Bessel’s differential equation. First consider the 
EE case. In this case, G&E) in E is solved to give 
I 

where the function KdP is chosen in the interval & < 6~ < co in accordance with the boundary condition (2.25). This 
time, Gp(&) and its first derivative are necessarily continuous at the junction points. These conditions determine 
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the coefficients alp, azp, bl,, and bZp. Using the matrix notation, alp and azP are expressed as 

(3.19) 

(3.20) 

(3.21) 
The mode function F*(E) in the Lorentzian region M 
is given by Eq. (2.26), where the coefficients 5 and czp 
are related to alp and a~ as follows. Following the pre- 
scription & + -it, analytic continuation of the Bessel 
functions gives 

K&iME) = ;e-+Ij;‘(M<) , 

l&iM[) = ;e”“lZIHj;‘(M[) + Hj;‘(Mt)] (3.22) 

This implies the relation 

pi) =; (y;‘) (Q). (3.23) 

Since 

Gp(b) = 
( 

alp - i si=h(v)=z, K&&E) 
> 

+T [&&WE) + L~(MEE)I, (3.24) 
for 0 I & < tl where both KQ, and I+, + I-i, are 
real, the fact that GP(&) is real in E implies that both 
alp - $sinh(xp)az, and azP must be real. Using this 

property, the expression (2.30) for the particle spectrum 
np is rewritten as 

~“I% 

where alp and a~, are given by Eq. (3.19). This ex- 
pression, although exact, is too complicated in that it is 
almost impossible to gain any physical insight from it. 
In the next section, we will examine several extreme sit- 
uations in which we can obtain approximate analytical 
formulas which are more comprehensible. We will also 
evaluate Eq. (3.25) numerically to fill the parameter re- 
gions not covered by the approximate formulas. 

Now we consider the EL case. In this case, the mode 
function Gp(&) and its analytic continuation FP([) = 
G,(-Y) are expressed as 
Through the origin 5~ = .$ = 0, the Bessel functions are analytically continued as 

Jip(-QS) = e=P’2&.(~t) , 

Nip(-i& = -ie”P’21&~) - +K&E) 

With the aid of these relations, we get 

(3.28) 

(3.29) 

(3.30) 

(3.31) 



53 SELF-EXCITATION OF THE TUNNELING SCALAR FIELD IN. . . 2053 
and Yp is given in Eq. (3.21). Substituting G and czp 
given by Eq. (3.29) into Eq. (2.30), we obtain the expres- 

sion for the spectrum of the created particles in the EL 
case. 

IV. DETAILED ANALYSIS OF PARTICLE 
SPECTRUM 

As shown in [15]; the spectrum of created particles 
has the general feature that n, is nearly constant for 
0 5 p 5 1 and decreases exponentially as eV2=p for 

p > 1. Hence the particle spectrum is basically obtained 
if no := T+O is known. Note that p = 1 corresponds 
to the curvature scale of the .$ =const hypersurface in 
the Milne universe. It should be also noted p = 0 does 
not correspond to the zero mode of the F =const hyper- 
surface but to the mode with characteristic scale of the 
curvature as well. Furthermore, if one considers implica- 
tions of the present analysis to the one-bubble intlation 
scenario, what one wants to know most is the curvature 

perturbation spectrum on large scales comparable to the 
spatial curvature scale, which is described by n, at p < 1. 
Thus we may focus on the plateau of n, at p 5 1. For 
definiteness, we take no as the representative value. 

For limiting cases in which the argument of the (mod- 
ified) Bessel functions is very small or large compared to 
unity, we can derive a rather simple analytical expression 

for TQ by using the asymptotic behavior of the (modi- 
fied) Bessel functions which may be found in Ref. 1161. 
As discussed in the previous section, there are two ways 
of specifying parameters of the model. The potential 
parameters are less directly related to n, than the wall 
configuration parameters. Therefore, in what follows, we 
first consider cases with extreme values of the wall con- 
figuration parameters. After disclosing the relationship 
between the wall configuration parameters and the parti- 

cle spectrum, we then interpret the results in terms of the 
original potential parameters by analyzing the relations 
between these two sets of parameters. 

A. no as a function. of wall conilguration parameters 
1. Thin wall EE ease 

We first consider the caw when C& and riz& + co, 
where fi represents either rn, M, or pr and (&-&)/[I < 
1, which corresponds to the thin wall limit. We regard 
l/&h and l/r?& as small parameters, which we denote 
by L, and assume p(& - (1) < 1. 

After tedious manipulations, the expansion of 
Eq. (3.10) with respect to 6 to O(E) gives 
(4.1) 
where 

7 := tan& - (1). (4.2) 

With the aid of this relation, the particle spectrum at 
p = 0 given by (3.25) is evaluated as 

Equivalently, again using Eq. (4.1), no may be expressed 

as 

where arctan takes the value between 0 and r. 
One sees that no is exponentially suppressed as 

e--4Mt1, the feature that has been found in the previ- 

ous analysis of the thin wall limit [15]. However, one also 
finds a large factor (p[# in front, which was absent in 

the simple model discussed in [15]. 

2. Boundary between the EE and EL case8 

The boundary between the EE and EL cases is given 
by the limit MC1 + 0 and ~51 + 0. In tbis case the 
limit of either rn& + 0 or rn& --t ca can be treated 
analytically. 

As mentioned below Eq. (3.17), for rn.& + 0, p is fixed 
as 

/& = j,,, - 3.8132. 

Then we obtain 

where kl is a numerical factor given by 

and y N 0.5772 is the Euler constant. 
For rn& -$ ca, p is fixed as 

/g-z = j,,, - 5.1356. 

Then we obtain 

(4.8) 
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where kZ is given by 

kz = W~Z,l) ~ - 2.4602. 
Jo(h) 

(4.10) 

Thus, in both of the limiting cases, no is of order unity 

unless the ratio M/w or rn/p becomes too large or too 
small. 

In the EL case with & + rn and M& + 00, a simple 
expression for no can be obtained for rn& + co or rn& + 

0. 
First consider the limit rn& + 0. In this case fi is given 

also by Eq. (4.5). After a straightforward calculation, we 

then find 

kf+1p2+Ma 
no - ~ 

16 pM 
=p(2!-&). (4.11) 

In the case of the limit ~$2 + co, p is given by 
Eq. (4.8). Then we obtain 

k;flp=+M= 
120 N ~ 

16 PM 
exp(2&). (4.12) 

Thus in both limits of rn&, the particle spectrum has 
the exponential factor e*“e1. This suggests that it is a 
common factor for the EL case irrespective of the param- 
eters. 

Summarizing the above results of analytical tractable 
cases, we expect that the gross dependence of na on the 
wall configuration parameters is 

no - w-4ME1) > (4.13) 

for the EE case, and 

m - exP(w&) , 

for the EL case. 

(4.14) 

In order to test our expectation mentioned above, we 
have numerically evaluated no for various values of the 
wall configuration parameters. Figures 3 and 4 show 
no/exp(-4M&) for the EE case and no/exp(2&) for 
the EL case, respectively, as functions of the parameters 
M& and M&, for typical ratios of m/M; m/M = 0.1, 
1, and 10. We see that the approximations such as 
Eqs. (4.13) and (4.14) are better than one might have 

anticipated except for wme special cases. 
As for the EE case, we see a ditch in the figure, but it 

is in some sense superficial. As is also observed in Fig. 5, 
there are spikes in the spectrum where the particle cre- 
ation is completely suppressed due to accidental phase 
coherence. The locations of the spikes move as the model 

parameters vary. The ditch appears simply because one 
of the spikes passes by p = 0. Thus. the particle creation 
is not really suppressed if the global shape of the spec- 
trum is considered. When M& N M& > 1, the particle 
creation seems to be enhanced compared with that given 

by Eq. (4.13), but this is just what is obtained in Sec. 
IV A 1 discussed above. 

As for the EL case, a small deviation from Eq. (4.14) 
is observed when M& is small. This may be explained 
as follows. Since j& - 1 in all the EL cases, h/M must 
become large as M& gets small. Therefore, from the re- 
sults presented in Sec. IVA3 the enhancement can be 
understood as a result of the factor ($ + M’)/(pM). If 
we analyze no more carefully, we find a slight enhance- 

ment of particle creation when M& < 1 and M& > 1. 
This is the case which is considered in Sec. IV A 2. Thus 
this moderate enhancement can be understood as a result 
of the contribution of the factor In (M/p). 

Thus we conclude that M& and & are the parameters 

M& -W$ 

0.1 1.0 10 

M51 

lo (cl l,. ,/= ,,,-;I 

/--0:; 
_/’ ,I /’ ,, ’ ,’ ,, /’ 

O.l,,/ ,I’ ,I’ 
1.0 

1’ 

m 

,’ 
J’ 

,A 1.0 ,’ 

I /’ ,I 
: 

: 10 : 
: 

, 

0.1 
: I 

lo” / lo” ; 

0.1 1.0 10 

Mifl 
FIG. 3. The contour plots of the particle creation rate 

npzr, versus M& and M<z - M& in the EE cause. They are 
plotted for a few typical values of m/M, i.e., (a) m/M = 0.1, 

(b) m/M = 1, and (c) m/M = 10. 
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1 10 o.6 101 

M45 

FIG. 4. The contour plots of nPco versus M& and M& in 
the EL case. As before they are plotted for the fame typical 
values of m/M. 

FIG. 5. The typical shape of the particle spectrum np. 
which dominantly determine the particle spectrum n, in 

almost all the cases. 

B. Dependence on potential parameters 

As we have found how the particle spectrum is de- 
termined by the wall configuration parameters, we now 
consider the relation between the shape of the potential 
and the wall configuration param&rs. From the previ- 
ous discussion, we know that ‘20 is mainly determined by 
M.$ in the EE case and fit1 in the EL case. Thus what 

is necessary is to relate M& or ~(1 with the potential pa- 
rameters of our model; m/M, p/M, and &f&. In order 
to do so, we will show that & becomes larger (smaller) in 
the EE (EL) case as r&/& increases for fixed mass ratios 
of m/M and p/M. Keeping this result in mind, we will 
then discuss the dependence of the particle creation on 
the shape of the potential in detail. Since the EL case 
turns out to be much easier to analyze than the EE case, 
we discuss the EL case first. 

I. EL case 

Let us consider a modified potential F which has a 
smaller value of &/$11 with fixed mass ratios m/M and 
p/M. We associate the tilde with quantities of the mod- 

ified potential. Thus $& < &/dl. Using the scal- 

ing freedom, we can make c coincide with the original 
V for 4 < &, as shown in Fig. 6, in which the solid 

curve represents the original potential and the dotted 
curve the modified one. Since we are considering the EL 
case, the bounce solution &(.&) is entirely contained 
in the region 6 < 41. Hence ba is not changed by 
this modification of the potential. In particular, the field 

value &(O) at the center of the bubble, which is the 
initial value for the subsequent motion of 4 inside the 
bubble, is unchanged. Then it is easily understood that 
.&, which is the value of .$ when the field pass_es the junc- 

tion point 4 = 41, will become larger for V. Thus we 

have p.& > p& for b& < &J& with fixed mass ratios 

FIG. 6. The potential V(4) in the EL case. 
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Now let us analyze the relation between the shape of 
the potential and the particle creation more quantita- 
tively. It turns out that there exists a more relevant 
potential parameter than &/& which is more directly 
related to the amplitude of particle creation. It is de- 

fined by 

(4.15) 

where $p is the value of 4 at the top of the potential 

barrier. Note that y+ > 3+ for ~$74~ < &/&. Also 
it may be worthwhile to mention that the ratio of the 
potential differences V(4p) - V(bl) and V(g5p) - V($F) 
is expressed in terms of 34 as 

V(b) -V(h) = 1 + 2 3$, 
V(b) -V(h) ( > rn= (4.16) 

Eliminating B from the junction conditions (3.14) and 
(3.16), we find R+ is expressed as 

3+ = f(m/p)Jy, 

where 

22 Yb) 
f (4 := - 1 + 12 &(y(z)) ’ 

and the function y(z), which is & for z = rn/~, is 
implicitly defined by 

r&(rY)Jz(Y) = KZ(ZY)J3(Y). (4.19) 

As noted at the end of Sec. IIIA, y varies from j,,, - 
3.8132 to j,, N 5.1356 as I varies from zero to infinity. 
Hence we find that f (2) is always of order unity with its 
limiting behaviors given by 

f(x) --t 

i 

2 
-p-4.966, z-0, 

JO(jl,l) 
j2 1 (4.20) 

-& - 15.12, z + 00. 

The function f(z) is plotted in Fig. 7. 
Now from the analysis given in the previous subsection, 

we know no is of order unity for pt1 + 0 and enhanced 
exponentially as e2p~1 for pt1 >> 1. We see that tbis is 
exactly the behavior of 34 seen as a function of KG, 

Pfl -+ 0, 
34 --t (4.21) 

Pc-1 + m. 

Thus in the zeroth order approximation we conclude 

ml - 3+> (4.22) 

for the EL case where ‘Rd is defined by Eq. (4.17). 
6 

I I 

iw2 10” 10’ IO’ IOZ 
x 

FIG. ,7. The plot of the function f(z). 

2. EE case 

As in the EL case, we first consider the reaction of the 
parameter MC1 by the variation of &/bl. 

The problem to find the bounce solution is to find a 
solution of particle motion with &-dependent friction 
force on the inverted potential -V(d) with the release 
point at & = 0 somewhere near the true vacuum, as 

given by the solid line in Fig. 8. If we choose the release 
point appropriately, the particle reaches 4~ at fF + co. 
We denote this appropriately chosen release point as ~$1. 
Now consider the system with a modified potential which 
has the same mass ratios but a larger value of &/&. As 
before, we associate the tilde to denote quantities of the 
modified potential. Again, using the scaling freedom, 

we may make & coincide with the original $1 without 

changing M, rn, and p. Then the modified potential v 
coincides with the original V for 4 > $2 as given by the 

dotted line in Fig. 8. 
If we release a particle from the same point ~$1 as in 

the original potential for the case_ of the potential c, it 

cannot reach the false vacuum 4~. In order to make 

it reach $F, the particle must be released fmm a point 

4 = $1 closer to the true vacuum, i.e., & > ~$1. Then 
&, which is the value of & at $1, must become larger. 

‘4 

.: 

V 
vc$o 

FIG. 8. The potential V(4) in the EE case. 
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Thus we conclude M& > Mf, for 4761 > &/41 with 
fixed mfM and pfM. 

In contrast to the EL case, we were unable to find a 
simple function of the potential parameters which is di- 
rectly related to the amplitude of particle creation. This 
is because the bounce solution in the EE case depends 
on the mass at the true vacuum M as well as rn and 
p. Therefore Mfl is generally fully dependent on all the 
three potential parameters. However, it is still possible 
to relate the shape of the potential to the particle cre- 
ation in a couple of limiting cases, which we will discuss 
below. 

As noted in the beginning of Sec. III, 42/& is bounded 
from above by the condition that V($F) > V(4,). For 
4~14~ close to the maximum value, we have Mfl B 1, 

which is just the thin wall limit. In this limit, the par- 
ticle creation is exponentially suppressed as e-4Mc1. In 
other words, as the wall radius becomes larger, the qua- 

turn state inside a nucleated bubble becomes closer to the 
Minkowski vacuum state. In this case, the wall radius is 
known to be given by [7] 

f1 N 52 - 3&/AV, 

AV := v(b) - ~(4~). 

(4.23) 

(4.25) 

Thus the amplitude of particle creation m, is approxi- 
mately given by 

On the other hand, &/& is bounded also from below 
in order for the potential barrier to exist. Now, as 42/41 
decreases, (1 decreases and before the potential barrier 

vanishes & becomes zero, which is just the boundary 
of the EE case and the EL case. Thus, in this limit, 
the analysis of the (1 + 0 limit of the EL case is also 
appropriate. 

Summarizing the above analyses for the EL and EE 
cases, we conclude that no is approximately determined 
in terms of the potential parameters as 

34, 3+I21, no - 
exp(-12iW&/AV), 3+ < 1. 

(4.27) 

Before closing this section, one comment is in order. In 
this paper, we have considered a potential model with a 
constant mass around the true vacuum. However, in or- 
der for our results to be valid, the mass M(f) on the true 
vacuum side is not necessarily strictly constant. The only 
restriction is that M(f) should vary sufficiently slowly. 
Namely, if 

y/M(f) c M(f) > (4.28) 

the mode function evolves adiabatically and there will 
be no additional particle creation on the true vacuum 
side. Now, in a simple version of the one-bubble inflation 

scenario, the tunneling field also plays the role of the in- 
flaton field inside the bubble, and the mass of the in&ton 
field changes very slowly in the slow rolling phase. Thus 
our results are expected to give nontrivial implications 
to the one-bubble inflation scenario, at least so far as the 
effect of tunneling to the spectrum of the inflaton field 
fluctuations is concerned. We plan to make a detailed 
investigation of this issue in a future publication. 

V. DISCRETE MODES 

So far, we have not carefully investigated the complete- 
ness and normalization of the mode functions for the de- 
scription of a quantum state of the field ‘p. In order to 
specify a quantum state completely, we need a set of all 
possible mode functions which have properly normalized 
Klein-Gordon inner products on a Cauchy surface. How- 
ever, the spacetime inside the forward light cone of the 

center of a bubble, which is described by the Milne uni- 
verse, does not contain any Cauchy surface of the whole 
Minkowski space. 

Thus we first need to introduce new coordinates which 
cover the spacelike region outside the forward light cone 

and which respect the symmetry of the bounce solution. 
Such coordinates are known as the (spherical) Rindler 
coordinates and the spacetime covered by them is called 
the Rindler space. The metric of the Rindler space is 
given by 

ds2 = df; + f; (-dx; + cash’ XRdQ&) , (5.1) 

where the XR =const hypersurface of the Rindler space 
is a Cauchy surface of the whole Minkowski space. These 
coordinates are related to the Milne coordinates as 

fR=e-ni12f=fE, ,=,+;. (5.2) 

Now we have to evaluate the Klein-Gordon norms of 
the mode functions uplm (f, 2, a) in the Rindler space. In 
order to do so, we need the analytic continuation of 21pem 
to the Rindler space: 
%L(XR) = f$(XR -in/q = 
r(ip + e + l)r(-ip + e + I) 11’2 

wP)wiP) +ic:shxa V--1/2 
J?eP-1’2(-isinhXR). (5.4) 
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We note that ?+((xR) now plays the role of a positive frequency function for the state 15). In the same way as presented 
in Appendix A of Ref. [8], the Klein-Gordon inner product oft+, on the XR =const hypersurface can be evaluated 

as 

(5.5) 
where 

NW = PP’ I Om $f %(fdGp,(fd. (5.6) 

In the above, we have put p’ = p when evaluating NJ;), 

anticipating that the factor N? should be zero if p # p’, 

which we will show below. T gP e evaluation of the factor 
N,$) is straightforward and we obtain 

NJ:) = 2 sinh?rp. (5.7) 
?r 

For p2 and p” > 0 (in fact we have p, p’ > 0), the factor 

N,$ can be evaluated from the behavior of Gp(fE) near 

the origin alone. In the EE case, noting that Eq. (3.24) 
implies 

Gdfd = 
~--C”P~ 

sinh rp 
Ii, Wfd 

-CIP - e”Pzg 

sinh rp 
Lp(Mfd, (54 

and using the fact that i(cl, - cosh?rpczp) and czP are 
real, we obtain 

N@) = “,“i;$ (/clpI - Ic&) PP’ (5.9) 

Thus we have 

This agrees with the norm calculated on the f =const 

hypersurface in the Milne’universe, Eq. (2.29). We can 
show that the same result holds also in the EL case. The 
reason why the Klein-Gordon inner product can be eval- 
uated in the Milne universe, despite the fact that it does 
not contain any Cauchy surface, is due to the fast falloff 
of the function u&xn) with positive p2 at XR + 03. 
That is, the mode function uptm vanishes fast enough at 
future null infinity of the Minkowski space. 

In contrast, any mode function with negative p2 has 

a divergent Klein-Gordon norm in the Milne universe. 
When the Klein-Gordon norm of a mode diverges, the 
normalized mode function vanishes. Hence it would not 

contribute to the quantum fluctuations of the field if it 
also vanishes fast enough at future null infinity. However, 
for p2 < 0, the falloff of a mode function at future null 
infinity is not fast enough. Thus, we cannot claim that 
the Klein-Gordon norm evaluated in the Milne universe is 
equivalent to that evaluated on a Cauchy surface. There- 
fore it sometimes occurs that some of the modes with 
negative p2 do contribute to the quantum fluctuations of 

the field. 
Specifically, as seen from Eq. (5.8), Gp(&) withp’ < 0 

has the behavior - a&‘+&@’ near the origin (8 = 0 
where 01~ and &, are determined by solving Eq. (2.24)’ 
with the boundary condition (2.25). This boundary con- 
dition is a necessary condition for the norm&ability also 

for the p2 < 0 modes but not a sufficient one. For a mode 
to be norm&able, there is an additional condition that 
/?, should vanish. For almost all the modes with negative 
p’, &, do not vanish. Hence they do not contribute to the 
quantum fluctuations. However, for certain discrete sets 

of p, 0, may happen to become zero. Then those modes 
become normalizable. Apparently, they are bound state 
modes and cannot be described in the particle picture. 

Nevertheless, we can evaluate the contribution of these 
modes to the two-point function (Wightman function) 
which characterizes the quantum fluctuations of the field. 
Let us denote these discrete values of imaginary p by p,. 
Since the Wightman function is given by the summation 
of products of the mode functions, it can be divided into 

two parts as 

G+(+,s’) = G&(x,x’) + G&d). (5.11) 

The two parts Gi and GA are the contributions from the 
discrete modes and the continuous modes, respectively. 
They are given by 

where 

(5.12) 

(5.13) 
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(in the Milne universe), 

(in Rindler space), 

(5.i5) 

s 

ce 1 
= psi*pC $&)Gp(Ek) 

0 dp8*(lc1plz - lc#) sinh[ ERG! 

where C is the Lorentz-invariant distance between I and I’, 

coshc = 
cash x cash x’ - sinh x sinh x’ cos 0 

- sinh XR sinh xk + cash XR cash xk cos 0 

cosQ =cosBcosB’ + sinBsinB’cos(# - 4’). 

(5.14) 
The second equalities of both Eqs. (5.12) and (5.14) are 
obtained after summation over e and ti, and they mani- 
festly show the O(3,l) invariance. 

In the present model, there exists at lease one series of 

such discrete modes. They are related to the perturba- 
tions of the wall location. The radial part of these mode 
functions is given by the derivative of the bounce solution 
as 

(5.16) 

It is easy to show that this mode function satisfies 
Eq. (2.24) withp’ = -4. If we put p, = 2i in Eq. (5.12), 
it diverges. However, the divergence comes from the 
monopole (e = 0) and dipole (1~ 1) parts of these modes, 
which just represent translations of the origin of the co- 
ordinates (so-called zero modes). In fact it is easy to 
check that these modes are represented by linear combi: 

nations of d&/dz?’ where I“ are the usual Minkowski 
coordinates. Thus they should be removed. Then the 
remaining part of the Wightman function becomes finite 
but at the expense of losing the Lorentz invariance. Us- 
ing the explicit form of the associated Legendre functions 
with special values of the indices, 

the contribution to the Wightman function from these 
,discrete modes is expressed as 

where 

8 
fzsmhx~sinhxk , 1 (5.18) 

N$, = 
I 

m LYRER&(EE). (5.19) 
0 

The last term in the square brackets is not Lorentz invari- 
ant. However, since the removed monopole and dipole 
modes simply represent the global translation of the bub- 
ble, this apparent violation of the Lorentz invariance 
should not affect observable quantities. Focusing on the 
wall fluctuations in Flindler space, this point has been 
discussed in detail by Garriga and Vilenkin [17]. 

In the Milne universe, one can interpret the fluctuation 
of the scalar field ‘p as the perturbation of the intrinsic 
curvature of the C$ =const hyperswface. The scalar-type 
curvature perturbation is described by a single potential 
function 72 as [18] 

6 ‘“)$ = $ - 
[( 

V”Vj - gv”vk 
> 

+$; (3 - h+z) 

= $ [-(I +p”)Rk;” + ;(4+p2)6$Y] , (5.20) 

where Vi denotes the covariant derivativewith respect to 
the metric on the unit three-hyperboloid, and the second 
line is the harmonic expansion of the first line with Y 

being the abbreviation for Y=L,,,(x, CZ) and q being the 
traceless tensor harmonics defined by 

% 
1 +- 

= lfp2 
[ 

1 i 1 
V”Vj - gjv”vE Y =: mp2;Y. 1 

(5.21) 

We note that Y: satisfies the equations 

v;y; = -24+.y, 
31+pz J 

vkv# = -(7+&T. 

(5.22) 

By an infinitesimal coordinate transformation E + F = 
( + T(I), we have 

F(z) = f+?(z) -&T(Z), T?(z) = R(z) - +, 

(5.23) 

on the new hypersurface[l8]. Hence setting T = (O/&J, 
we obtain 

m = -&(z), (5.24) 



2060 HAMAZAKI, SASAKI, TANAKA, AND YAMAMOTO 53 
as the curvature perturbation of the 4 =const hypersur- 

face. 
Now for p2 = -4, one finds that the trace of the curva- 

ture perturbation vanishes. Furthermore, from the first 
equation of (5.22), we see that Yj’ becomes transverse. 

Thus the p2 = -4 scalar-type curvature perturbation 
happens to become transverse traceless. This suggests 
that e = 0 and 1 modes do not contribute to the curva- 
ture perturbation and. the term violating the Lorentz in- 
variance in Eq. (5.18) will disappear when the two-point 
function of the curvature perturbation is considered. In 
fact, this can be explicitly demonstrated by operating 
with Dij on it. Consequently, we obtain 

(6 ‘“q(z)6 (3)k:(l’))pl=-g = 
1 

~v~~N$,[~E’~ 
vp: 

- +oshC 
I 

, 

(5.25) 

which is manifestly Lorentz covariant. 
From the above discussion, it is anticipated that the 

quantum fluctuations of the scalar field inside the bubble 
will be better understood when we include degrees of 
freedom of the metric perturbation. This point will be 
disclosed in the future work. 

Now let us examine if there exist discrete modes other 
than p = 2i. Since the mode (5.16) has no node, it is the 
eigenfunction for Eq. (2.24) with the lowest eigenvalue, 
i.e., the smallest p’. Hence other possible discrete modes 
must have the eigenvalues in the range -4 < pz < 0 

and have at least one or more nodes. Now, in the thin 
wall limit, it can be explicitly shown that such modes do 
not exist. Also, in this limit, one finds that the mode 
function Gp with p = 0 has one node and diverges to 
minus infinity as & + 0. Then, as we vary the model 
parameters continuously, the value of the mode function 
Gp=o at 5~ = 0 should cross zero if there should appear 
a bound state mode with one node. This implies the 
divergence of no for a certain set of the model parameters. 
However, as seen from Figs. 3 and 4, we have found no 

divergence of no. Hence, in our model, we conclude that 
there exist no additional discrete modes other than those 
related to the wall fluctuations. 

We will present a detailed analysis of these discrete 
modes in a future publication. 

VI. CONCLUSION 

In this paper, we have investigated the self-excitation 
of a scalar field in the process of its decay from a false 
vacuum. For this purpose we have considered a model 
potential which is piecewise quadratic and hence allows 
analytical treatments. We have interpreted the resulting 
quantum state inside a nucleated bubble in the particle 
&&ion picture. Then we have found the following fea- 
tures of particle creation. 
When the spacetime region of the bubble wall, which 
is defined as the region in which the mass squared of the 
scalar field is negative, is confined to the Euclidean region 
E, the number of created particles per each mode is ex- 
ponentially suppressed in the thin wall limit and at most 
of order unity~ unless the mass scale at the true vacuum is 
exponentially small compared with that at the top of the 
potential barrier. On the other hand when the wall re- 
gion extends to the Lorentzian region M-i+ the mass 
squared at the center of the bubble is still negative-the 
particle creation can be significantly enhanced. In this 
case, we have derived an approximate formula (4.22) for 
the particle spectrum as a function of the model param- 
eters which determine the shape of the potential, where 
F+ is defined by Eq. (4.15). 

In addition, we have also considered the effect of a set 
of discrete modes which describe the oscillation of the 
bubble wall. From a careful analysis of the Klein-Gordon 
norms, we have argued that these discrete modes do con- 
tribute to the quantum state inside the bubble, though 
they cannot be interpreted as usual particle modes. How- 
ever, since the monopole and dipole components of these 
modes correspond to the spacetime translation of the 
bubble center, we have argued that a consistent treat- 
ment of these modes requires the inclusion of gravita- 
tional degrees of freedom into the analysis simultane- 
ously. 

In view of the above considerations, the next step to 
be taken is to take gravity into account in the back- 
ground bounce solution. A framework in this direction 
has been already done in Ref. [19]. Hence it should be 
fairly straightforward to extend the present analysis to 

the one on the curved spacetime background. Then the 
second step is to study the effect of gravitational degrees 
of freedom on the excitation of a tunneling scalar field. 
In this respect, we expect that a formalism developed 
in Ref. [20] for dealing with the fluctuations around the 
bounce solution with gravity should be useful. After this 
second step, the role of the discrete modes will be clearly 
and unambiguously understood. 

Once these issues are settled, we will be able to talk 
about the quantum state of the scalar field inside the 
bubble with confidence. In connection with the one- 
bubble open inflation scenario, we will be able to discuss 
quantitatively the influence of the quantum fluctuations 
induced by tunneling on the primordial density pertur- 
bations and on the CMB anisotropies on large angular 
SC&S. 

ACKNOWLEDGMENTS 

We would like to thank Professor H. Sato for continu- 
ous encouragement. This work was supported by Mon- 
busho Grants-in-Aid for Scientific Research Nos. 2841, 
5326, and 05640342. 



3 SELF-EXCITATION OF THE TUNNELING SCALAR FIELD IN 2061 
[l] J.R. Gott III, Nature 296, 304 (1982). 
[2] M. Sasaki, T. Tanaka, K. Yamamoto, and J. Yokoyama, 

Phys. Lett. B 317, 510 (1993). 
[3] B. Allen and R. Caldwell, Report No. WISC-MILW-94- 

TH-21 (unpublished). 
[4] M. Bucher, A.S. Goldhaber and N. Turok, Phys. Rev. D 

52, 3314 (1995); M. Bucher and N. Turok, Phys. Rev. D 
52, 5538 (1995). 

[5] K. Yamamoto, M. Sasaki, and T. Tanaka, Astrophys. J. 
(to be published). 

[6] A. Linde, Phys. Lett. B 351, 99 (1995); A. Linde and A. 
Mezhlwiiian, Phys. Rev. D 52, 6789 (1995). 

[7] S. Coleman, Phys. Rev. D 15, 2929 (1977); Aspects 
of Symmetry (Cambridge University Press, Cambridge, 
England, 1985); C.G. Callan and S. Coleman, Phys. Rev. 
D 16, 1762 (1977); S. Coleman and F. De Luccia, ibid. 
21, 3305 (1980). 

[8] M. Sasaki, T. Tanaka, and K. Yamamoto, Phys. Rev. D 
51, 2979 (1995). 

[9] V.A. Rubakov, Nucl. Phys. B 245, 481 (1984). 
[lo] T. Vachaspati and A. Vilenkin, Phys. Rev. D 43, 3846 

(1991). 
[Ill T. Banks, CM. Bender, and T.T. Wu, Phys. Rev. D 8, 
3346 (1973); T. Banks and C.M. Bender, ibid. 6, 3366 
(1973). 

[12] J.L. Gervais and B. Sakita, Phys. Rev. D 15,3507 (1977); 
H.J. de Vega, J.L. Gervais, and B. Sakita, Nucl. Phys. 
BlSS, 20 (1978); B142, 125 (1978). 

[13] T. Tanaka, M. Sasaki, and K. Yamamoto, Phys. Rev. 
D49, 1039 (1994). 

[14] M. Sasaki, T. Tanaka, K. Yamamoto, and J. Yokoyama, 
Prog. Theor. Phys. SO, 1019 (1993); K. Yamamoto, ibid. 
91, 437 (1994); T. Tanaka, ibid. 93, 67 (1995). 

[15] K. Yamamoto, T. Tanaka, and M. Sasaki, Phys. Rev. D 
51, 2968 (1995). 

1161 W. Magnus, F. Oberhettinger, and R.P. Soni, Formulas 
and Theorems for the Special Functions of Mathematial 
Physics (Springer-&&g, Berlin, 1966). 

1171 J. Garriga and A. Vilenkin, Phys. Rev. D 45, 3469 
(1992). 

[18] H. Kodama and M. Sasaki, Prog. Theor. Phys. Suppl. 
78, 1 (1984). 

1191 T. Tanaka and M. Sasaki, Phys. Rev. D 50, 6444 (1994). 
[20] T. Tanaka and M. Sasaki, Prog. Theor. Phys. 88, 503 

(1992). 


	I. INTRODUCTION
	II. REVIEW OF FORMALISM
	III. SOLVABLE MODEL
	IV. DETAILED ANALYSIS OF PARTICLES
	V. DISCRETE MODES
	VI. CONCLUSION ACKNOWLEDGMENTS

