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Thermodynamics of SU„3… gauge theory on anisotropic lattices
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Finite temperature SU~3! gauge theory is studied on anisotropic lattices using the standard plaquette gauge
action. The equation of state is calculated on 16338, 203310, and 243312 lattices with the anisotropyj
[as /at52, whereas and at are the spatial and temporal lattice spacings. Unlike the case of the isotropic
lattice on whichNt54 data deviate significantly from the leading scaling behavior, the pressure and energy
density on an anisotropic lattice are found to satisfy well the leading 1/Nt

2 scaling from our coarsest lattice
Nt /j54. With three data points atNt /j54, 5 and 6, we perform a well controlled continuum extrapolation of
the equation of state. Our results in the continuum limit agree with a previous result from isotropic lattices
using the same action, but have smaller and more reliable errors.
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I. INTRODUCTION

The study of lattice QCD at finite temperatures is an i
portant step toward clarification of the dynamics of the qu
gluon plasma which is believed to have formed in the ea
Universe and is expected to be created in high energy he
ion collisions@1#. In order to extract predictions for the re
world from results obtained on finite lattices, we have
extrapolate lattice data to the continuum limit of vanishi
lattice spacings. Because of the large computational dem
for full QCD simulations, continuum extrapolations of the
modynamic quantities have so far been attempted only
SU~3! gauge theory, i.e., in the quenched approximation
QCD, where the influence of dynamical quarks is neglec
Two studies using the standard plaquette gauge action@2#
and a renormalization group~RG! improved gauge action@3#
have found the pressure and energy density consistent
each other in the continuum limit.

In full QCD with two flavors of dynamical quarks, the
modynamic quantities on coarse lattices have been foun
show a large lattice spacing dependence@4–6#. For a reliable
extrapolation to the continuum limit, data on finer lattices a
required. With conventional isotropic lattices, this means
increase of the spatial lattice size to keep the physical
ume close to the thermodynamic limit. Full QCD simulatio
on large lattices are still difficult with the current comput
power. A more efficient method of calculation is desirab
Even in the quenched case, we note that continuum extr
lations of the equation of state have been made using
two lattice spacings@2,3#. In order to reliably estimate sys
tematic errors from the extrapolations, more data points
needed. Therefore, an efficient method is also called fo
quenched QCD.

Recently, anisotropic lattices have been employed
study transport coefficients and temporal correlation fu
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tions in finite temperature QCD@7–9#. In these studies, an
isotropy was introduced to obtain more data points for te
poral correlation functions.

In this paper, we show that anisotropic lattices also p
vide an efficient calculation method for thermodynam
quantities. The idea is as follows. Inspecting the free ene
density of SU~3! gauge theory in the high temperatu
Stephan-Boltzmann limit, the leading discretization er
from the temporal direction is found to be much larger th
that from each of the spatial directions. Hence, choosinj
5as /at larger than one, whereas andat are the spatial and
temporal lattice spacings, cutoff errors in thermodynam
quantities will be efficiently reduced without much increa
in the computational cost. From a study of free energy d
sity in the high temperature limit, we find thatj52 is an
optimal choice for SU~3! gauge theory. This improvemen
also makes it computationally easier to accumulate data
more values of temporal lattice sizes for the continuum
trapolation.

As a first test of the method, we study the equation
state~EOS! in SU~3! gauge theory. On isotropic lattices, di
cretization errors in the EOS for the plaquette action
quite large at the temporal lattice sizeNt54. The data at this
value ofNt deviate significantly from the leading 1/Nt

2 scal-
ing behavior,F(T)uNt

5F(T)ucontinuum1cF /Nt
2 , whereF is a

thermodynamic quantity at a fixed temperatureT. So far,
continuum extrapolations of the EOS have been made u
results atNt56 and 8. On anisotropic lattices withj52, we
find that the discretization errors in the pressure and ene
density are much reduced relative to those from isotro
lattices with the same spatial lattice spacing. Furthermo
we find that the EOS atNt /j54, 5, and 6 follow the leading
1/Nt

2 scaling behavior remarkably well. Therefore, a co
tinuum extrapolation can be reliably carried out. Since
total computational cost is still lower than that for anNt
©2001 The American Physical Society07-1
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58 isotropic simulation, we can achieve higher statistics
well, resulting in smaller final errors.

In Sec. II, we study the high temperature limit of SU~3!
gauge theory on anisotropic lattices to see howj appears in
the leading discretization error for the EOS. From this stu
we find thatj52 is an optimum choice for our purpose. W
then perform a series of simulations onj52 anisotropic lat-
tices. Our lattice action and simulation parameters are
scribed in Sec. III. Section IV is devoted to a calculation
the lattice scale through the string tension. The critical te
perature is determined in Sec. V. Our main results are
sented in Secs. VI and VII, where the pressure and ene
density are calculated and their continuum extrapolations
carried out. A brief summary is given in Sec. VIII.

II. HIGH TEMPERATURE LIMIT

In the high temperature limit, the gauge coupling vanish
due to asymptotic freedom, and SU~3! gauge theory turns
into a free bosonic gas. In the integral method@10# which we
apply in this study, the pressurep is related to the free energ
densityf by p52 f for large homogeneous systems. The
fore, in the high temperature limit, the energy densitye is
given bye53p523 f . The value off in the high tempera-
ture limit has been calculated in@11,12#. Normalizinge by
the Stephan-Boltzmann value in the continuum limit, we fi

e

eSB
511

513j2

21 S p

Nt
D 2

1
911210j2199j4

1680 S p

Nt
D 4

1OS S p

Nt
D 6D ~1!

for spatially large lattices. Substitutingj51 in Eq. ~1!, we
recover the previous results for isotropic lattices@13#. When
we alternatively adopt the derivative method~operator
method! @11# to define the energy density, we obtain

e

eSB
511

5~11j2!

21 S p

Nt
D 2

1
13150j2133j4

240 S p

Nt
D 4

1OS S p

Nt
D 6D . ~2!

In both formulas, the leading discretization error is prop
tional to 1/Nt

2 .
In the leading 1/Nt

2 term of Eq.~1! @or Eq. ~2!#, the term
proportional toj2 represents the discretization error fro
finite lattice spacingsas in the three spatial directions. W
find that the temporal cutoffat leads to 5/8~or 1/2! of the
leading discretization error atj51, while the spatial cutoff
as contributes only 1/8~or 1/6! from each of the three spatia
directions.

Since a reduction of the lattice spacing in each direct
separately causes an increase of the computational cost
similar magnitude, a reduction ofat is much more efficient
than that ofas in suppressing lattice artifacts in thermod
namic quantities. Making the anisotropyj5as /at too large
is, however, again inefficient because the spatial discret
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tion errors remain even in the limit ofj5`. A rough esti-
mate for the optimum value ofj is given by equating the
discretization errors from spatial and temporal directionsj
5A5'2.24 from Eq.~1!, and j5A3'1.73 from Eq.~2!.
More elaborate estimations considering the balance betw
the computational cost as a function of the lattice size a
the magnitude of discretization errors including higher ord
of 1/Nt lead to similar values ofj.

Based on these considerations, we adoptj52 for simula-
tions of SU~3! gauge theory in the present work. An eve
number for j is also attractive for the vectorization
parallelization of the simulation code, which is based on
even-odd algorithm, since we can study the case of oddNt /j
without modifying the program.

III. DETAILS OF SIMULATIONS

A. Action

We employ the plaquette gauge action for SU~3! gauge
theory given by

SG@U#5bS 1

j0
Qs1j0QtD , ~3!

wherej0 is the bare anisotropy,b56/g0
2 with g0 the bare

gauge coupling constant, and

Qs5 (
n,(i j )

~12Pi j ~n!!, Qt5(
n,i

~12Pi4~n!!, ~4!

with Pmn(n)5 1
3 Re TrUmn(n) the plaquette in the (m,n)

plane at siten. Anisotropy is introduced by choosingj0Þ1.
Due to quantum fluctuations, the actual anisotropyj

[as /at deviates from the bare valuej0. We define the renor-
malization factorh(b,j) for j by

h~b,j!5
j

j0~b,j!
. ~5!

The values ofh(b,j) can be determined nonperturbative
by matching Wilson loops in temporal and spatial directio
on anisotropic lattices@13–16#. For our simulation, we cal-
culatej0(b,j52) usingh(b,j) obtained by Klassen for the
range 1<j<6 and 5.5<b<` @16#:

h~b,j!511S 12
1

j D ĥ1~j!

6

11a1g0
2

11a0g0
2

g0
2 , ~6!

wherea0520.778 10,a1520.550 55, and

ĥ1~j!5
1.002 503j310.391 00j211.471 30j20.192 31

j310.262 87j211.590 08j20.182 24
.

~7!

B. Simulation parameters

The main runs of our simulations are carried out onj
52 anisotropic lattices with sizeNs

33Nt516338, 203

310 and 243312. ForNt58, we make additional runs on
7-2
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THERMODYNAMICS OF SU~3! GAUGE THEORY ON . . . PHYSICAL REVIEW D64 074507
12338 and 24338 lattices to examine finite size effects. Th
zero-temperature runs are made onNs

33jNs lattices withj
52. The simulation parameters of these runs which co
the rangeT/Tc;0.9–5.0 are listed in Table I. To determin
precise values for the critical coupling, longer runs arou
the critical points are made at the parameters compiled
Table II.

For the main runs, the aspect ratioLsT5(Nsas)/(Ntat) is
fixed to 4, whereLs5Nsas is the spatial lattice size in phys
cal units. This choice is based on a study of finite spa
volume effects presented in Sec. VI, where it is shown th
for the precision and the range ofT/Tc we study, finite spa-
tial volume effects in the EOS are sufficiently small wi
LsT>4.

Gauge configurations are generated by a five-hit pse
heat bath update followed by four over-relaxation swee
which we call an iteration. As discussed in Sec. VI, the to
number of iterations should be approximately proportiona
Nt

6 to keep EOS accurate. After thermalization, we perfo
20 000–100 000 iterations on finite-temperature lattices
5000–25 000 iterations on zero-temperature lattices, as c
piled in Table I. At every iteration, we measu

TABLE I. Simulation parameters. Main runs are marked by
terisk (*).

Lattice b Bin size No. of iterations

12338 5.73–6.80 1600 40 000
16338* 5.74–6.80 800 20 000
24338 5.75–6.80 400 10 000
203310* 5.86–6.98 2000 50 000
243312* 5.95–7.20 4000 100 000

123324 5.74–6.80 400 10 000
163332* 5.74–6.80 200 5000
203340* 5.86–6.98 500 12 500
243348 5.75–5.90 100 2500
243348* 5.95–7.20 1000 25 000
07450
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the spatial and temporal plaquettes:Pss and Pst. Near the
critical temperature, we also measure the Polyakov loop.
errors are estimated by a jack-knife method. The bin size
the jack-knife errors, listed in Table I, is determined from
study of bin size dependence as illustrated in Fig. 1. T
results for the plaquettes are summarized in Tables III–V

IV. SCALE

A. Static quark potential

We determine the physical scale of our lattices from
string tension, which is calculated from the static qua
antiquark potential at zero temperature. To calculate
static quark potential, we perform additional zer
temperature simulations listed in Table VI. The static qua
potentialV(R̂) is defined through

W~R̂,T̂!5C~R̂!e2V(R̂)T̂/j, ~8!

whereW(R̂,T̂) is the Wilson loop in a spatial-temporal plan
with the sizeR̂as3T̂at . We measure Wilson loops at ever
25 iterations after thermalization. In order to enhance
ground state signal in Eq.~8!, we smear the spatial links o
the Wilson loop@17,18#. Details of the smearing method ar
the same as in Ref.@19#. We determine the optimum smea
ing stepNopt which maximizes the overlap functionC(R̂)

- TABLE II. Simulation parameters for determination of critica
couplings.

Lattice b Bin size No. of iterations

12338 5.790, 5.791 8000 80 000
16338 5.790, 5.792 4000 40 000
24338 5.791, 5.792 4000 40 000
203310 5.903, 5.907 5000 50 000
243312 6.004, 6.006 10 000 100 000
k-
FIG. 1. Typical bin size dependence of jac
knife errors forDS.
7-3
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TABLE III. Plaquette expectation values on 16338 and 163332 lattices withj52.

16338 163332

b j0 Pss Pst Pss Pst

5.740 1.662 793 18 0.448 467~31! 0.679 985~12! 0.448 490~28! 0.679 979~11!

5.750 1.664 733 08 0.450 693~24! 0.681 412~11! 0.450 641~21! 0.681 384~8!

5.760 1.666 644 10 0.452 784~33! 0.682 783~13! 0.452 731~22! 0.682 747~9!

5.770 1.668 526 93 0.454 935~29! 0.684 175~13! 0.454 758~24! 0.684 090~9!

5.780 1.670 382 23 0.457 024~53! 0.685 533~22! 0.456 720~21! 0.685 392~8!

5.788 1.671 847 08 0.459 186~116! 0.686 823~49! 0.458 272~30! 0.686 419~11!

5.790 1.672 210 65 0.459 930~109! 0.687 240~48! 0.458 678~26! 0.686 679~11!

5.792 1.672 573 16 0.460 517~104! 0.687 578~45! 0.459 056~22! 0.686 929~9!

5.800 1.674 012 80 0.462 698~75! 0.688 873~33! 0.460 586~22! 0.687 949~9!

5.805 1.674 904 22 0.463 825~34! 0.689 587~15! 0.461 565~21! 0.688 588~9!

5.810 1.675 789 29 0.464 912~40! 0.690 278~17! 0.462 446~20! 0.689 181~9!

5.820 1.677 540 71 0.466 746~21! 0.691 520~10! 0.464 241~17! 0.690 383~6!

5.830 1.679 267 62 0.468 486~24! 0.692 704~10! 0.466 022~21! 0.691 578~9!

5.840 1.680 970 58 0.470 122~18! 0.693 839~8! 0.467 707~24! 0.692 722~9!

5.880 1.687 553 24 0.476 195~15! 0.698 142~7! 0.474 205~17! 0.697 145~7!

5.900 1.690 713 95 0.478 994~18! 0.700 156~9! 0.477 282~22! 0.699 255~9!

5.950 1.698 263 59 0.485 606~15! 0.704 933~7! 0.484 390~18! 0.704 199~7!

6.000 1.705 350 29 0.491 774~15! 0.709 406~6! 0.490 955~20! 0.708 801~9!

6.100 1.718 307 38 0.503 237~14! 0.717 652~6! 0.502 986~14! 0.717 230~5!

6.200 1.729 878 92 0.513 833~11! 0.725 175~6! 0.513 839~14! 0.724 837~5!

6.300 1.740 292 71 0.523 743~10! 0.732 106~4! 0.523 915~15! 0.731 827~7!

6.400 1.749 728 20 0.533 075~11! 0.738 552~4! 0.533 401~9! 0.738 316~3!

6.500 1.758 328 76 0.541 970~13! 0.744 586~5! 0.542 362~8! 0.744 378~5!

6.600 1.766 210 35 0.550 391~8! 0.750 250~3! 0.550 854~10! 0.750 058~4!

6.700 1.773 467 85 0.558 485~9! 0.755 608~4! 0.558 959~9! 0.755 427~4!

6.800 1.780 179 64 0.566 215~12! 0.760 672~4! 0.566 716~8! 0.760 501~4!
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under the conditionC(R̂)<1. Following Ref.@18#, we study
a local effective potential defined by

Veff~R̂,T̂!5j logS W~R̂,T̂!

W~R̂,T̂11!
D , ~9!

which tends toV(R̂) at sufficiently largeT̂. The reason to
adopt Eq.~9! instead of the fit result from Eq.~8! is to per-
form a correlated error analysis directly for the potential p
rameters. The optimum value ofT̂, listed in Table VII, is
obtained by inspecting the plateau ofVeff(R̂,T̂) at eachb.

We perform a correlated fit ofV(R̂)5Veff(R̂,T̂opt) with
the ansatz@20#

V~R̂!5V01sR̂2e
1

R̂
1 l S 1

R̂
2F 1

R̂
G D . ~10!

Here,@1/R̂# is the lattice Coulomb term from one gluon e
change,
07450
-

F 1

R̂
G54pE

2p

p d3k

~2p!3

cos~k•R̂!

4(
i 51

3

sin2~kias/2!

, ~11!

which is introduced to approximately remove terms violati
rotational invariance at short distances. The coefficientl is
treated as a free parameter.

The fit range@R̂min ,R̂max# for R̂ is determined by consult
ing the stability of the fit. Our choices forR̂min are given in
Table VII. We confirm that the fits and the values of th
string tension are stable under a variation ofR̂min . The string
tension is almost insensitive to a wide variation ofR̂max.
HenceR̂max is chosen as large as possible so far as the fi
stable and the signal is not lost in the noise. With this cho
for the fit range, we obtain fit curves which reproduce t
data well.

Our results for the potential parameters are summarize
Table VII. The error includes the jack-knife error with bi
size one~25 iterations! and the systematic error from th
choice of R̂min estimated through a difference under t
change ofR̂min by one. We confirm that increasing the b
size to two gives consistent results on 163332 lattices,
7-4
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TABLE IV. Plaquette expectation values on 203310 and 203340 lattices withj52.

203310 203340

b j0 Pss Pst Pss Pst

5.86288916 1.684 781 16 0.471 5286~90! 0.695 3072~38! 0.471 5194~98! 0.695 3039~38!

5.87 1.685 940 94 0.472 6803~97! 0.696 0907~37! 0.472 6453~79! 0.696 0771~33!

5.88583578 1.688 484 20 0.475 2043~113! 0.697 8062~52! 0.475 1072~93! 0.697 7655~41!

5.90 1.690 713 95 0.477 5533~342! 0.699 3698~144! 0.477 2612~79! 0.699 2430~33!

5.91 1.692 263 27 0.479 3349~340! 0.700 5240~144! 0.478 7235~65! 0.700 2573~30!

5.92 1.693 792 48 0.480 9915~113! 0.701 6191~50! 0.480 1832~57! 0.701 2665~26!

5.93084722 1.695 428 99 0.482 6008~89! 0.702 7227~39! 0.481 7182~78! 0.702 3359~35!

5.94 1.696 792 24 0.483 8962~61! 0.703 6250~30! 0.483 0113~60! 0.703 2314~30!

5.96 1.699 716 45 0.486 5820~62! 0.705 5225~30! 0.485 7427~62! 0.705 1382~32!

5.98 1.702 568 18 0.489 1795~54! 0.707 3650~25! 0.488 3883~83! 0.706 9900~34!

5.9961937 1.704 826 05 0.491 2217~55! 0.708 8160~30! 0.490 4832~71! 0.708 4591~30!

6.0793640 1.715 755 57 0.501 0417~44! 0.715 8270~31! 0.500 5840~62! 0.715 5576~27!

6.17716193 1.727 345 56 0.511 6532~54! 0.723 3550~25! 0.511 4357~43! 0.723 1598~22!

6.28582916 1.738 880 20 0.522 5991~56! 0.731 0157~21! 0.522 5280~53! 0.730 8687~21!

6.40118969 1.749 835 17 0.533 4631~32! 0.738 5009~19! 0.533 4926~43! 0.738 3839~17!

6.51881026 1.759 863 08 0.543 8681~48! 0.745 5581~19! 0.543 9702~40! 0.745 4657~19!

6.63417079 1.768 756 24 0.553 5144~38! 0.752 0032~19! 0.553 6476~51! 0.751 9204~23!

6.74283803 1.776 405 79 0.562 1461~45! 0.757 6970~23! 0.562 3098~36! 0.757 6251~14!

6.84063596 1.782 766 47 0.569 5876~32! 0.762 5475~17! 0.569 7626~34! 0.762 4799~11!

6.92380626 1.787 830 02 0.575 6793~33! 0.766 4882~18! 0.575 8587~31! 0.766 4206~16!

6.98915275 1.791 606 48 0.580 3248~35! 0.769 4702~14! 0.580 5094~41! 0.769 4057~18!

TABLE V. Plaquette expectation values on 243312 and 243348 lattices withj52.

243312 243348

b j0 Pss Pst Pss Pst

5.95 1.698 263 59 0.484 3851~27! 0.704 1916~13! 0.484 3789~45! 0.704 1883~19!

5.98 1.702 568 18 0.488 4099~39! 0.707 0003~19! 0.488 3825~35! 0.706 9880~15!

6.00 1.705 350 29 0.491 1005~118! 0.708 8537~50! 0.490 9663~38! 0.708 7977~14!

6.01 1.706 716 10 0.492 4924~104! 0.709 7962~43! 0.492 2291~37! 0.709 6838~15!

6.02 1.708 065 52 0.493 8053~64! 0.710 7011~32! 0.493 4718~30! 0.710 5575~13!

6.03 1.709 398 87 0.495 0807~40! 0.711 5881~16! 0.494 7043~36! 0.711 4232~17!

6.04 1.710 716 46 0.496 3132~30! 0.712 4510~16! 0.495 9199~32! 0.712 2791~13!

6.07 1.714 577 63 0.499 8634~27! 0.714 9595~10! 0.499 4891~31! 0.714 7889~15!

6.08 1.715 835 12 0.501 0194~19! 0.715 7747~6! 0.500 6575~31! 0.715 6082~13!

6.10 1.718 307 38 0.503 2879~22! 0.717 3807~10! 0.502 9551~29! 0.717 2208~13!

6.15 1.724 250 80 0.508 7787~26! 0.721 2576~10! 0.508 5106~19! 0.721 1154~12!

6.20 1.729 878 92 0.514 0368~26! 0.724 9549~12! 0.513 8372~20! 0.724 8368~8!

6.30 1.740 292 71 0.524 0287~21! 0.731 9188~8! 0.523 9220~23! 0.731 8284~10!

6.40 1.749 728 20 0.533 4259~25! 0.738 3798~11! 0.533 3873~23! 0.738 3125~9!

6.60 1.766 210 35 0.550 8062~15! 0.750 1014~7! 0.550 8372~22! 0.750 0563~9!

6.80 1.780 179 64 0.566 6348~15! 0.760 5281~6! 0.566 7010~21! 0.760 4924~9!

7.00 1.792 217 20 0.581 1933~20! 0.769 9251~8! 0.581 2721~12! 0.769 8933~6!

7.20 1.802 732 90 0.594 6688~17! 0.778 4726~9! 0.594 7568~18! 0.778 4435~8!
074507-5
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while, on 243348 lattices, correlated fits with bin size tw
become unstable due to an insufficient number of jackkn
ensembles.

B. String tension

We interpolate the string tension data using an ansatz
posed by Allton@21#:

asAs5 f ~b!
11c2â~b!21c4â~b!4

c0
, ~12!

where f (b) is the two-loop scaling function of SU~3! gauge
theory,

f ~b!5S 6b0

b D 2(b1/2b0
2)

expF2
b

12b0
G ,

b05
11

16p2
, b15

102

~16p2!2
, ~13!

and â(b)[ f (b)/ f (b56.0).
From Table VII, we find that the values forasAs are

insensitive to the spatial lattice volume to the present pr
sion. Using data marked by an asterisk (*) in Table VII, w
obtain the best fit at

TABLE VI. Simulation parameters for static quark potential
zero temperature.

rb Lattice Nopt No. of configurations

5.7 163332 3 800
5.8 163332 5 800
5.9 163332 6 800
6.0 163332 8 600

243348 8 100
6.1 163332 10 400
6.3 163332 16 300

243348 20 100
6.5 243348 30 100
07450
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c050.011 71~41!, c250.285~79!, c450.033~30!,
~14!

with x2/NDF51.77. The string tension data and the resulti
fit curve are shown in Fig. 2, together with those from is
tropic lattices@22#.

V. CRITICAL TEMPERATURE

We define the critical gauge couplingbc(Nt ,Ns) from the
location of the peak of the susceptibilityx rot for a
Z(3)-rotated Polyakov loop. The simulation parameters
the study ofbc are compiled in Table II. Theb dependence
of x rot is calculated using the spectral density method@23#.
The results forbc are compiled in Table VIII.

To estimate the critical temperature, we have to extra
late bc(Nt ,Ns) to the thermodynamic limit and to the con
tinuum limit. We perform the extrapolation to the thermod
namic limit using a finite-size scaling ansatz

bc~Nt ,Ns!5bc~Nt ,`!2hS Nt

jNs
D 3

~15!

for first order phase transitions. From the data forbc on
anisotropic 12338, 16338 and 24338 lattices withj52,
we find h50.031(16) forNt /j54, as shown in Fig. 3. In a
previous study on isotropic lattices,h was found to be ap-
proximately independent ofNt for Nt54 and 6 @24#. We
extractbc(Nt ,`) adoptingh50.031(16) for allNt .

The critical temperature in units of the string tension
given by

Tc

As
5

j

Nt~asAs!~bc~Nt ,`!!
~16!

using the fit result for Eq.~12!. The values ofTc /As are
summarized in Fig. 4 and Table VIII. The dominant part
the errors inTc /As is from the Allton fit for the string ten-
sion.

Finally we extrapolate the results to the continuum lim
2

TABLE VII. Results for the potential parameters onj52 anisotropic lattices with the plaquette action. The spatial lattice sizeLs is
computed usingAs5440 MeV.

b Lattice asAs Ls(fm) T̂ R̂min
V0 e l x2/NDF

5.7 163332* 0.4794~66! 3.49 5 A5 0.677~36! 0.305~50! 0.934~122! 5.81
5.8 163332* 0.3804~24! 2.77 6 A5 0.720~11! 0.326~16! 0.647~49! 3.07
5.9 163332* 0.3190~18! 2.32 7 A5 0.688~7! 0.284~11! 0.501~43! 3.20
6.0 163332 0.2667~21! 1.94 8 A6 0.685~8! 0.283~14! 0.396~73! 0.93

243348* 0.2611~31! 2.85 8 A6 0.699~11! 0.310~19! 0.565~82! 2.05
6.1 163332* 0.2224~20! 1.61 8 2A2 0.686~6! 0.297~13! 0.375~61! 1.97
6.3 163332 0.1656~19! 1.20 9 A6 0.653~5! 0.281~9! 0.239~67! 0.95

243348* 0.1661~20! 1.81 9 A6 0.657~5! 0.294~9! 0.323~68! 1.72
6.5 243348* 0.1242~21! 1.35 9 A6 0.622~3! 0.279~6! 0.247~47! 1.75
7-6
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TABLE VIII. Critical coupling and temperature on anisotropicj52 lattices. Results forTc /As are
obtained in the thermodynamic limit.

Ns
33Nt 12338 16338 24338 203310 243312

bc(Nt ,Ns) 5.79037~40! 5.790 81~54! 5.79138~31! 5.904 94~92! 6.004 64~67!

bc(Nt ,`) 5.791 49~34! 5.905 43~116! 6.005 12~91!

Tc /As 0.6402~39! 0.6392~39! 0.6364~75!

FIG. 2. String tensions on j52 anisotropic
lattices as a function ofb. Scaling fits are based
on the ansatz Eq.~12!.

FIG. 3. Finite-size scaling ofbc for Nt /j
54 on j52 anisotropic lattices.
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2

, ~17!

with F5Tc /As. The extrapolation is shown in Fig. 4. In th
continuum limit, we obtain

Tc

As
50.635~10! ~18!

from thej52 plaquette action.
07450
In Fig. 4, we also plot the results obtained on isotrop
lattices using the plaquette action@25# and the RG-improved
action@26,3#. Our value ofTc /As in the continuum limit is
consistent with these results within the error of about 2%
more precise comparison would require the generation
analyses of potential data in a completely parallel mann
because, as discussed in@3#, numerical values ofTc /As at a
few percent level sensitively depend on the method use
determine the string tension. We leave this issue for fut
studies.
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FIG. 4. Critical temperatureTc /As on isotro-
pic andj52 anisotropic lattices.

FIG. 5. Spatial lattice volume dependence
DS at Nt /j54 on Ns512, 16, and 24 lattices
with j52.

FIG. 6. Spatial volume dependence of th
pressurep/T4 on j52 anisotropic lattices with
Nt /j54.
074507-8
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VI. PRESSURE

A. Integral method

We use the integral method to calculate the pressure@10#.
This method is based on the relationp52 f
[(T/V)logZ(T,V) satisfied for a large homogeneous syste
whereV5Ls

3 is the spatial volume of the system in physic
units and Z is the partition function. Rewriting logZ
5*db(1/Z)(]Z/]b), the pressure is given by

FIG. 7. DS on Nt /j54, 5, and 6 lattices withj52.
07450
,
l

p

T4U
b0

b

5E
b0

b

db8DS~b8!, ~19!

with

DS~b![jS Nt

j D 4 1

Ns
3Nt

] logZ

]b U
j

. ~20!

For our anisotropic gauge action Eq.~3!, the derivative of
logZ is given by

2
] logZ

]b
5 K SG

b L 1b
]j0~b,j!

]b S ^Qt&2
^Qs&

j0
2~b,j!

D
2~T50 contribution!. ~21!

We use symmetricNs
33jNs lattices to calculate theT50

contribution. For a sufficiently smallb0 , p(b0) can be ne-
glected.

In order to keep the same accuracy ofDS for the same
physical lattice volumeLs

3 in units of the temperatureT, the
statistics of simulations should increase in proportion
(j(Nt /j)4)2/(Ns

3Nt)}Nt
4/j3. Here, the first factor arise

from j(Nt /j)4 in Eq. ~20!, and the second factor 1/(Ns
3Nt)

from a suppression of fluctuations due to averaging over
lattice volume. Taking into account the autocorrelation tim
which is proportional toNt

2 , the number of iterations shoul
increase as;Nt

6 .
IntegratingDS in b using a cubic spline interpolation, w

obtain the pressure. For the horizontal axis, we use the t
perature in units of the critical temperature

T

Tc
5

~asAs!~bc!

~asAs!~b!
. ~22!

The errors from numerical integration are estimated by
jack-knife method in the following way@3#. Since simula-
tions at differentb are statistically independent, we sum u
all the contributions fromb i smaller thanb corresponding to
the temperatureT by the naive error-propagation rule

FIG. 8. Pressurep/T4 on j52 anisotropic lattices.
7-9
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dp(T)5AS idpi(T)2, whered i p(T) at each simulation poin
b i is estimated by the jackknife method.

B. Finite spatial volume effects

We first study the effects of finite spatial volume on t
EOS. In Fig. 5, we show the results forDS at Nt /j58/2
with the aspect ratioLsT5Nsj/Nt53, 4, and 6, which cor-
respond toNs512, 16, and 24, respectively. IntegratingDS
in b, we obtain Fig. 6 for the pressure. We find that the d
at LsT53 are affected by sizable finite volume effects bo
at T;Tc and at high temperatures. On the other hand, for
range ofT/Tc we study, the pressure does not change w
the aspect ratio is increased fromLsT54 –6, indicating that
the conventional choiceLsT54 is safe with the present pre
cision of data. Hence, we chooseLsT54 for our studies of
lattice spacing dependence. Results forDS at LsT54 with
variousNt are given in Fig. 7. Integrating the data using
cubic spline interpolation, as shown in the figures, we obt
the pressure plotted in Fig. 8.

C. Continuum extrapolation

We now extrapolate the pressure to the continuum li
using the leading order ansatz of Eq.~17!. Figure 9 shows
the pressure atT/Tc51.5, 2.5, and 3.5 as a function o
(j/Nt)

2 ~filled circles!. For comparison, results from isotro
pic lattices using the plaquette action@2# ~open circles! and
the RG-improved action@3# ~open squares! are also plotted.
For the j51 plaquette data, we adopt the results of a
analysis made in Ref.@3# to commonly apply the scale from
the Allton fit of the string tension and also the same er
estimation method.

The advantage of using anisotropic lattices is appa
from Fig. 9. On the coarsest latticeNt /j54, finite lattice
spacing errors atj52 are much smaller than those atj51
with the same plaquette action. The pressure atT52.5Tc ,
for example, on the isotropic 16334 lattice is larger than its
continuum limit by about 20%, while the deviation is on
5% on the corresponding 16338 lattice withj52. Further-
more, with the anisotropicj52 data, the leading 1/Nt

2 term
describes the data well even atNt /j54 ~the rightmost
point!. Therefore, we can confidently perform an extrapo
tion to the continuum limit using three data points. In t
case of the isotropic plaquette action, in contrast, the c
tinuum extrapolation had to be made with only two da
points atNt /j56 and 8. In the continuum limit, our result
for j52 are slightly smaller than those from the isotrop
plaquette action, but the results are consistent with e
other within the error of about 5% for the results from t
isotropic action. It is worth observing that thej52 results
have smaller and more reliable errors of 2% –3%.

In order to quantitatively evaluate the benefit of anis
tropic lattices, we compare the computational cost to achi
comparable systematic and statistical errors on isotropic
j52 anisotropic lattices. ChoosingT52.5Tc as a typical
example, we find that the deviation of the pressure from
continuum limit ~i.e., the magnitude of the systematic err
due to finite lattice cutoffs! is comparable between the iso
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tropic 32338 @2# and ourj52 anisotropic 203310 lattices,
i.e., p/T451.390(26) on a 32338 lattice and p/T4

51.381(13) on a 203310 lattice, both lattices having th
same spatial sizeNsas51.6/Tc . The number of configura-
tions to achieve these statistical errors are 20 000–40
iterations forj51 and 50 000 forj52, respectively. There-
fore, for the same statistical error, the relative computatio
cost for aj52 lattice over that forj51 is conservatively
estimated as ((203310)350 000)/((32338)34320 000)
'1/5, showing a factor of 5 gain in the computational co

FIG. 9. Continuum extrapolation of the pressurep/T4 at T/Tc

51.5, 2.5 and 3.5.
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FIG. 10. Pressurep/T4 in the continuum
limit.

FIG. 11. e/T4 on anisotropic 16338, 203

310 and 243312 lattices withj52.

FIG. 12. Continuum extrapolation of the en
ergy densitye/T4 at T52.5Tc .
074507-11
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FIG. 13. Energy densitye/T4 in the con-
tinuum limit.
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for the anisotropic calculation in this example.
In Fig. 9 we also note that the results from the R

improved action on isotropic lattices are higher by 7% –10
~about 2s) than those from the present work in the co
tinuum limit. A possible origin of this discrepancy is the u
of theNt /j54 data of the RG-improved action, which sho
a large~about 20%) deviation from the continuum value. F
a detailed test of consistency, we need more data points
at Nt /j56, from the RG-improved action.

Repeating the continuum extrapolation at other values
T/Tc , we obtain Fig. 10. Our results show a quite slow a
proach to the high temperature Stephan-Boltzmann limit
reported also in previous studies on isotropic lattices@2,3#.

VII. ENERGY DENSITY

We calculate the energy densitye by combining the re-
sults of p/T4 with those for the interaction measure defin
by

e23p

T4
52as

]b

]as
U

j

DS. ~23!

The QCD beta function on anisotropic lattice]b/]asuj is
determined through the string tensions studied in Sec. IV B,

as

]b

]as
U

j

5
12b0

6~b1 /b0!b2121

11c2â21c4â4

113c2â215c4â4
, ~24!

where the coefficientsci are given in Eq.~12!. The error of
the energy density is calculated by quadrature from the e
of 3p and that fore23p, the latter being proportional to th
error of DS.

The results for the energy density are shown in Figs.
and 12. As in the case of the pressure the leading sca
behavior is well followed by ourj52 data fromNt /j54,
which allows us to extrapolate to the continuum limit re
ably. The results for the energy density in the continu
limit are compared with the previous results in Fig. 13. O
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j52 plaquette action leads to an energy density which
slightly smaller than, but consistent with that from thej
51 plaquette action, but is about 7% –10%~about 2s)
smaller than that from thej51 RG-improved action. More
work is required to clarify the origin of the small discrepan
with the RG-improved action.

VIII. CONCLUSION

We have studied the continuum limit of the equation
state in SU~3! gauge theory on anisotropic lattices with th
anisotropyj[as /at52, using the standard plaquette gau
action. Anisotropic lattices are shown to be more efficient
calculating thermodynamic quantities than isotropic lattic
We found that the cutoff errors in the pressure and ene
density are much smaller than corresponding isotropic lat
results at small values ofNt /j. The computational cost fo
j52 lattices is about 1/5 of that forj51 lattices. We also
found that the leading scaling behavior is well satisfied
ready from Nt /j54, which enabled us to perform con
tinuum extrapolations with three data points atNt /j54, 5,
and 6. The equation of state in the continuum limit agre
with that obtained on the isotropic lattice using the sa
action, but has much smaller and better controlled err
The benefit of anisotropic lattice demonstrated here will
indispensable for extraction of continuum predictions for t
equation of state, when we include dynamical quarks.
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