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We apply the maximum entropy method to extract the spectral functions for pseudoscalar and vector mesons
from hadron correlators previously calculated at four different lattice spacings in quenched QCD with the
Wilson quark action. We determine masses and decay constants for the ground and excited states of the
pseudoscalar and vector channels from the position and area of peaks in the spectral functions. We obtain the
resultsmw1:660(590) MeV andn91:1540(570) MeV for the first excited state masses, in the continuum
limit of quenched QCD. We also find unphysical states that have an infinite mass in the continuum limit, and
argue that they are bound states of two doublers of the Wilson quark action. If the interpretation is correct, this
is the first time that the state of doublers has been identified in lattice QCD numerical simulations.
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. INTRODUCTION D(7)—Zye o7,

T—00,

_Th? spectrgl function of hadron correlation functions Con'Numerically, the extraction of masses of excited states with a
tains information not only on the mass of the ground state_" .. e . . o
ultiexponential fit to a single correlation function is un-

but also on other quantities such as the masses for excite . ' .
. . able, so that a simultaneous fit to several correlation func-
states, and decays and scatterings of hadrons. In lattice Q

. . . . : . tions that have the same set of intermediate states with dif-
simulations one can numerically obtain a Euclidean time cor;

relation functionD(7) of an operatoO(7), which is related fe_rent amplitudes becomes necessary to stab.ilize the rgsult.
o the spectral functiofi(e) of this correl,ator through Different operators that have larger overlaps with the eXC|t_ed
state may also be employed to extract the mass of the excited
D(7)=(0|0(7)0'(0)|0) state. Similar but more diff_icult problems appear in the cal-
culation of the decay amplitudd,,2].
If one could reconstrudt( ) directly from the correlation
=f dof(w)K(w,7), (1)  function D(7) using data at allr, information of various
states could be extracted from one correlation function. It is
where K(7,0) is a kernel of the Laplace transformation Simple and efficient, since one can avoid more complicated
given by procedures needed in the usual extraction, such as the tuning
of operators, the calculation of several correlation functions,
K(w,n)=e “+e ("7 etc. Since the number of data fDr(7) with a discrete set of
time 7 is much smaller than the number of degrees of free-
for 0<7<T with the periodic boundary condition, whefe  dom necessary for the reconstruction f{fw) in general,
is the lattice size in the Euclidean time direction. A typical however, the standarg? fit is ill posed for this problem.

form of f(w) is With some assumptions about the form of the spectral func-
_ tion the x? fit may work, but this is essentially equivalent to
f(w)=2Zy6(w—Ep) +f(w;0=2mg), (2)  the multiexponential or more complicated fit to the correla-

tion function.

whereE, is the energy of the ground staftéo) coupled to In condensed matter physics, the reconstruction of the
the operato© andZ,=|(0|O|E,)[?, andf(w) represents the spectral function in quantum Monte Carlo simulations has
continuous spectrum which starts @at=2m, for the two-  been attempted with the maximum entropy metlibtEM)
particle state. [3]. It has also been successfully applied for image recon-

In principle one can extract all the information for the struction in astrophysics. The most important assumption in
states that can couple to the opera@ifrom the spectral the MEM is that a probability for spectral functions can be
function f(w). In the usual analysis of lattice QCD simula- assigned for given data @f(7). Then the MEM can numeri-
tions, however, only the magsr energy of the ground state cally reconstruct the most probable spectral function, using
Ey and its amplitudeZ, can be reliably extracted from the Bayes's theorem in probability theory, without any strong
asymptotic behavior of the point source correlation functionconstraints on its form. Recently, this method has been tested
at large Euclidean times, in lattice QCD[4,5] and the first interesting results for the
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spectral function have been obtained-8. measurements of a correlation function, the data are expected
In this paper, we employ the MEM to reconstruct theto obey a Gaussian distribution according to the central limit

spectral functions of pseudoscalar and vector mesons frotheorem, which gives

the correlation functions previously calculated on lattices

with the spatial size about 3 fm at four different lattice spac- 1

ings in quenched QCIP9,10]. From the spectral functions PID|FH]= Z_Le ' ®)

we extract masses and decay constants for excited states as

well as for the ground state. While they agree with results Np

obtained from the exponential fits to the correlation func- L== 2 [D(Ti)—Df(ri)]Ci’jl[D(rj)—Df(rj)],

tions, the errors for the excited state masses from the spectral 2 17

function are smaller than those from the multiexponential fit, (6)

so that we can estimate masses for excited states in the con-

tinuum limit with reasonable errors. We also find evidencewith the normalization constad = (2)"o\/detC, and the

that some excited states are composed of fermion doublergiumber of temporal pointsl, . The lattice propagator data
This paper is organized as follows. In Sec. Il, we summaaveraged over gauge configuratiol¥,r), and the covari-

rize our implementation of the MEM and present resultsance matrixC are defined by

from tests using mock-up data generated from a realistic

spectral function. Some details of the lattice QCD data and 1 Neont N
parameters used in our MEM analysis are given in Sec. Ill. D ()= Neont nzl D (i), @)

In Sec. IV, we present our results for the spectral function,
which show excited state peaks as well as the ground state

Nconf

peak. From the positions and the areas of these peaks we o 1 2 [D(r)—D"(7)]
extract masses and decay constants, and compare them with U NeoniNeoni—1) =41 : !

those obtained directly from correlation functions. The con- .

tinuum extrapolation is made for these quantities. In Sec. V, X[D(7)=D"(m)], ®)

we argue that some peaks in the spectral functions corre- ) i )
spond to a state containing two doublers of the WilsonVhereNcony is the total number of gauge configurations and
quarks. Our conclusions are given in Sec VI. In the AppenP"(7) are the data for thath gauge configuration. Finally,

dixes technical details of the MEM are collected. D¢(7) is the propagator constructed from the spectral func-
tion f(w) and the kerneK(w,7) as

II. MAXIMUM ENTROPY METHOD
Df(T):f dof(w)K(w,7). 9)
A. Implementation
The existence of a probability distribution for a spectral  The prior probability is written in terms of the entropy
function is a key assumption in the maximum entropys(f) [13—16 for a given modem(w) represented by a real
method. Using this assumption one can obtain the most prolyg positive function, and a real and positive parameter

able spectral function for given lattice dafaand all prior  The entropyS(f) becomes zero at its maximum point where
knowledgeH, such asf(w)=0, by maximizing the condi- f(w) is equal tom(w). Explicitly, we have

tional probability PF|DH], where PF|DH] is the prob-
ability of F with the condition thaD andH are given. Here

1
F stands for the spectral functidifw). Using Bayes’s theo- P F|Hma]= Z—)eas, (10
rem in probability theory11], sl
_ AY|IXZ]X|Z] _f ( f(w))
PIX|YZ]= THRYZ] 3) S(f)= | do| f(0) —m(w)—f(w)log m(e)
1y
where PX] is the probability of an everX, one rewrites the N,, ¢
conditional probability PF|DH] as -2 f'_m'_f'log( ﬁl” 12
=1 I
PLF|DH]e P[D|FH]PLF|H]. @

with the normalization constatg(a)=(2/a)N+"? calcu-
lated in Appendix C. In Eg(12) the continuous spectral
Here PD|FH] is the probability of data for a given spectral function f(w) is approximately represented by a discrete set

function, called the likelihood function, andPH] is the  of pointsf(w,)=f, with I=1, ... N, . Hereafter we replace
probability of the spectral function for given prior knowl- the prior knowledgeH in Eq. (4) by Hme, writing m and «
edge, called the prior probability. explicitly. It is worth mentioning that this form of the en-

The likelihood function is equivalent tg? in the least tropy leads to a positive spectral function in the MEM.
squares metho@l12]. For a large number of Monte Carlo Combining Egs(5) and(10), one obtains
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eQa(f) 0.15
P[F|DHma]ocm, Qa(f)=a8(f)—L. (13)
Therefore the condition satisfied by the most probable spec- 010 0.1543
tral functionf , for a givena [and modem(w)] is given by 2
g
0Q,(f) 005 |
st . =0. (149
The parametew dictates the relative weight of the en- 0.00 -
tropy S(f) andL. One can deal witle dependence of, as 0 2 ® 4 6

follows. One first defines [RYDHm] [3,13,14, the prob- . . .
ability of a for given data and all prior knowledge, which ~ FIG. 1. The input spectral functiop;,(»). The value in the

can be transformed as figure is the area under the curve for@=<6.
eQua(f) to the original spectral function gives smaller errors for the
P[a|DHm]O<P[a|Hm]f DFm. (19  averaged ().

(4) The error of the averagef w) in a certain region can
be used to measure the significancef @) in the region.
For example, if the error of the averagBdv) around a peak
is much smaller than the averaged value, the peak is likely to
A be true, and vice versa.
f(w):f daP[a|DHm]fa(w)/ f da Pla|DHm]. Before applying the MEM to actual data, we perform fur-
(16) ther tests on(a) the dependence oNp and the temporal
separation of data ~, and(b) the dependence on the choice

This procedure is called Bryan's methpti7] and is used ~ Of PLa|Hm]. For these tests we use a realistic spectral func-
in this article. We restrict the range afin the actual average ton in the vector channel of the’ e~ annihilation(,18)
aS Appin< A< Amay, Whereai, and ama, are chosen to sat- which is given byfi,(w) = pin(») ®*, where the factow= is -
isfy P{&|DHM]=10M a JDHmM] with & being the expected from the dimension of meson spectral function,
= min,ma

maximum value of Pa|DHm]. The standard choice of with

Pl a|Hm] in Eq.(15) is either a constant or &/[3,14,17. In 2
the next section we will show that the final result is insensi- pin(®)=—
tive to the choice as long ag # DHm] is sharply peaked

arounda, and therefore we adoptf ®|Hm]=const in our

main analysis. +—
In the MEM it is not possible to assign error bars to each 8m

point in the spectral function since the errors between differ-

ent points are strongly correlated. Instead we estimate thelereF , is the residue op meson resonance defined by

uncertainty of the spectral function averaged owelin a

See Appendix E for details. In the final resiitw), a is
averaged with this weight facto R|DHm],

2 I'p(w)m,

P (@2=m2)2+ T2 (w)m?

as

17

T 1+e(wow)/a] :

certain region by the method explained in Appendix F. The <o|€7#u|p>: \/Eppmpeﬂz \/Efpmiew (18
magnitude of this uncertainty gives an estimate for the good-
ness of the given modeh(w) [3,6]. with the polarization vectok, , andI',(w) includes the¢

function which represents the thresholdwf 77 decay as
B. Test 5
Several tests of the MEM have already been carried out in (0)= i My
Ref.[6], where the dependence of the results on the number ’ 48m F2
of time slicesNp, the size of errors of the data, and the
modelm(w) have been examined using mock-up data cre- We make dimensionful quantities dimensionless using the
ated from test spectral functions. The following conclusiondattice spacinga, w—wa, 7—7/a where a is set to

4 2\ 32
( 1- 2”) Ow—2m,). (19
w

were drawn from the tests. 1 GeV ! The values of parameters are
(1)Decreasing the error of daa(7) is more important
than increasing\Np for obtaining better estimates df w) m,=0.77, m_,=0.14, F,=0.142,
that reproduce the original spectral function more closely.
(2) It is better to include information abo@if w), such as wpy=1.3, 6=0.2, «,=0.3, (20

the asymptotic value, if it is known, into the mode( ).
(3) If the obtainedf(w) depends strongly on the model, a where a, is independent ofv for simplicity. The shape of
better model in the sense of leading tof¢w) that is closer  p;,(w) for this choice of parameters is shown in Fig. 1. The
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FIG. 2. The output spectral functign,,(») obtained by the MEM for differenA 7 andNp is shown by solid lines. The input;,(w)
is shown by long dashed lines. The values in each figure are the argg.(@b) andr:E:\‘:“’l[pin(an)—pout(w|)]2.

value in the figure represents the areapgf{iw) for O<=w =0.5 andA 7=0.33 atN=46.

<6. (b) We also check the dependence @f,(w) on two
We make mock-up dat@(7) from f;,(w) as follows.(i)  forms of R a|Hm], Ffa|Hm]=constant or 1. As shown

The central value oD (7) is given by integrating the spectral in Fig. 3, the two choices give almost identical shapes of

function f;,(») and a kerneK(w,7)=e~“" over w in the  p, (), although the weight factor{lg|DHmM] is rather dif-

same way as fobD;(7) in Eq. (6). (i) Errors of D(7) are  ferent between the two cases.

generated by Gaussian random numbers with the variance Our investigations add further information on the param-

o(7)=be*iD(r), a=0.1, b=101° in order to incorpo- eter dependence of the result in the MEM, which we sum-

rate the fact that the error of lattice correlation functionsmarize as the following three points.

increases as increases. (5) Tmax=A7(Np—1) must be sufficiently large for a re-
In this test, no correlation between differentis taken liable result off (w).

into account; thus the covariance mat@xs set to be diag- (6) Once 7, is taken large enough, a smallérr is

onal. The model function is given by(w)=myw? with  better.
my=0.0277, which is motivated by the value @f,(w (7) The resultp,(w) is insensitive to the choice of
—). We set the maximum value @b, =6, the P a|Hm].

space is discretized with an equal separatian=0.01, and
N,=600. We also calculate the area of the MEM result
poul(®) for O<w=wya, and define r=="[pi (o)
—pout(®)]?, to measure the difference betwepp, and
Pout- We now apply the MEM to the lattice correlation func-
We summarize the results fpg, (@) in various cases as tions previously obtained in quenched QC®10] with the
follows. plaguette action for gluons and the Wilson action for quarks.
(&) To investigate the dependence@f,(w) on A7 and  The simulation was performed at four values @f corre-
Np, we extractp,,(w) by the MEM, from data withAz  sponding toa '=2-4 GeV for the continuum extrapola-
=0.5,0.33 and\p=16,31,46, as shown in Fig. 2. Data at tion, on 32x56 to 64X 112 lattices with spatial size about
large T are necessary to reconstrygf,(w) at smallw cor- 3 fm. The simulation parameters are compiled in Table I. At
rectly, as seen from the fact that a false peak sometimesachg, five values of the hopping parameter which cor-
appears around=0 from data withA7=0.5 andN;=16  respond tom,/m,~ 0.75, 0.7, 0.6, 0.5, and 0.4, were em-
[Tmax=AT(Np—1)=7.5] or with A7=0.33 andNp=31  ployed for the chiral extrapolation. The values of the hopping
(Tmax=10). Oncer,.x becomes large enougdltarger than parameters are numbered from heavy to light in Table I. For
15 in this casg a smallerA 7 is better for the result, as seen example, we call the« corresponding to the lightest and
from the comparison between results from data with  heaviest quark mass&$1. Except for an additive renormal-

IIl. LATTICE QCD DATA AND PARAMETERS IN MEM
ANALYSIS
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FIG. 3. Influence of the choice of R|Hm].
The left figure is for Pa|Hm]=const and the
) 6 right for {f «|Hm]= 1/a. The figure below shows

the corresponding [R/DHmM] normalized to
0.003 : : : unity for which data withA7=0.33 and Np
2 =46 are used. The inpyt,(w) is shown by the
long dashed lines, andr=E|N:wl[pin(w,)
—pou{®)]? represents the difference from
pin(®).
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ization factor, the average quark mass is equal to the averagehereI" is ys (y,) for the pseudoscalaivecton meson,
inverse hopping paramet& ! given by f(w) is a spectral function, and(w, 7) is a kernel. We use
only point source data to satisfy the condition théd)=0.

71_} -1, -1 Since the spectral function of the meson propagator has di-
K =x(ky +k,7), (21) . ) . . ;
2 mension 2, we define a dimensionless functigw) as
where x; and k, are the hopping parameters of the quark f(w)=p(w)w? (23

and antiquark in the meson. ] )
In our MEM analysis, we employ pseudoscalar and vector 1 n€ model is chosen to () =myw” and the value of

meson correlation functions, defined by my is taken equal to the asymptotic valuegtfw) in pertur-
bation theory[6] given by
> <Eru(7,x)(Eru)T(o,0)>:f dof(0)K(w,7), C, a1 1
X Myg=—"7 1+C2_ _—y PR (24)
(22) 4772 7|\ 7351 2k

TABLE I. Simulation parameters of hadron propagator d@ta0| used in the present MEM analysis. The
numbering of hopping parameters is introduced for convenience. The smallest number corresponds to the
heaviest quark mass, and vice versa.

B Lattice size(.°T) Conf. # Sweep/Conf.
5.90 32 56 800 200
6.10 4G 70 600 400
6.25 48 84 420 1000
6.47 64 112 150 2000

Hopping parametek

B 1 2 3 4 5

5.90 0.1566 0.1574 0.1583 0.1589 0.1592
6.10 0.1528 0.1534 0.1540 0.1544 0.1546
6.25 0.15075 0.15115 0.15165 0.15200 0.15220
6.47 0.14855 0.14885 0.14925 0.14945 0.14960
m,/m, 0.75 0.7 0.6 0.5 0.4
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FIG. 4. Model (ny) dependence for pseudoscal®S and vector(V) channels a3=6.47 andK 11.

where«g is the strong coupling constant, the coefficieB{s reliable result, and we choos@4),,,> 7 and increase it
are perturbatively calculated in continuum QCI®|, andZ  until the result becomes stable. Both parameters are also
is the renormalization constant for the pseudoscd@& or given in Table Il. ForA w, which should be smaller thanTl,/
vector (V) operator. The spectral function from our data iswe takeAw=10 * around the peak of the ground state to
insensitive to the value ofny, as shown in Fig. 4, where determine the ground state mass accurately, And=2.5
f(w) obtained with three different models is plotted for x 10 2 away from the peak.
pseudoscalar and vector mesongat6.47 andK11. In the
figure the horizontal bars indicate the region over which the
result is averaged, while the vertical bars indicate the uncer-
tainty in the averaged value of the result. Both the averaged In this section, we present our results for the spectral
spectral functions and their uncertainties are almost identicglinctions of pseudoscalar and vector meson propagators,
for the different models. Because of this property, we simplyfrom which we extract physical quantities such as masses
take as=0.21 and employ the nonperturbatig, and the and decay constants.
perturbativeZpg calculated aj3=5.90 in Eq.(24) for all B.
The normalization factor 1R is used also for the pseudo-
scalar meson with tadpole-improv@ds. The values o as
well asC; are given in Table II. Our results fop(w) obtained from meson propagators by
Other parameters in the MEM analysis suchNgs and  the MEM for three differentK 1 at all B8 are compiled in
(wa) mayx are determined as follows. We takg, as large as Fig. 5. The lowest peak corresponds to the ground state, the
possible unless the error of the data becomes too large for2ext peak corresponds to the first excited state, and so on. At
fixed B, the positions for these peaks move toward smaller
as the quark mass decreases. This shows that the meson
masses decrease with decreasing quark mass, as expected.
The number of peaks increases frgiw5.90 to3=6.47 for

IV. RESULTS

A. Spectral functions

TABLE Il. Parameters used in the MEM analysis. The lower
part showsS(Np ,(wa) na-

C, C, 7 both pseudoscalar and vector channels, since more states
with higher energy appear in spectral functions for larger
PS 32 1173 0.728 lattice cutoff (smaller lattice spacing All peak positions
\ 1 1 0.536 move to smaller values g8 increases, except the peaks at

wa~1.7 for the pseudoscalar channel andvat~2 for the

5.90 6.10 6.25 6.47 . . .
vector channel. Thus the masses in the physical limits stay
PS (20,4.0 (32,45 (32,4.5 (45,4.5 finite, except those of the latter peaks which become infinite.
v (21,4.2 (30,4.9 (30,4.8 (30,4.8 We discuss these unphysical states in more detail in the next

section.
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FIG. 5. Spectral functions at gl obtained by the MEM for different values & 1. On the left hand side the meson spectral function
and on the right hand side tlremeson spectral function are shown. The stateat2 is considered as unphysical since its position does
not move withg.

014501-7



T. YAMAZAKI et al. PHYSICAL REVIEW D 65 014501

TABLE Ill. Comparison of the MEM analysis with the double exponential fit to our data. This does not mean that the error
exponential fit, using the vector meson correlation functiorBat  for the first excited state mass obtained by the MEM is al-
=5.90. The symboKn;n, expresses the quark mass used in theyyays smaller than the one from a multiexponential fit. If one
correlation functionn, andn, being defined in Table I. DOF indi- employed more sophisticated methods, such as diagonaliza-
cates degrees of freedom. tion of the matrix of several correlation functions or use of
an excited state smeared source, the standard method could
give a smaller error for the excited state. The merit of the
Ground Excited x?/DOF  Ground Excited MEM, however, is that such information can be extracted
from a point source correlation function, so that further nu-
merical simulations are unnecessary.

We determine the chiral limit and the critical hopping
parameterx. where the ground state of the meson mass
vanishes by extrapolatingr(,a)? linearly in K 1. For other
states, including the excited statesmfmesons, the masses
ma themselves obtained from the spectral function are ex-
trapolated linearly irk ~* to the chiral limit. The chiral ex-
trapolation at eacl® is shown in Fig. 7. Some excited state
peaks do not appear in the spectral functions obtained from
some jackknife samples. These masses are excluded from the
chiral extrapolation and are not plotted in the figures. The
lattice spacina is fixed by setting the ground state mass for
B. Meson masses the p meson in the chiral limit to the experimental value
m,=770 MeV. All dimensionful quantities are normalized

Exponential fit MEM

K1l 0.509811) 1.0911) 0.220 0.509416) 1.03430)
K22 0.478412) 1.0914) 0.359 0.478€20) 1.01837)
K31 0477215 1.0914) 0.466 0.477€0) 1.02036)
K32 0.461815 10715 0.587 0.462@3) 1.00940)
K33 0.443%22) 1.0319) 0.687 0.445027) 0.99744)
K41 0.466823) 1.0917) 0.638 0.467@3) 1.02437)
K42 0.450%22) 1.0622) 0.750 0.451@27) 1.00644)
K44 0.421443) 1.0821) 0.890 0.421843) 0.96958)
K51 0.462220) 1.1521) 0.771 0.463(®5 1.02040)
K52 0.446032) 1.1119) 0.872 0.44680) 1.00446)
K55 0.410737) 1.1920) 1.191 0.408(65 0.92970)

From the peak positions of the spectral function, we dewb the p meson mass in the chiral limit
termine the masses of excited states as well as the grounty p )

. : The masses in the chiral limit are compiled in Table IV,
state. The errors of these masses are estimated by the sm%e ether with the result of the standard analysia0] for the
elimination jackknife method. 9 :

In order to check whether the peaks in the spectral funclattice spacin_g, which agrees with t_he value_s from the present
tion really correspond to particle states in correlation func-MEM analysis. At5=6.47, our lattice spacing has a larger
tions, we also extract the masses of the ground and fir&Or: This is cau;ed_by large errors of point source data at
excited states by fitting the correlation functions with athis 8. As shown in Fig. 8, the ground state masses for each
double exponential form. In order to obtain the mass of thd<_* agree with the previous results from the exponential fit
first excited state reliably, correlation functions from both Of ground state smeared source ddt@).
point and ground state smeared sources forptmeeson are The masses of the excited states in the chiral limit are
simultaneously fitted. Results #=5.90 are given in Table extrapolated to the continuum limit, except for the unphysi-
Il and Fig. 6, where errors are again evaluated with thecal states mentioned before, as shown in Fig. 9. We see that
single elimination jackknife method, together with those ob-the mass of the first excited state is consistent with the one
tained by the MEM. We find that the ground state masseseported in Ref[6] for both = andp mesons. Note that the
from the two methods agree very well, and the first excitecerror for the first excited state of the meson from the
state masses are consistent with each other within the statidouble exponential fit a8=5.90 (squar¢ is too large for a
tical error. It is noted that the error of the first excited statereasonable continuum extrapolation. The mass ratios in the
obtained by the MEM is smaller than that from the doublecontinuum limit are given in Table V. The mass of the first

excited state normalized by the ground state mass ie-

1.50 : : son for thesw meson in the continuum limit is 0.867),
which should be compared with the experimental value
125} 1 1.6812), while the mass for the meson is 2.0r4) in com-
parison to the experimental value of 1(8Dor 2.202) (there
100 | % ] are two candidates for the first excited state of gheneson
2, in experimenk The first excited state masses for both me-
S ol o exponential fit sons are consistent with experimental values albeit the errors
& Spectral function are quite large. For the meson we are not able to decide
050 | - 0 | whether the first excited state ig1450) orp(1700) due to
w o ° the large error of our result.
*% 2 30 y 635 6.40
K C. Decay constants

FIG. 6. Comparison of the meson mass for the ground and ~ From the spectral function we can also extract the decay
first excited states from the spectral function and that from theconstants for the ground states @fand p mesonsf . and
double exponential fit. Circles are slightly shifted to larger. f,, defined by
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FIG. 7. Masses and their chiral extrapolations aj3alOn the left hand side the meson mass and on the right hand sideghmeson
mass are shown. Circles, squares, diamonds, and left triangles represent the ground, the first excited, the second excited, and the third excitec
state masses, respectively. The state shown by up triangles is considered unphysical as discussed in the text. Open symbols stand for the
values in the chiral limit.

<0|(E’Y5U)|at| mo,p=0)

V2f . m? 1ﬁ [ 1
C(my+mg)AW Zai=i ¥ 1-3k/4x

lat

<O|(EYMU)Iat|pO P= 0> = \/7fpmp€p,27 H \/ZKl
(26)

We employ the one-loop result with tadpole improvement for
(25  the renormalization factorZ, [20] given by Z,=1
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TABLE IV. Results obtained from the MEM analysis at eaBh Lattice spacings from the standard
analysig[9,10] are also listed.

B 5.90 6.10 6.25 6.47
a(Ge\Fl) 0.5036) 0.3876) 0.3215) 0.22025)
a! (GeV) 1.98625) 2.58340) 3.10553) 4.5251)
a ! (GeV)[9,10] 1.93416) 2.54022) 3.07134) 3.96179
Ke 0.15988113) 0.15498512) 0.1525569) 0.1498097)
T meson
m, /m,; 2.0231) 1.3044) 1.8262) 1.4045)
quZ/mp0 2.61(51) 2.7923) 3.9564)
Moo Moo 4.0025) 5.86(39) 6.8429) 10.61.2)
,,OlmpO 0.115721) 0.114826) 0.109928) 0.11914)
7,Olmp0 0.03616) 0.02814) 0.02921) 0.0074)
p meson
mpl/mpo 2.4619) 2.6347) 2.4832) 1.5967)
mpzlmp0 3.81(65) 4.0241) 3.5371)
m,,3/mp0 6.31.0
1L 4.6914) 6.7921) 7.7630) 11.71.3
f/,0 0.203720) 0.208825) 0.201%32) 0.17834)
o, 0.113346) 0.07634) 0.10215) 0.12040)
r, /m, 0.03219) 0.0147) 0.0085) 0.02415)

—0.316x,(1/a), and the bare quark masse® (+mg)hy  whereE, is thenth excited state energy, and a similar ex-

derived from the axial ward identity10]. For the vector pression for the vector meson. Under the assumption that the

meson decay constant, we use a nonperturbative valug,for ground state peak of the spectral function is sharp, these
[10]. correlation functions are related to the area of the spectral

Decay constants can be extracted from the correlatiofiinction around the ground state peak according to
function as follows. For the pseudoscalar meson we have

f dw ppd @) w2
p

2
— — eak 3k
2 (0]dysu(7,x)(dysu)"(0,0)|0) 2=[(my+mg) a2 — zg\iﬂl (1_?),
o = c
— _ —Epr (29)
= 2 (Ofdysulm) (| (dysw)]0) 5~ (27)
n
f dwpv(w)w2 2
peak
_ e Mg f2= zill 2« (30
o EOF S e, 2y T m AL

For the first excited state, we also extract decay constants
3 from the area of the spectral function around the first excited

state under the same assumption as for the ground state.

The decay constants obtained from the above relations are

extrapolated linearly itk ~* to the chiral limit, as shown for
B=5.90 in Fig. 10, and results are also given in Table IV.
The decay constant for the first excited state of #hmeson
should vanish in the chiral limit according to EQ9); since
the quark massem,+my vanish while the excited state
massm,, remains nonzero. This is in contrast to the ground

state, for which the mass,,_ vanishes in such a way thif

remains nonzero. This property is seen in the figure.
The continuum extrapolation is shown in Fig. 11, and the

0.250

7o
0.225
0.200

Lo
11 1

® spectral function(point source)
o exponential fit(smeared source)

m pa

0.150 |

0.125

6.68 6.69 6.70 6.71 6.72 673 6.74
K

FIG. 8. Ground state masses of {heneson obtained by differ-
ent analyses g8=6.47. Squares are slightly shifted to larger®.

results in the continuum limit are compiled in Table VI. For
the ground state, the decay constantsi#fandp mesons are
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T meson p meson
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20+ '
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28 r
15+ -
=3 o
§° & a3t
EFLO s
1.8
® MEM .
® MEM 0 exponential fix(B=5.90) FIG. 9. Continuum extrapola-
05 A Asakawa et al. ] 1.3 A Asakawa et al. ] i i i
g tion of masses of physical excited
08 ‘ ‘ ‘ ‘ ‘ ‘ states. For the first excited state,
00 o0 o1 oz 03 04 05 0 DA open diamonds and triangles rep-
1 .
alGeV™] resent the experimental value, and
8 ; : ; ; : . 6 : ; : : ; ; that obtained by Asakawat al.
second excited state second excited state [5] For the p meson the open
7r 1 st T ] square shows the result of the
double exponential fit g8=5.90.
6l
4
£s 5
& & !
H] & 8
4l
3t 2r
2—C).1 010 011 012 _9:3 014 0:5 0.6 1—0.1 010 0:1 012 0:3 0:4 0:5 0.6
a[GeV™) arGev'

consistent with previous resulfsquares [10]. In the con-  nature of these widths, further research is needed.
tinuum limit we findf70=80.3(5.9) MeV, which is smaller

than the experimental value 93 MeV, afid =0.2062(84), V. UNPHYSICAL STATES AND FERMION DOUBLERS

which is slightly larger than the experimental value 098 As mentioned in the previous section, the state in the
and the first excited state decay constant for gheneson pseudoscalar channel aa~1.7 and the one in the vector
fp120'085(36)' channel atwa~2 appear with a large width in the spectral

functions at allB. A similar state has also been observed in
) the Wilson quark action g8=6.0 (a 1=2.2 GeV) of the
The width for the ground state peak should be zero for th%laquette gauge actigf] and atB=4.1 (@ 1=1.1 GeV) of
7 meson, and sh.ould_ be very small for tpemeson in the 3 tree-level Symanzik improved gauge act{@}. We con-
quenched approximation. Therefore the width for the groundjger this state to be unphysical since its mass diverges to-
state in spectral functions, if nonzero, is likely to be an arti-ward the continuum limit. In fact the mass of this state can
fact of the MEM. The widthd" of the ground' stat'e peak for pe fitted byC,/a+C, in Fig. 13(see Table VII for numeri-
7 andp mesons are extrapolated to the chiral limit, and are:a| detail3, together with a linear continuum extrapolation
compiled in Table IV. As shown in Fig. 12, these widths arefor the physical excited state. We also see from this figure
very small and almost consistent with zero within errors, aghat no physical excited states appear in the spectral function
expected. if its mass is larger than that of the unphysical state. At first
On the other hand, other states have larger widths. At thi§ight, the state aba~1 seems to be a candidate for another
moment it is difficult to conclude whether these widths areynphysical state. We think, however, that this state is physi-
physical or artifacts of the MEM. In order to decide the cal, since the position of the peak moves&wvaries, and
moreover such a state was not observed at a different lattice

D. Remark on spectral widths

TABLE V. Masses of excited states normalized by the ground

X ) '~ Pspacing[7].
statep meson mass for the andp mesons in the continuum limit. We argue that the unphysical state is a bound state of two
Available experimental values are also given. DOF indicates de;

rees of freedom fermion doublers of the Wilson quark action as follows. The
g i pole mass of a free quark with Wilson parameterl is
given by

mT,llmpo mﬁz/mﬂO mpllmpo m,,zlmpU

Continuum limit 0.8677) 5.41.6) 2.0074) 3.21.8
XZ/DOF 0.514 0.538 0.726 0.240
Experimental value  1.682) 1.90(3) or 2.202)

1
M(n)zalog(1+ma+2n), n=0,1,2,3, (31

wheren=0 corresponds to the physical quark, ame 0
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0.07 T T 0.22
®
0.06 - *® 4 o]
o I
e® 0.20 [ -
0.05 s * E e
© 0.18 " -
< 0.04 ® ground state 1 .
N Ll ® Ist excited state | e ol | FIG. 10. Chiral extrapolations
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represent doublers with of the three spatial momenta com- whose mass is close to the cutoff/a, is difficult to detect
ponents equal tar/a. At r=1 the time doubler does not by the MEM, as seen in Fig. 5. Further work is needed,
propagate due to its infinite mass. In the chiral limit the masdiowever, to clarify this point.
for then=1 doubler is given byM (1)a~1.1; therefore, in
this free case, the mass of twn=1 doublers is 2
XM(1)a=~2.2. Note that, for meson correlation functions
with zero spatial momentum, states consisting of, e.g., a In this study, we have applied the maximum entropy
physical quark and a doubler cannot contribute. method to high-precision quenched lattice QCD data to ex-
In the interacting case, the mass for the bound state madeact the spectral functions for pseudoscalar and vector me-
of two doublers is expected to decrease from 2.2 in the fregons. Masses for excited states as well as the ground state are
theory due to the binding energy, which would depend on thebtained from the positions of peaks in the spectral function,
quantum number of the state. This may explain the differand decay constants are determined from the area under
ence between the peak positionsugt~1.7 for the pseudo- them.
scalar channel and ata~2 for the vector channel. The masses of the ground and first excited states agree
From the considerations above we conclude that the unwith those obtained by the usual double exponential fit with
physical state is a bound state of twes 1 doublers. We note point and ground state smeared source data, showing the
that bound states af=2 doublers do not appear in the spec-reliability of the MEM, while the first excited state mass
tral function [in fact there are no peaks ata=3.2~2 from the spectral function has smaller errors, demonstrating
XM(2)a and 3.9=2XM(3) a]. The reason for this is not the superiority of the MEM in this case.
understood at present. A possible explanation is that the state We have been able to make a continuum extrapolation for

VI. CONCLUSION

110 T T T T T T 0.24
ground state ground state
022 - O exp. value q
100 | < exp. value 1 L -
020 % E ’ ]
<
3 R
=% 1 s %
W 0.18 - . 1
80 o MEM 7 & MEM
O exponential fit 0.16 1 D exponential fit i
FIG. 11. Continuum extrapola-
70 . . . . . ‘ 0.14 . . el , , tions of pseudoscalar and vector
=01 0.0 0.1 0.2 0.3 0.4 05 0.6 =01 0.0 0.1 02 03 04 05 0.6 ia-
o g meson decay constgnts. Open dia
monds show experimental values
0.20 ; ; ; ‘ ; ; for the ground state. Open squares
first excited state represent the previous results from
ots | standard analysigL0].
,é‘ 0.10 -
0.05
0'0(10.1 0:0 011 0:2 9‘3 0:4 015 0.8
alGev]
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TABLE VI. Decay constants forr and p mesons in the con- 50

tinuum limit and experimental values. DOF indicates degrees of w0l

freedom. .
30

fry oo o = ) =

Continuum limit 80.85.9 MeV 0.206284) 0.08536) % 1 _ -t

X*/DOF 0.618 2.18 0.555 = =

Experimental value 93 MeV 0.198 o e T meson
20 " P meson

the first excited state forr and p mesons, obtaining the a0 e

massesm,, =660(590) MeV andm, =1540(570) MeV. AR L

While the errors are admittedly large, this is the first time )
that such an extrapolation has been attempted. For the FIG. 12. Widths for the ground state peaksmfandp mesons
ground state decay constant ferand p mesons we found @nd their continuum extrapolation.

that the result of the MEM analysis is consistent with stan-
dard analysis. 11640250, 11640294, 12014202, 12304011, 12640253,

We have found a state in the meson spectral function at2740133, and 13640260The numerical calculations for
wa~2 for all 8, and have argued that it is an unphysicalthe present work were carried out at the Center for Compu-
bound state of two fermion doublers. If this interpretation istational Physics, University of Tsukuba.
correct, this will be the first time that the doubler state has

been identified numerically in lattice QCD simulations. Fur- APPENDIX A: BAYES'S THEOREM
ther confirmation of this interpretation can be made by _ _ . N
changing the Wilson parameterfrom unity, by analyzing In this section we list some results of probability theory

the Kogut-Susskind fermion data with the MEM, or by con-and Bayes’s theorem used in the MEM. Bayes's theorem in
sidering meson correlation functions with a momentum ofprobability theory{11] is given by
mla.

We have demonstrated that the masses and the decay con- B PLY|X] P X]
stants for various states as well as the ground state spectral PLX|Y]= Y] '
widths for both mesons can be extracted from a single cor-

relation function with a point source by the MEM. While | o PX] is the probability of an everX, and BX|Y] is

errors could be reduced by the standard analysis with morg,o ¢qnditional probability ok given Y. These probabilities
sophisticated methods, we think that the MEM can be &atisfy

simple alternative.
A future extension of MEM analysis is an application to
unquenched data to see dynamical quark effects in the spec- p[x]:f dYP[X|Y]F[Y], (A2)
tral function; decays and scatterings of intermediate states
may be detected from possible widths in the spectral func- - o
tion. It will also be interesting to see the change of the spec@nd the condition for normalization,
tral function before and after the phase transition at finite

(A1)

temperatures. f AXFIX]=1 (A3)
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TABLE VII. Fit parameters ande>/ DOF (degrees of freedom Np
of the unphysical state fit forr andp mesons. R” = Ki'Riri, (B1)
i'=1
7 meson p meson
Np
C, 2.5730) 2.92425) D.=> DRy (B2)
C, —1.05(78) —1.051(58) i'=1
x?’/DOF 0.3158 1.476

After this transformation, the likelihood functidndefined in
Eq. (6) is written as

In this article, we use [X|Y Z] which is the conditional

N, 2
probability of X given Y and Z. For HX|YZ], Egs. (Al), L== >, (5 2 ) (B3)
(A2), and(A4) are rewritten, respectively, as 25 =

PY|XZ]P[X|Z] This transformation does not require any changes in other
PLX]YZ]= vzl (A5)  parts of the MEM.

APPENDIX C: THE NORMALIZATION CONSTANT
P[X|Z]=J dYP[X|YZ]P[Y|Z], (A6) OF THE PRIOR PROBABILITY

The factorZg(«) defined in Eq(10) is the normalization

constant of the prior probability. In order to calculag «),

f dXP[X|YZ]=1. (A7) we introduce a variabl¥, that makes the curvature &(f)
flat, and expan&(f) by transformingf, into X, and applying

The most probable spectral function is obtained by maxi{h€ Gaussian approximation ¥(f) aroundX(m),

mizing the conditional probability [fF|DH] (in this section N, S
prior knowledgeHme is rewritten asH again for simplic- S(f)~ S(m)+2 SX|——
ity), and satisfies the condition, IXil x(my
N 2
SP[F|DH] 1 & J°S
bl et B (A8) += D SX( 8Ky (C1)
SF 2, XXty
We rewrite PF|DH] by Bayes’s theorem as N,
af;, S
=S(m)+ >, X\
P{D|FHP[F|H] T A RAITA
PFIDH]= ———————. (A9)
P[D|H] Ne 2
1 Ity of %S
- += E X\ 6K~ . (C2
The probabilities PD|FH] and FF|H] are the likelihood 2 IXi X0 of oty

function and the prior probability, respectively.
Integrating Eq(A9) overF and using Eq(A7), one finds  where §X,=X,(f)—X;(m). From the properties oK, we

that choose
df,
PD|H]= | DFAD|FH]FF|H], (A10) ix —=\f6,. (C3)
II
whereDF is the measure of the spectral functions. From thisgjnce
point of view, FD|H] is a normalization factor related to the
likelihood function and the prior probability, and we do not IS 92S 1
need to take account of it. S(m)=0, —— =0, =—zo, (C4
(9f| m (9f|07f|/ m 1:I

APPENDIX B: TRANSFORMATION OF COVARIANCE

we take the Gaussian form f&(f),
MATRIX

N

[0}

In this section we introduce a method that easily deals S(f)~— 1 2 (8X)2.
with a nondiagonal covariance matrix.dfis not a diagonal 2 :
matrix, one can transforn® into a diagonal form through

C=Ro?R™ 1, whereR s the transformation matrix ang? is ~ The measuréDF is derived from the so-called monkey ar-
the eigenvalue matrix o€. The kernelK;;=K(w,,7) and  gument[6,13,16 and related to the metric of(f). It is
the dataD;=D(r;) are transformed by as written as

(CH

014501-14



SPECTRAL FUNCTION AND EXCITED STATES IN . .. PHYSICAL REVIEW B35 014501

No gf, Pla|DHmM]=PD|HmMa]P a|HM]/P[D|HM] (E1)
DF=|] —. (Co)

=1 f,

DF is transformed by Eq(C3) such thatDFHH 10X

=P[a|Hm]f DFP[D|FHMa]

We can easily integrate ovér and obtain the normalization X PF[Hma]/PD[Hm] (E2)
constant, Q (f)
ocP[a|Hm]j DF @ (E3)
2o [ DFesS0) 7 | .
Under the assumption tha{ IP|DHma] is sharply peaked
around the most probable spectral functign Q,(f) is ex-
© T 5 panded in the variabl&(f) used in Appendix C and the
%f ll:[l dXiexp — EOIEl (6X)) (C8  Gaussian approximation aroudgl(f)=X,(f,),
9Qq
27| Mo Qul(H)=Qu(f >+Z X~
= — . (C9 Hix(t )
o
l N, zQa
- E 85X, 85X/ (E4)
APPENDIX D: UNIQUENESS OF THE MEM SOLUTION 2 — IX[IX, ()
In this section we explain that the condition satisfied by
the most probable spectral function, E&8), has only one No oty aQa
solution, and has no local minimum. The likelihood function ol f H‘E X~ X g,
L satisfies . g
N
~ 1 W of of 9%Q
N, 2 Np 52 N, k 9Tk a
d%(—L) z - +o D XX o —— . (EH
z z,=—2, —=<0 with z=2, zK;, 2 X 9X,r af I
I,1'=1 I&f|(9f|r ! I:Elo'l2 l |§1 i Kkl | kO1k f
(D1) _
where 6X,=X(f) — X(f,). Because
where thez’'s are nonzero real vectors and tﬁés are real Q. 9Q,, a J%L
vectors. The entropy and a real and positive parameter ol £ ot == f—5||'+7 , (E6)
N 5 N, _2 we can write
@ I“aS(f @z
E Z S( )Z|/=—oz _|<0, (DZ) N,
=1 (9f|(9f|r =1 f| 1
Qu(H=Qu(fa) =5 S oXi(adi Ay X,
I I'=1
where we have used<9f <« and O<a<«. The matrix (E7)
2 . . . .
7°Qu(f)/of, 1, is negative definite, whereA,, is a real symmetridN, X N, matrix defined as
2
& 2Qu(f)
>z 2,,<0. (D3) A= , E8)
s (9f|(9f|r Il fl f|'\/_||f (

Using Rolle’s theorem, one can verify that E48) has only Ve then obtain

one solution corresponding to the global maximum of P[ | m]
Q,(f), if it exists[6]. Roughly speaking, since the curvature P a|DHmM]~ J- H dXexp Q,(f,)
of Q,(f) is always negativeQ ,(f) has only one maximum.

1
APPENDIX E: THE CALCULATION OF P [a|DHM ] 5 > Xi(ad+Ay)dX | (E9
(NN
In order to search for the most probable valueagfwe
need to evaluate the conditional probability dPDHm]. 0wt
This conditional probability is used in Bryan’s methfi] x«PlalHm] e H P
as the weight factor for averaging over In order to calcu- N ! (E10

late F «|DHm], we transform Pa|DHmM] by Bayes'’s theo-
rem and Eq(A6) as Here the\,’s are the eigenvalues of.
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APPENDIX F: ESTIMATION OF UNCERTAINTY
IN THE MEM

PHYSICAL REVIEW D 65 014501

wherel’=ad+ A. The form of Eq.(F4) is readily available
because it is the Hessian of the Newton search algorithm

In the MEM, it is possible to estimate the uncertainty of a[3’6'1ﬂ used to findf,, . The uncertainty is estimated as

spectral function averaged over a certain region bof

Jldw<f<w)> Jldwfam)

Joo o Joo

where (®)= [DFOPF F|DHma]. Using the Gaussian ap-
proximation and the variabl¥,(f) in Appendix E, the cova-
riance of the spectral function can be calculated as

(6f(w)of(w'))= \/fa(w)<5X(w)6X(w’))\/fa(w’)(FZ)

<fa>I: (Fl)

~ ()T 2 (@) (F3)
2 1
_ _(—5 2 ) , (F4)
Of(w)df(w") ‘

dodo' V(o)1 (o))
X1
f dodw’
X1

Similar to the spectral function, the error of the averaged
spectral function in a certain region | is averaged avevith
the weight factor Po|DHmM],

((8f )2y~ (F5

fdaqMDHmLM5mFM

f daPa|DHmM]

(o)1= (F6)
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