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Calibration Method by Image Registration with Synthetic

Image of 3D Model∗

Toru TAMAKI† and Masanobu YAMAMOTO†, Regular Members

SUMMARY We propose a method for camera calibration
based on image registration. This method registers two images;
one is a real image captured by a camera with a calibration ob-
ject with known shape and texture, and the other is a synthetic
image containing the object. The proposed method estimates
the parameters of the rotation and translation of the object by
using the depth information of the synthetic image. The Gauss-
Newton method is used to minimize the residuals of intensities of
the two images. The proposed method does not depend on ini-
tial values of the minimization, and is applicable to images with
much noise. Experimental results using real images demonstrate
the robustness against initial state and noise on the image.
key words: camera calibration, image registration, Gauss-
Newton method, Tsai’s method, z buffer

1. Introduction

Camera calibration is an important process for com-
puter vision and has been well studied. In this paper,
we propose a camera calibration method that is based
on image registration. The proposed method uses infor-
mation of a known geometric object with texture and
doesn’t need point correspondences.

Classical calibration methods require a number of
point correspondences. The correspondences are estab-
lished by manual operations or the marker detection.
However, the small number of the correspondences pro-
duced by such operations may affect the accuracy of
estimates.

The image registration technique [1]–[3] has been
also used to estimate parameters. It does not require
the correspondence because two images are registered
by minimizing the difference in intensities. The prob-
lem of conventional image registration is to assume that
objects to be registered are planar. Although registra-
tions for recovering arbitrary depth of a scene have been
proposed [1], [3], it can not estimate parameters such as
rotation and translation.

The registration-based calibration method pro-
posed in this article allows us to register images contain-
ing a three-dimensional object that is not planar, and to
estimate rotation and translation accurately. The pro-
posed method registers two images; one is a real image
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of a known geometric object captured by the camera to
be calibrated, and the other is a synthetic CG image
containing the object. The CG image is rendered using
the shape and the texture of the real object. Then the
Gauss-Newton method is used to minimize the residu-
als of intensities of the two images.

Experimental results shown in Sect. 4 demonstrate
that the inaccuracy of initial values for the minimiza-
tion does not affect estimates of the proposed method
and the parameters are estimated with high accuracy
even for images with much noise.

2. Registration between Two Images

In this section, we describe the model of the transfor-
mation between two images using depth information.
As shown in Fig. 1, the CG image I1 is produced with
a known object by given rotation R and translation T
(f is known). The object in the real image is supposed
to be slightly moved∗∗, and the parameters Q and S
are unknown.

(a) (b) (c)

(d) (e)

Fig. 1 Outline of the transformations. (a) The object and the
camera coordinate system (the camera is looking toward positive
direction of z). (b) Transfered object. (c) Relation of the object
in CG and real images. (d) CG image I1 of the object. (e) Real
image I2 with superimposed CG object. The object at the first
image is drawn in dotted line.

∗∗We consider that the camera coordinate system coin-
cides with the world coordinate system.
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2.1 Transformations of the Object

At first, we have a CG image, I1, of a known geometric
object with texture. Let P 0 be a point on the object
of which coordinate system is the same with the world
coordinate system (Fig. 1 (a)). P 0 is moved to P 1 as
the object is transfered by the rotation matrix R and
the translation vector T as

P 1 = RP 0 + T . (1)

Then the point P 1 = (X1, Y1, Z1)T is projected to p1 =
(x1, y1)T on the image I1 (Fig. 1 (d)) by

P 1 =
(

x1Z1

f
,
y1Z1

f
, Z1

)T

, (2)

where f is the focal length. Note that Z1 for each p1

is obtained by depth buffer (see Sect. 3.2).
Then we consider on I2, the real image captured

by the camera. We assume that I2 is similar to but
slightly different from I1 (Fig. 1 (e)). The point P 2 =
(X2, Y2, Z2)T is also transfered from P 0 by the rotation
Q and the translation S as

P 2 = QP 0 + S. (3)

Then P 2 is projected to p2 = (x2, y2)T I2:

p2 =
(

f
X2

Z2
, f

Y2

Z2

)T

. (4)

Therefore, p1 in I1 corresponds to p2 in I2 through
Eqs. (2), (4) and the following equation:

P 2 = QP 0 + S = QR−1(P 1 − T ) + S. (5)

3. Estimating Parameters

The minimization of the proposed method estimates
the parameters Q and S so that the two images I1 and
I2 are close to each other. Ideally, the difference in
intensities of corresponding points in I1 and I2 have
to be zero, but practically residual errors exist. Image
registration seeks to minimize the residuals ri:

ri = I1(p1i)− I2(p2i), (6)

where I1(p1) is the intensity at the point p1 in the
image I1, and I2(p2) is the intensity at the point p2 in
the image I2.

Since the correspondence between p1 and p2 is un-
known, we make p1 fixed and p2 be a function of p1, Q
and S through Eqs. (2), (4), and (5). Therefore, the
residual is also a function of the parameters, and the
objective function to be totally minimized for the esti-
mation is the sum of squares of the residuals over the
image I1 as

min
θ

∑
i

ri
2, (7)

where θ is the parameters to be estimated, and the
summation i is taken over the points p1i that are in
the object region in I1 and are also visible in I2 (see
Sect. 3.1).

The objective function is minimized by the Gauss-
Newton method (see Appendix).

3.1 Visible Test

We perform the following visible test (Fig. 2) to remove
a point which is not visible in I2. Let P 1 be a visible
point in I1 on the object, then the normal vector N 1 of
the surface at P 1 is given [4] by N 1 = ∂P 1

∂x × ∂P 1
∂y . As

P 1 is transformed to P 2 by Eq. (5), N1 is also rotated
to the normal N2 at P 2 by QR−1 in Eq. (5).

Since the camera center is identical to the ori-
gin, the angle between the normal N2 and the view-
ing direction (from the origin O to the point) is given
by cos−1

(
|N2·P 2|
|N2||P 2|

)
. If the angle is larger than 90◦

(Fig.2 (b)), then P 2 is not visible in I2 and P 1 (or p1)
in I1 is excluded from the calculation of Eq. (7).

3.2 Depth from the z Buffer

To obtain Z1 in Eq. (2), the proposed method uses the
depth information provided by a graphic library [5], [6].
However, a value in the z buffer is different from the
actual depth because it is just used for relative depth.

The relation between a value stored in the z buffer,
zb, and the actual depth, Z, is given by the following
equation [7];

Z =
fznz

zb

s
(fz − nz)− fz

, (8)

where nz and fz are the distances from the camera
center O to the front (near) and the rear (far) clipping
planes between which the z buffer holds its depth, and
s is the maximum value of the z buffer.

The precision of the z buffer is not uniform over
the depth range but depends on the ratio of fz to nz.
The larger the ratio is, the lesser the precision becomes
at the rear of the z buffer. Usually the precision is
better at the front of the z buffer.

(a) (b)

Fig. 2 Visible test. (a) P 1 is visible in I1. (b) P 2 is not visible
in I2.
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(a) (b)

Fig. 3 Configuration of the z buffer. The ratio fz to nz is (a)
large and (b) small.

Therefore, we create I1 with the z buffer twice.
At first time, we find the max/min distances between
the camera and the object in the z buffer with a pre-
determined large ratio (Fig. 3 (a)). Then, fz and nz is
placed just in front/behind of the object to make the
ratio small as possible (Fig. 3 (b)).

4. Experimental Results

The proposed method was tested in two experiments.
First, the estimation was analyzed using synthetic im-
ages whose parameters were known, and the results
were compared with another calibration method. Sec-
ond, the parameters of an actual camera were estimated
using a real image taken by the camera.

4.1 Tests with Synthetic Images

The following test was performed with synthetic im-
ages. As shown in Fig. 4 (a), we made I2 with a check-
ered cube as a calibration object (30 × 30 × 30); after
the CG image of the cube was rendered by OpenGL [5]
without shading and lighting, the contrast was changed
and uniform noise was added. The true values of the
parameters Q and S are shown in the top line of Ta-
ble 1.

Then we produced another image I1 (Fig. 4 (b)) of
the cube. The parameters R and T were given man-
ually using a GUI tool so that the appearance of the
cube in I2 is similar to that in I1 (so, R and T were
not identical to Q and S). After that, uniform noise
was added to R and T . Note that the z buffer was also
produced when I1 was rendered.

Figure 4 (c) shows the difference between I2 and
I1 (except the background) at the initial state and we
can see the large difference (the larger is the brighter)
because we set Q = R and S = T as the initial value.
Figures 4 (d)–(f) show the difference between I2 and
the image in which every point is warped from I1 by
currently estimated Q and S. After the optimization
converges (Fig. 4 (f)), we can see that the cube is accu-
rately fitted to that in I2.

To analyze statistically the results of the proposed
method, the test described above was performed 10
times. The noise added to R and T were uniform
(±0.1 [rad] for α, β and γ, ±5 for sx and sy, ±50 for
sz).

The first row of Table 1 shows the results of the

(a) (b)

(c) (d)

(e) (f)

Fig. 4 Experimental result with the synthesis image. (a) Cube
image I2 (added noise and changed contrast). (b) CG cube model
image I1. Difference between transformed I1 and I2 at (c) 0 (d)
1 (e) 3 (f) 18 iterations.

(a) (b)

Fig. 5 Experimental result with the real image. The difference
between the real image I2 and the synthetic image (a) before
optimization, and (b) after convergence.

proposed method. The estimates have some bias, how-
ever, the standard deviation is small. The second row
of Table 1 shows the results by Tsai’s method [8] using
manually selected 10 feature points to which uniform
noise (±1.5) was added to the x and y coordinates†.
From the viewpoint of the standard deviation of 10
tests, the proposed method is more robust to noise.
Note that the computational time for each test was

†Note that the Tsai’s method estimates f and sz simul-
taneously after other parameters are estimated. Therefore,
the estimates f affects the accuracy of sz, but other param-
eters are intact.
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Table 1 Results of 10 tests with synthetic images (f = 911.490494). Top : result of
the proposed method. Bottom : result of Tsai’s method.

true value γ = 35 β = 54 α = 25 sx = 6 sy = 26 sz = 411

mean 35.139 54.871 25.118 6.0039 26.015 411.25
std. 4.847e-3 4.745e-3 4.950e-3 3.697e-4 4.922e-4 3.102e-2

mean 35.757 55.072 25.547 6.2903 26.123 431.79
std. 1.829 0.5342 1.559 0.1910 0.1976 113.6

Table 2 Results with different focal lengths. The actual focal length is f ′ = 911.49,
and actual sz is s′z = 410.

f γ β α sx sy sz std.sz s′zf ′/f

717.09 35.526 54.994 25.455 5.9632 25.980 321.47 4.393e-3 322.56
802.94 35.397 54.914 25.348 5.9739 25.987 360.54 2.280e-3 361.17
911.49 35.139 54.871 25.118 6.0039 26.015 411.25 3.102e-2 410.00
1141.7 35.071 54.887 25.053 6.0293 25.980 515.40 3.037e-3 513.56
1371.6 34.777 54.770 24.836 6.0589 25.968 621.12 1.269e-3 616.97

Table 3 Experimental result with the real image.

γ β α sx sy sz

22.684 44.248 17.567 2.3529 27.594 485.08

less than two minutes on a PC (866MHz CPU) im-
plemented with GNU C++ and CLAPACK.

The proposed method assumes that the focal
length f is known, but f is not often estimated ac-
curately. Table 2 shows how the error of f affects the
estimates. For this, several different f were used to
produce I1 (we used the same I2 as Fig. 4 (a) with the
actual focal length f ′ = 911.49). Initial values with
noise were the same with the experiments above.

Although f was changed in the range of 0.8–1.5
times of f ′, the estimates of Q, sx and sy were still
correct and robust (std. were smaller than 1e-2). sz was
affected by the change of f and close to s′zf

′/f (in the
most right column of Table 2), where s′z is the actual sz.
The reason is that the focal length and the translation
along the optical axis are related by s′z/f ′ = sz/f .

4.2 Calibration with Real Image

We conducted experiments with the proposed method
using real images. A checkered cube whose size is
30 × 30 × 30 cm was used as the calibration object.
The procedure is the same with the experiments with
the synthetic images, and f = 1582 is given by other
calibration method.

The estimated parameters are shown in Table 3.
After the optimization converged (Fig. 5 (b)) in two
minutes, the cube model is accurately fitted to the ac-
tual object in the real image, while the difference before
the optimization is large as shown in Fig. 5 (a).

Actually, the appearance of the object in real world
depends not only on the reflectance but also on the
lighting condition and the lens system of a real cam-
era [9]. The proposed method does not take these ef-
fects into account, and assumes that the surface of the
object has no specular and uniformly lighted. In spite of

the simple assumptions, the proposed method worked
well.

5. Conclusions

We have proposed a camera calibration method, based
on image registration, for estimating the parameters of
the transformation of a known geometric object with
texture using depth information. The advantage of the
proposed method is its robustness against initial state
and noise on the image as shown in the experiments.
Besides, the proposed method can applicable to any
kind of a known geometric object with texture; not only
a cube but also a texture-mapped 3D object scanned
by a laser range finder or created by a CG modeler.

The proposed method does not estimate the focal
length. Another method is required for estimation of
the focal length, however, it is not necessary so accurate
because the error in the focal length does not affect the
estimates. The initial values do not need to be accurate,
which facilitates using a GUI tool for the initial fitting.
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Appendix: Estimating Parameters

Here we explain how to apply the minimization Eq. (7)
to the Gauss-Newton method.

Let R, Q, T and S appeared in Sect. 2 as:

R = Qz(a)Qy(b)Qx(c)

=


 cos a − sina 0

sin a cos a 0
0 0 1


 ·


 cos b 0 sin b

0 1 0
− sin b 0 cos b




·

 1 0 0

0 cos c − sin c
0 sin c cos c


 , (A· 1)

T = (tx, ty, tz)T , (A· 2)
Q = Qz(α)Qy(β)Qx(γ), (A· 3)
S = (sx, sy, sz)T . (A· 4)
Estimating the parameters θ = (θ1, . . . , θ6)T ≡

(α, β, γ, sx, sy, sz)T , Eq. (7) is minimized by the Gauss-
Newton method [10]. The parameters are updated,
with an initial value, by the following rule:

θ ← θ + α δθ . (A· 5)
The decent direction [10] δθ = (δθ1, . . . , δθ6)T is

δθ = −(JT J)−1JT r, (A· 6)
J =

∂r

∂θ
, (A· 7)

where r = (r1, r2, . . .)T . This is the same as the least
square formulation, that is, the system of linear equa-
tions [3] written as

∑
i

∑
l

∂ri

∂θk

∂ri

∂θl
δθl = −

∑
i

ri
∂ri

∂θk
, (A· 8)

for k = 1, . . . , 6. The partial derivatives are derived by
the chain rule of vector differentiation [10]:

∂r

∂θk
= −∂p2

∂θk

∂I2

∂p2

= −
(

∂x2

∂θk
,
∂y2

∂θk

)T

∇I2(p2).

(A· 9)
The partial derivatives of x and y [11] are as

∂x2

∂θk
=

f

Z2

(
∂X2

∂θk
− X2

Z2

∂Z2

∂θk

)
, (A· 10)

∂y2

∂θk
=

f

Z2

(
∂Y2

∂θk
− Y2

Z2

∂Z2

∂θk

)
. (A· 11)

The derivatives in the above equations are the elements
of the following Jacobian:

∂P 2

∂θk
=

(
∂X2

∂θk
,
∂Y2

∂θk
,
∂Z2

∂θk

)T

, (A· 12)

and the derivatives with respect to θk are as

∂P 2

∂α
=

∂Qz(α)
∂α

Qy(β)Qx(γ)R−1(P 1 − T ), (A· 13)

∂P 2

∂β
= Qz(α)

∂Qy(β)
∂β

Qx(γ)R−1(P 1 − T ), (A· 14)

∂P 2

∂γ
= Qz(α)Qy(β)

∂Qx(γ)
∂γ

R−1(P 1 − T ), (A· 15)

∂P 2

∂S
=

(
∂P 2

∂sx ,
∂P 2

∂sy ,
∂P 2

∂sz

)T

= I, (A· 16)

∂Qz(α)
∂α

=


 − sinα − cosα 0

cosα − sinα 0
0 0 0


 , (A· 17)

∂Qy(β)
∂β

=


 − sinβ 0 cosβ

0 0 0
− cosβ 0 − sinβ


 , (A· 18)

∂Qx(γ)
∂γ

=


 0 0 0

0 − sin γ − cos γ
0 cos γ − sin γ


 . (A· 19)

At the beginning of the iteration, we set Q = R,
S = T as the initial state because we assumes that the
difference between the two images is small.

Once the direction is decided by solving the sys-
tem of equations in Eq. (A· 8), the step length α is op-
timized by line minimization [12]. Update by Eq. (A· 5)
is repeated until it converges. At each iteration, the
parameters estimated in the previous iteration are used
for the current Jacobian.


