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Thermodynamics of SU3) gauge theory on anisotropic lattices
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Finite temperature S(3) gauge theory is studied on anisotropic lattices using the standard plaquette gauge
action. The equation of state is calculated ofiX8, 26°x 10, and 24X 12 lattices with the anisotrop§
=a./a;=2, whereag and a; are the spatial and temporal lattice spacings. Unlike the case of the isotropic
lattice on whichN,=4 data deviate significantly from the leading scaling behavior, the pressure and energy
density on an anisotropic lattice are found to satisfy well the Ieadihﬁ §taling from our coarsest lattice
N;/&=4. With three data points &,/¢=4, 5 and 6, we perform a well controlled continuum extrapolation of
the equation of state. Our results in the continuum limit agree with a previous result from isotropic lattices
using the same action, but have smaller and more reliable errors.
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I. INTRODUCTION tions in finite temperature QCE7—9]. In these studies, an-
isotropy was introduced to obtain more data points for tem-
The study of lattice QCD at finite temperatures is an im-poral correlation functions.
portant step toward clarification of the dynamics of the quark In this paper, we show that anisotropic lattices also pro-
gluon plasma which is believed to have formed in the earlwide an efficient calculation method for thermodynamic
Universe and is expected to be created in high energy heawyuantities. The idea is as follows. Inspecting the free energy
ion collisions[1]. In order to extract predictions for the real density of SW3) gauge theory in the high temperature
world from results obtained on finite lattices, we have toStephan-Boltzmann limit, the leading discretization error
extrapolate lattice data to the continuum limit of vanishingfrom the temporal direction is found to be much larger than
lattice spacings. Because of the large computational demandgat from each of the spatial directions. Hence, chooging
for full QCD simulations, continuum extrapolations of ther- =as/a; larger than one, wheras anda; are the spatial and
modynamic quantities have so far been attempted only ifémporal lattice spacings, cutoff errors in thermodynamic
SU(3) gauge theory, i.e., in the quenched approximation 0]quantmes will bg efficiently reduced without much increase
QCD, where the influence of dynamical quarks is neglected the computational cost. From a study of free energy den-

Two studies using the standard plaguette qauge a¢gon Sty in the high temperature limit, we find thgt=2 is an
g plad gauge a¢lp optimal choice for S(B) gauge theory. This improvement

-ﬁ.}so makes it computationally easier to accumulate data for

. : L more values of temporal lattice sizes for the continuum ex-
each other in the continuum limit.

. . trapolation.

In full QCD with two flavors of dynamical quarks, ther- X .
modynamic quantities on coarse lattices have been found tgta'tA\eS(EaOﬂSSSi; tgsL,Jt(Bo)f t;j g]?r:gg?' \gi f‘stggg tirc];ela(tet(iqcueasnodr;s?f
show a large lattice spacing dependete6]. For a reliable cretization errors ingthg EOS f)(;r the pla FLette actic;n are
extrapolation to the continuum limit, data on finer lattices are blad

required. With conventional isotropic lattices, this means afiuite large at the temporal lattice sikle=4. The data at this

increase of the spatial lattice size to keep the physical volYalue OfN: deviate significantly from the I(=23ad|ngl\ﬁ scal-
ume close to the thermodynamic limit. Full QCD simulationsNd behaviorF(T) [y, = F(T)|congnuunit Cr /Nt , whereF is a
on large lattices are still difficult with the current computer thermodynamic quantity at a fixed temperatireSo far,
power. A more efficient method of calculation is desirable.continuum extrapolations of the EOS have been made using
Even in the quenched case, we note that continuum extrapéesults aiN,=6 and 8. On anisotropic lattices with=2, we
lations of the equation of state have been made using onlfind that the discretization errors in the pressure and energy
two lattice spacing$2,3]. In order to reliably estimate sys- density are much reduced relative to those from isotropic
tematic errors from the extrapolations, more data points artattices with the same spatial lattice spacing. Furthermore,
needed. Therefore, an efficient method is also called for inwe find that the EOS aY,/¢é=4, 5, and 6 follow the leading
guenched QCD. 1/Nt2 scaling behavior remarkably well. Therefore, a con-
Recently, anisotropic lattices have been employed tdinuum extrapolation can be reliably carried out. Since the
study transport coefficients and temporal correlation functotal computational cost is still lower than that for &h
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=8 isotropic simulation, we can achieve higher statistics asion errors remain even in the limit gf=c. A rough esti-
well, resulting in smaller final errors. mate for the optimum value of is given by equating the

In Sec. I, we study the high temperature limit of Y discretization errors from spatial and temporal directigns,
gauge theory on anisotropic lattices to see Roappears in = ,5~2.24 from Eq.(1), and £=/3~1.73 from Eq.(2).
the leading discretization error for the EOS. From this studyMore elaborate estimations considering the balance between
we find thaté=2 is an optimum choice for our purpose. We the computational cost as a function of the lattice size and
then perform a series of simulations és 2 anisotropic lat- the magnitude of discretization errors including higher orders
tices. Our lattice action and simulation parameters are desf 1/N, lead to similar values of.
scribed in Sec. Ill. Section IV is devoted to a calculation of  Based on these considerations, we adep® for simula-
the lattice scale through the string tension. The critical temtions of SU3) gauge theory in the present work. An even
perature is determined in Sec. V. Our main results are preaumber for ¢ is also attractive for the vectorization/
sented in Secs. VI and VII, where the pressure and energyarallelization of the simulation code, which is based on an
density are calculated and their continuum extrapolations areven-odd algorithm, since we can study the case offdd

carried out. A brief summary is given in Sec. VIII. without modifying the program.
Il. HIGH TEMPERATURE LIMIT I1l. DETAILS OF SIMULATIONS
In the high temperature limit, the gauge coupling vanishes A. Action

due to asymptotic freedom, and &) gauge theory turns
into a free bosonic gas. In the integral mettt@] which we
apply in this study, the pressupeas related to the free energy
densityf by p=—f for large homogeneous systems. There- 1

fore, in the high temperature limit, the energy densitys SG[U]ZB(g—QsJr §oQt), ()]
given by e=3p=—3f. The value off in the high tempera- 0

ture limit has been calculated [11,12. Normalizinge by  where &, is the bare anisotropy3=6/g2 with g, the bare
the Stephan-Boltzmann value in the continuum limit, we findgauge coupling constant, and

We employ the plaquette gauge action for (SJUgauge
theory given by

€ 5+3¢&2 [ w\% 91+210:2+99¢* [ 7|4
Pt T E) 1680 |N. Q= 2, (1-Py(n), Q=2 (1-Pu(m), @
oll” 6 1) with P, (n)=3ReTU ,,(n) the plaquette in the i,v)
N¢ plane at siten. Anisotropy is introduced by choosirgy+ 1.

Due to quantum fluctuations, the actual anisotrapy
for spatially large lattices. Substituting=1 in Eq. (1), we  =a./a, deviates from the bare valuig. We define the renor-
recover the previous results for isotropic latti¢@8]. When  malization factory(B,&) for ¢ by
we alternatively adopt the derivative methddperator

method [11] to define the energy density, we obtain 3
9] gy densiy. MBO= ¢ g (5
€ 5(1+&2) [ w\2 13+502+33¢4 [ 7|4 ’
6_8I3:1+ 21 N, tY—>m N, The values ofy(B,£) can be determined nonperturbatively

by matching Wilson loops in temporal and spatial directions
\® on anisotropic latticef13—16. For our simulation, we cal-
ﬁt 2 culate&y(B,£€=2) usingn(B,£) obtained by Klassen for the
range k= £¢<6 and 5.5 8<x [16]:
In both formulas, the leading discretization error is propor-
tional to 1N?.

In the leading lb(lf term of Eq.(1) [or Eq.(2)], the term
proportional to&? represents the discretization error from
finite lattice spacings, in the three spatial directions. We whereay,=—0.77810,a,=—0.55055, and
find that the temporal cutoff; leads to 5/8(or 1/2) of the

+0

e =11 1)%(5) 1+aug;

1--— , 6
¢ 6 1+aog(2)go ©

leading discretization error at=1, while the spatial cutoff - 1.00250%°+0.3910@*+1.4713¢—0.19231
a, contributes only 1/§or 1/6) from each of the three spatial 7% &)= £3+0.262 822+ 1.5900§—0.18224
directions. 7)

Since a reduction of the lattice spacing in each direction
separately causes an increase of the computational cost by a
similar magnitude, a reduction @f, is much more efficient
than that ofa in suppressing lattice artifacts in thermody- The main runs of our simulations are carried out &n
namic quantities. Making the anisotrogy=as/a, too large =2 anisotropic lattices with sizN3xXN,=16°x8, 2C
is, however, again inefficient because the spatial discretizax 10 and 24x 12. ForN,=8, we make additional runs on

B. Simulation parameters
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TABLE |. Simulation parameters. Main runs are marked by as- TABLE Il. Simulation parameters for determination of critical

terisk (*). couplings.
Lattice B Bin size No. of iterations Lattice B Bin size No. of iterations
1% 8 5.73-6.80 1600 40 000 128 5.790, 5.791 8000 80 000
16°x 8* 5.74-6.80 800 20 000 16x 8 5.790, 5.792 4000 40 000
24°% 8 5.75-6.80 400 10 000 243 8 5.791, 5.792 4000 40 000
20°x 10* 5.86-6.98 2000 50 000 20°% 10 5.903, 5.907 5000 50 000
243x 12* 5.95-7.20 4000 100 000 243% 12 6.004, 6.006 10000 100 000
12824 5.74-6.80 400 10 000
3 .
16 X32: 5.74-6.80 200 5000 the spatial and temporal plaquettéy;; and Pg;. Near the
20;><40 5.86-6.98 500 12 500 critical temperature, we also measure the Polyakov loop. The
243><48 .75-5.90 100 2500 errors are estimated by a jack-knife method. The bin size for
24X 48" 5.95-7.20 1000 25000 the jack-knife errors, listed in Table 1, is determined from a

study of bin size dependence as illustrated in Fig. 1. The

. . . results for the plaguettes are summarized in Tables IlI-V.
12°x 8 and 24 8 lattices to examine finite size effects. The plaq

zero-temperature runs are made Miux ENg lattices with &
=2. The simulation parameters of these runs which cover
the rangeT/T,~0.9-5.0 are listed in Table I. To determine A. Static quark potential

precise values for the critical coupling, longer runs around \ye getermine the physical scale of our lattices from the
the critical points are made at the parameters compiled iying tension, which is calculated from the static quark-

Table II. i o , antiquark potential at zero temperature. To calculate the
For the main runs, the aspect raligh = (Nsag)/(N1a)) IS giatic  quark potential, we perform additional zero-

fixed to 4, wherd.;=Nsa; is the spatial lattice size in physi- temperature simulations listed in Table VI. The static quark
cal units. This choice is based on a study of finite spatial . A .
tential V(R) is defined through

volume effects presented in Sec. VI, where it is shown thatf:)0

IV. SCALE

for the precision and the range ®f T, we study, finite spa- 5 3~ Bya-V(R)TIE
tial volume effects in the EOS are sufficiently small with WRT)=C(R)e ' ®)
L T=4.

Gauge configurations are generated by a five-hit pseudo PP i . .
heat bath update followed by four over-relaxation sweeps/N€reW(R,T) is the Wilson loop in a spatial-temporal plane
which we call an iteration. As discussed in Sec. VI, the totaWith the sizeRagx Ta;. We measure Wilson loops at every
number of iterations should be approximately proportional to25 iterations after thermalization. In order to enhance the
N¢ to keep EOS accurate. After thermalization, we performdround state signal in Eq8), we smear the spatial links of
20 000—100 000 iterations on finite-temperature lattices anéhe Wilson loop[17,18. Details of the smearing method are
5000-25 000 iterations on zero-temperature lattices, as contd€ same as in Ref19]. We determine the optimum smear-

piled in Table I. At every iteration, we measure ing stepNyy, which maximizes the overlap functioﬁ(f{)

0.00005 T T T T

0.00004

0.00003

FIG. 1. Typical bin size dependence of jack-

knife errors forAS.
0.00002

Jackknife error of AS

0.00001 |

0.00000 L L L L
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TABLE Ill. Plaquette expectation values on®68 and 16X 32 lattices withé=2.

16°x 8 16°x 32
,8 fO Pss Pst Pss Pst

5.740 1.66279318 0.448 4@&30) 0.679 98512 0.448 490298 0.67997911)
5.750 1.664 73308 0.450 6@ 0.68141211) 0.450 64121) 0.681 3848)
5.760 1.666 644 10 0.452 7&B) 0.682 78813) 0.452 73122 0.682 7479)
5.770 1.668 526 93 0.454 9E3®) 0.684 17513) 0.454 75824) 0.684 0909)
5.780 1.670382 23 0.457 0&B) 0.68553822) 0.456 72021) 0.685 3928)
5.788 1.67184708 0.459 184.6) 0.686 82849) 0.458 27230) 0.686 41911)
5.790 1.67221065 0.459 9QM9) 0.687 24048) 0.458 67826) 0.686 67911)
5.792 1.67257316 0.460 5(104) 0.687 57845) 0.459 05622) 0.686 9299)
5.800 1.67401280 0.462 60%) 0.688 87833) 0.460 58622) 0.687 9499)
5.805 1.674904 22 0.463 8 0.689 58715) 0.46156%21) 0.688 5889)
5.810 1.675789 29 0.464 9WD) 0.690 27817) 0.462 44620) 0.6891819)
5.820 1.67754071 0.466 744) 0.691 52010) 0.464 24117 0.690 38%6)
5.830 1.679 267 62 0.468 48 0.692 70410) 0.466 02221) 0.6915789)
5.840 1.68097058 0.470 12B) 0.693 8398) 0.467 70724) 0.692 7229)
5.880 1.687553 24 0.476 10%) 0.698 1427) 0.474 20%17) 0.697 14%7)
5.900 1.690 71395 0.478 998) 0.700 1569) 0.477 28222) 0.699 25%9)
5.950 1.698 263 59 0.485 6(1f%) 0.704 9387) 0.484 39018) 0.704 1997)
6.000 1.705 350 29 0.491 7() 0.709 4066) 0.490 95%20) 0.708 8019)
6.100 1.718 307 38 0.503 2@#) 0.717 6526) 0.502 98614) 0.717 2305)
6.200 1.729878 92 0.513833) 0.72517%6) 0.51383914) 0.724 8375)
6.300 1.740292 71 0.523 74®) 0.7321064) 0.52391515) 0.7318277)
6.400 1.749728 20 0.533 078) 0.7385524) 0.5334019) 0.738 3163)
6.500 1.758 328 76 0.541 97®) 0.744 5865) 0.542 3628) 0.744 3785)
6.600 1.766 210 35 0.550 3@ 0.750 25@3) 0.550 85410) 0.750 05&4)
6.700 1.773 467 85 0.558 485 0.755 6084) 0.558 9599) 0.7554274)
6.800 1.780 17964 0.566 2(1®) 0.7606724) 0.566 7168) 0.7605014)

under the conditiorﬁ:(ﬁ)sl. Following Ref[18], we study 1 = d3k cogk-R)

a local effective potential defined by &= 4 f 2m? 2 : (11)

mem 43, sirt(kad2)
=
.- W(R,T)
Ver(R, T)=¢log W) , (9 which is introduced to approximately remove terms violating
(RT+1) rotational invariance at short distances. The coefficleist

treated as a free parameter.

which tends toV(R) at sufficiently largeT. The reason to The fit rang€] Rmin ,Rmad for R is determined by consult-

adopt Eq.(9) instead of the fit result from Ed8) is to per-  ing the stability of the fit. Our choices fdR.,, are given in

form a correlated error analysis directly for the potential pa-Table VII. We confirm that the fits and the values of the

rameters. The optimum value gt listed in Table VII, is  string tension are stable under a variatiorRgf,,. The string

obtained by inspecting the plateau\sfs(R,T) at eachg. tension is almost insensitive to a wide variation Ryf,,,-

We perform a correlated fit o\‘/(ﬁ):veﬁ(ﬁ,?op,) with  HenceR,,, is chosen as large as possible so far as the fit is

the ansat£20] stable and the signal is not lost in the noise. With this choice
for the fit range, we obtain fit curves which reproduce the
data well.

1 |1 Our results for the potential parameters are summarized in

5 15 (10 Table VII. The error includes the jack-knife error with bin
size one(25 iterationg and the systematic error from the

choice of R, estimated through a difference under the

Here,[llﬁ] is the lattice Coulomb term from one gluon ex- change ofIA?min by one. We confirm that increasing the bin
change, size to two gives consistent results on®¥@2 lattices,

X .1
V(R)=VO+UR—eE+I
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TABLE IV. Plaquette expectation values on®2010 and 28X 40 lattices withé=2.

PHYSICAL REVIEW D64 074507

26°x 40
B 60 Pss Pst Pss Pst
5.86288916 1.68478116 0.471 5280 0.695 3072398) 0.471 519499 0.695 303838)
5.87 1.68594094 0.472 68(%7) 0.696 090737) 0.472 645879 0.696 077133)
5.88583578 1.688 484 20 0.475 20483 0.697 806252 0.475 107293 0.697 765541)
5.90 1.690713 95 0.477 55&12) 0.699 3698144) 0.477 261279 0.699 243(33)
5.91 1.692 26327 0.479 33@40) 0.700 524Q144) 0.478 723%65) 0.700 257830)
5.92 1.69379248 0.480 9913 3 0.701 619150) 0.480 183257) 0.701 266526)
5.93084722 1.695428 99 0.482 6089 0.702 722739 0.481 718279 0.702 335835)
5.94 1.696 79224 0.483 89¢32) 0.703 625@30) 0.48301180) 0.703 231430)
5.96 1.699 716 45 0.486 58(82) 0.705 522830) 0.485 742762) 0.705 138232
5.98 1.702568 18 0.489 17@H) 0.707 365(25) 0.488 388833) 0.706 990034)
5.9961937 1.704 826 05 0.491 223%) 0.708 816030) 0.490 483271) 0.708 459130)
6.0793640 1.71575557 0.501 0447) 0.715827(Y) 0.500 584062 0.715557627)
6.17716193 1.727 34556 0.511 6532 0.723 355(25) 0.511435743) 0.723 159822
6.28582916 1.738 880 20 0.522 5996) 0.731 015721 0.522 5280(63) 0.730 868721
6.40118969 1.74983517 0.533 4632 0.738 500919 0.533492643) 0.738 383917)
6.51881026 1.759 863 08 0.543 8683) 0.745 558119 0.543 970240) 0.745 465719
6.63417079 1.768 756 24 0.553 5139 0.752 003219 0.55364761) 0.751 920423
6.74283803 1.776 40579 0.562 14483 0.757 697023 0.562 309836) 0.757 625114)
6.84063596 1.782766 47 0.569 5838 0.762547517) 0.569 762634) 0.762 479911)
6.92380626 1.787 83002 0.575 6733 0.766 4882198) 0.575 858731 0.766 420616)
6.98915275 1.791 606 48 0.580 3238 0.769 470214) 0.580509441) 0.769 4057198)
TABLE V. Plaquette expectation values on®2412 and 24x 48 lattices withé=2.
243%x 12 24x 48
,3 fo Pss Pst Pss Pst

5.95 1.698 263 59 0.484 3887) 0.704 191613 0.484 378¥45) 0.704 188819
5.98 1.702568 18 0.488 40@8D) 0.707 000819 0.488 382835) 0.706 988015)
6.00 1.705 35029 0.49110Q4.8 0.708 853750 0.490 966839) 0.708 797714)
6.01 1.706 716 10 0.492 49QD4) 0.709 796243 0.492 229137) 0.709 683815)
6.02 1.708 065 52 0.493 8063 0.710 701132) 0.493 471830) 0.710 557613
6.03 1.709 398 87 0.495 08Q) 0.711588116) 0.494 704836) 0.711423217)
6.04 1.710716 46 0.496 31&D) 0.712 451016) 0.495 919832 0.712 279113
6.07 1.714577 63 0.499 86%7) 0.714 959510) 0.499 489131) 0.714 788915)
6.08 1.71583512 0.501 0199) 0.715 77476) 0.500 657831) 0.715 608213
6.10 1.718 307 38 0.503 2872) 0.717 380710 0.502 955129) 0.717 220813
6.15 1.724 250 80 0.508 77&%®) 0.721 257610 0.508 510619) 0.721 115412)
6.20 1.72987892 0.514 036%) 0.724 954912 0.513 837220) 0.724 83683)

6.30 1.740292 71 0.524 02&1) 0.73191883) 0.523922(23) 0.731 828410)
6.40 1.749728 20 0.533 426%,) 0.738 379811) 0.533 387823 0.738 312%9)

6.60 1.766 210 35 0.550 80€@5) 0.750 10147) 0.550 837222 0.750 05689)

6.80 1.780179 64 0.566 63455) 0.760 52816) 0.566 701021 0.760 49249)

7.00 1.792217 20 0.581 19&®) 0.769 92518) 0.581 272112 0.769 893%5)

7.20 1.802 73290 0.594 6688 0.778 47269) 0.594 7568198) 0.778 443%3)
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TABLE VI. Simulation parameters for static quark potential at
zero temperature.

rB Lattice Nopt No. of configurations
5.7 16x 32 3 800
5.8 16x 32 5 800
5.9 16x 32 6 800
6.0 16x 32 8 600
243% 48 8 100
6.1 16x 32 10 400
6.3 16x 32 16 300
243% 48 20 100
6.5 2448 30 100

while, on 24X 48 lattices, correlated fits with bin size two

PHYSICAL REVIEW D 64 074507

Co=0.0117141), c,=0.28579), c,=0.03330),
(14)

with x?/Npg=1.77. The string tension data and the resulting
fit curve are shown in Fig. 2, together with those from iso-
tropic lattices[22].

V. CRITICAL TEMPERATURE

We define the critical gauge coupligy(N;,Ns) from the
location of the peak of the susceptibility,,; for a
Z(3)-rotated Polyakov loop. The simulation parameters for
the study ofB. are compiled in Table II. Th@ dependence
of xot IS calculated using the spectral density meth2d.

The results forB, are compiled in Table VIII.
To estimate the critical temperature, we have to extrapo-

become unstable due to an insufficient number of jackknifé@® Bc(N,Ns) to the thermodynamic limit and to the con-

ensembles.

B. String tension

We interpolate the string tension data using an ansatz pro-

posed by Allton[21]:

1+ca(B)?+ca(B)*
Co '

as\/ng(,g)

12

wheref(B) is the two-loop scaling function of SB) gauge
theory,

6b, —(by/2b3) B
f(ﬂ)—(7> ex ~ 1obg |
L1 102 3
O 16x2’ ' (16m2)2

anda(B)=f(B)/f(B=6.0).
From Table VII, we find that the values faig\/o are

tinuum limit. We perform the extrapolation to the thermody-
namic limit using a finite-size scaling ansatz

N, |3

éNg

(15

Be(N; st):ﬁc(Nt,w)—h(

for first order phase transitions. From the data By on
anisotropic 13x8, 16x8 and 24x 8 lattices withé=2,
we findh=0.031(16) forN;/é=4, as shown in Fig. 3. In a
previous study on isotropic latticel, was found to be ap-
proximately independent dfl; for N;=4 and 6[24]. We
extractB.(N;,) adoptingh=0.031(16) for allN;.

The critical temperature in units of the string tension is
given by

T £

Jo  Ny@asyo)(Be(Ny,))

(16)

using the fit result for Eq(12). The values ofrC/\/; are
summarized in Fig. 4 and Table VIII. The dominant part of
the errors inT./+\/o is from the Allton fit for the string ten-

insensitive to the spatial lattice volume to the present precision.

sion. Using data marked by an asterisk (*) in Table VII, we
obtain the best fit at

Finally we extrapolate the results to the continuum limit
assuming the leading I\llf scaling ansatz

TABLE VII. Results for the potential parameters @a-2 anisotropic lattices with the plaquette action. The spatial lattice Lsizs

computed using/o =440 MeV.

B Lattice ag\o L¢(fm) T Runin Vo e [ X*INpe
5.7 16 32¢ 0.479466) 3.49 5 \/g 0.67136) 0.30550) 0.934122 5.81
5.8 16 x 32 0.380424) 2.77 6 \/5 0.72Q11 0.32616) 0.64749) 3.07
5.9 16x 32 0.319Q18) 2.32 7 \/3 0.6887) 0.28411) 0.50143) 3.20
6.0 16x 32 0.266721) 1.94 8 \/6 0.6858) 0.28314) 0.39673) 0.93

243X 48* 0.261131) 2.85 8 \/6 0.69911) 0.31019 0.56582) 2.05
6.1 16x32  0.222420) 161 8 22 0.6866) 0.29713) 0.37561) 1.97
6.3 16x32 0.165619) 1.20 9 \/6 0.6535) 0.2819) 0.23967) 0.95
28x 48 0.166120) 1.81 9 NG 0.6575) 0.2949) 0.32368) 172
6.5 28 48 0.124221) 1.35 9 \/E 0.6223) 0.2796) 0.24747) 1.75
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0.6

05

0.4 |

FIG. 2. String tensiorr on £=2 anisotropic
lattices as a function gB. Scaling fits are based
on the ansatz Eq12).

FIG. 3. Finite-size scaling of3; for N,/¢
=4 on ¢=2 anisotropic lattices.

Lo
= 03|
3
02}
04
00 1 1 1 1 1 1
56 58 6 5 62 6.4 6.6
5792 r T T T
Ni=8
5791 |- -
L)
Q.
®
5790 | -
1 1 1 1
0 0.01 0.02 0.03 0.04
3
(N:/ (ENg))

TABLE VIII. Critical coupling and temperature on anisotropic=2 lattices. Results foﬂ'cl\/g are

obtained in the thermodynamic limit.

N3X N, 122x8 16°x 8 248%8 20°% 10 28x12
Bc(N¢,Ng) 5.7903740) 5.790 8154) 5.7913831) 5.904 9492 6.004 6467)
Be(N;,©) 5.791 4934) 5.905 43116) 6.005 1291)
T/ \/; 0.640239) 0.639239) 0.636475)
. In Fig. 4, we also plot the results obtained on isotropic
F|Nt= F| continuunit —, (17) lattices using the plaquette actif2b] and the RG-improved
t

with F=T,/\/o. The extrapolation is shown in Fig. 4. In the
continuum limit, we obtain

T
—£-0.63510)

Jo

from the ¢=2 plaquette action.

(18

action[26,3]. Our value ofT. /o in the continuum limit is
consistent with these results within the error of about 2%. A
more precise comparison would require the generation and
analyses of potential data in a completely parallel manner,
because, as discussed 8], numerical values oTC/\/E ata

few percent level sensitively depend on the method used to
determine the string tension. We leave this issue for future
studies.
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S 0635 /-. i FIG. 4. Critical temperatur&,//o on isotro-

&~ pic and&é=2 anisotropic lattices.
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2 Y FIG. 5. Spatial lattice volume dependence in
, AS at N;/é=4 on Ng=12, 16, and 24 lattices
2 \\ J with £=2.
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‘ FIG. 6. Spatial volume dependence of the
08 f 1 pressurep/T* on £=2 anisotropic lattices with
7 N, /E=4.
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04

T
/
[]

e, 02

\ . A \ . .
5.8 6 6.2 6.4 6.6 6.8

B T/Te

5 . . . . . . FIG. 8. Pressur@/T* on ¢€=2 anisotropic lattices.
AN Nt=10

\ ] pl? (s
T4 :f dﬂ'AS(,B’), (19
.} T Bo Bo

with

N\* 1 dlogZ
_‘> _+ 7109~ (20)

&) N3N, 9B

! S AS(B)=¢
) 1 3

e ay For our anisotropic gauge action E@), the derivative of
logZ is given by

‘ ' dlogZ SG> 9&0(B,§) (Qs)
B _ _[ =S ZTS0AFST _
7B < Y T (<Q‘> 53(115))

Ne=12 —(T=0 contribution. (21

We use symmetricNgx &Ny lattices to calculate th@=0

, contribution. For a sufficiently sma,, p(B,) can be ne-

$ N 1  glected.

2 In order to keep the same accuracy X% for the same
2 . . physical lattice vqumdL§ in units of the temperatur€, the

I’ statistics of simulations should increase in proportion to

' 1 (EINJEMHH(NIN) =N/ 8. Here, the first factor arises
I from &(N,/£)* in Eq. (20), and the second factor NéNt)

"""" e from a suppression of fluctuations due to averaging over the
lattice volume. Taking into account the autocorrelation time
. Py v o o = 75 which is proportional td\lf, the number of iterations should

increase as-N?.
FIG. 7. ASon N,/¢=4, 5, and 6 lattices witl§=2. In_tegratingAS in B using a cul_)ic spline _interpolation, we
obtain the pressure. For the horizontal axis, we use the tem-
perature in units of the critical temperature

VI. PRESSURE
A. Integral method T (asVo)(Bo) (22

T .
We use the integral method to calculate the preskLig ¢ (@xo)(B)

This method is based on the relatiorp=—f  The errors from numerical integration are estimated by a

=(T/V)log Z(T,V) satisfied for a large homogeneous systemjack-knife method in the following way3]. Since simula-

whereV= Lg is the spatial volume of the system in physical tions at different3 are statistically independent, we sum up

units and Z is the partition function. Rewriting log  all the contributions fronB; smaller tharnB corresponding to

=[dB(1/Z)(9Z/B), the pressure is given by the temperatureT by the naive error-propagation rule,

074507-9
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op(T)=2;8p;(T)?, wheres,p(T) at each simulation point
B is estimated by the jackknife method.

B. Finite spatial volume effects

We first study the effects of finite spatial volume on the <_
EOS. In Fig. 5, we show the results f&S at N,/¢=8/2 ol
with the aspect ratih.sT=Ns&/N,=3, 4, and 6, which cor-
respond toNg=12, 16, and 24, respectively. Integrating

in B, we obtain Fig. 6 for the pressure. We find that the data  os} E=2 o~

atL T=3 are affected by sizable finite volume effects both é=1 e —

atT~T. and at high temperatures. On the other hand, for the &=1(RG) -5~
range of T/T. we study, the pressure does not change when —o7———b—— ol
the aspect ratio is increased frdmgT =4 -6, indicating that &/ Ny

the conventional choice T=4 is safe with the present pre-

cision of data. Hence, we chookgT =4 for our studies of 7

lattice spacing dependence. Results &8 at L ,T=4 with ol T/Te=25 °

variousN; are given in Fig. 7. Integrating the data using a
cubic spline interpolation, as shown in the figures, we obtain
the pressure plotted in Fig. 8.

C. Continuum extrapolation E

We now extrapolate the pressure to the continuum limit
using the leading order ansatz of E@7). Figure 9 shows 12|
the pressure af/T.=1.5, 2.5, and 3.5 as a function of E=2 o
(¢/Ny)? (filled circles. For comparison, results from isotro- tE &=1 o~ N
pic lattices using the plaquette actif®] (open circleg and E=1(RG) =~
the RG-improved actioh3] (open squargsare also plotted. R oo 002 o o00i oo o0 oo ooe
For the é=1 plaquette data, we adopt the results of a re- 1Ny

analysis made in Ref3] to commonly apply the scale from
the Allton fit of the string tension and also the same error ' '
estimation method. ot T/Te=3.5
The advantage of using anisotropic lattices is apparent
from Fig. 9. On the coarsest lattide,/é=4, finite lattice
spacing errors af=2 are much smaller than those &t 1 sl
with the same plaquette action. The pressur@d aR.5T, <
for example, on the isotropic $6 4 lattice is larger than its S s
continuum limit by about 20%, while the deviation is only
5% on the corresponding 48 8 lattice with¢=2. Further-

19 ,

14

more, with the anisotropi§=2 data, the leading I},I/t2 term 13 E=2 g
describes the data well even &L /¢é=4 (the rightmost Ll E=1 e
point). Therefore, we can confidently perform an extrapola- | E=1(RG) B~ e N

1 L 1 1 e
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

E&/N)

tion to the continuum limit using three data points. In the 1
case of the isotropic plaquette action, in contrast, the con-
tinuum extrapolation had to be made with only two data
points atN;/£=6 and 8. In the continuum limit, our results  FIG. 9. Continuum extrapolation of the pressy@* at T/T,
for £&=2 are slightly smaller than those from the isotropic =1.5, 2.5 and 3.5.
plaquette action, but the results are consistent with each
other within the error of about 5% for the results from thetropic 32X 8 [2] and ouré=2 anisotropic 28x 10 lattices,
isotropic action. It is worth observing that the=2 results i.e., p/T*=1.390(26) on a 3¥<8 lattice and p/T*
have smaller and more reliable errors of 2% —-3%. =1.381(13) on a 20x 10 lattice, both lattices having the

In order to quantitatively evaluate the benefit of aniso-same spatial siz&lsas=1.6/T.. The number of configura-
tropic lattices, we compare the computational cost to achievéons to achieve these statistical errors are 20 000—-40 000
comparable systematic and statistical errors on isotropic aniterations foré=1 and 50 000 fo&=2, respectively. There-
£=2 anisotropic lattices. Choosin§j=2.5T, as a typical fore, for the same statistical error, the relative computational
example, we find that the deviation of the pressure from theost for aé=2 lattice over that forf=1 is conservatively
continuum limit (i.e., the magnitude of the systematic error estimated as ((Z0x 10)x50000)/((32x8)x 4x 20000)
due to finite lattice cutoffisis comparable between the iso- ~1/5, showing a factor of 5 gain in the computational cost

074507-10
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FIG. 10. Pressurep/T# in the continuum

limit.

FIG. 11. €/T* on anisotropic 18x8, 2C°
X 10 and 24x 12 lattices withé=2.

FIG. 12. Continuum extrapolation of the en-
ergy densitye/T* at T=2.5T,.
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<
t 8r T FIG. 13. Energy densitye/T* in the con-
v tinuum limit.
2F -
L £=2 o |
é=1 o~
), £=1(RG) ~a~
00.5 1 1.5 2 25 3 35 4 45 )
T/T.
for the anisotropic calculation in this example. £=2 plaquette action leads to an energy density which is

In Fig. 9 we also note that the results from the RG-slightly smaller than, but consistent with that from the
improved action on isotropic lattices are higher by 7% -10%=1 plaquette action, but is about 7%-10¢bout 2Zr)
(about 2r) than those from the present work in the con-smaller than that from thé=1 RG-improved action. More
tinuum limit. A possible origin of this discrepancy is the use work is required to clarify the origin of the small discrepancy
of theN,;/&{=4 data of the RG-improved action, which show with the RG-improved action.

a large(about 20%) deviation from the continuum value. For
a detailed test of consistency, we need more data points, say
atN,/&=6, from the RG-improved action. Viil. CONCLUSION

Repeating the continuum extrapolation at other values of \ye pave studied the continuum limit of the equation of

T/T., we obtain Fig. 10. Our results show a quite slow ap-gtate in SY3) gauge theory on anisotropic lattices with the
proach to the high temperature Stephan-Boltzmann limit, A8nisotropyé=as/a,= 2, using the standard plaquette gauge

reported also in previous studies on isotropic latti8]. action. Anisotropic lattices are shown to be more efficient in
calculating thermodynamic quantities than isotropic lattices.
VIl. ENERGY DENSITY We found that the cutoff errors in the pressure and energy

density are much smaller than corresponding isotropic lattice
results at small values dfl;/&¢. The computational cost for
£=2 lattices is about 1/5 of that faf=1 lattices. We also

We calculate the energy densigyby combining the re-
sults of p/T# with those for the interaction measure defined

by found that the leading scaling behavior is well satisfied al-
e—3p B ready fromN,;/é=4, which enabled us to perform con-
=—a;—| AS. (23 tinuum extrapolations with three data pointsNyté=4, 5,
T das ¢ and 6. The equation of state in the continuum limit agrees

with that obtained on the isotropic lattice using the same
The QCD beta function on anisotropic Iatti@ef;/o?aslg is  action, but has much smaller and better controlled errors.
determined through the string tensiaerstudied in Sec. IV B, The benefit of anisotropic lattice demonstrated here will be
R R indispensable for extraction of continuum predictions for the

ap 12b, 1+c,a’+cgat equation of state, when we include dynamical quarks.

as—| = = —, (24
*das|, 6(by/bg) B t—1 1+3c,a%+5c,at 29
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