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Simulation study of halo formation in breathing round beams
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We study halo formation from cylindrical beams propagating in a uniform focusing channel. Of particular
interest here are the breathing-mode oscillations excited by an initial beam-size mismatch. We develop a
one-dimensional space-charge code which is simple but powerful in exploring the halo properties of breathing
beams. After giving a brief description of two particle-core models, we apply the developed code to three
different types of nonlinear phase-space distributions. Based on a number of multiparticle simulation runs, we
show several interesting results useful for the design considerations of high-power linear machines. In particu-
lar, the intensity of halo current as well as the maximum extent of halos are self-consistently evaluated with the
different sizes of initial mismatch and beam density. We then find that the halo extent normalized with the
initial root-mean-squared beam size is only weakly dependent on the tune depression and that the halo intensity
appears to increase with the degree of mismatch. It is further demonstrated that the beam core in phase space
is roughly stable and, thus, most halo particles remain outside the core boundary. We also see that it is, in
principle, possible to scrape halos, e.g., by means of a multicollimator syk$d®63-651X97)09304-5

PACS numbses): 29.27.Eg, 07.7%n, 41.75-i, 52.25.Wz

[. INTRODUCTION space-charge field acting upon the tail particles becomes
similar to that generated by a KV cor&2]. The particle-core
In designing a linac system for intense beam acceleratiormodel could, thus, give us good insight into halo dynamics,
it is extremely important to have a clear understanding ofand should be worthwhile to pursue.
space-charge effects since the beam quality can easily be Another approach frequently employed for halo study is
deteriorated by them. Though much effort has so far beebased on root-mean-squaréths) quantities. The envelope
devoted to studying space-charge-induced phenomena, thegquation 13] is taken, under the assumption of invariant rms
still exist some unsolved problems which must be investi-emittance, to reconsider the resonant instability caused by
gated in more detail. The mechanism of halo formation isthe periodicity of a focusing channil4,15. From the view-
one such probleril]. In fact, recent interest in using high- point that the periodic change of external restoring force
current ion linacs for the pI’OdUCtion of tritium, the transmu- gives rise to the |nstab|||ty, this effect may be regarded as the
tation of nuclear waste, etc. has greatly enhanced the activity,e||-known structure-driven resonanceshich had not been
of halo study, because these machines must operate with|@yeqd to beam halo problems until recently. The rms ap-
very low beam loss to avoid serious radio activatiars]. proach has a major advantage that the envelope equation is

'_I'hrough extensive S|mula_t|on works, ILis now commonly independent of particle distribution unless the corresponding
believed that a key mechanism responsible for halo gener%al-space density breaks an elliptical symmetry. The

tion is parametric resonances excited by the plasma OSCIIIac'onstant—emittance assumption is, however, inconsistent with

tion of a dense beam cofd]. Based on this idea, a variety of e halo formation process and, further, the system periodic-
theoretical and numerical calculations have been performeE!' . P . ' ' y P .
y is not necessarily required to have halos generated. It is

to establish a quantitative description of the halo formatior! _ X .
process. A popular strategy for this purpose is, for examplet,hus presently uncertain how accurately_thls mod_el des_crlbes
the use of the so-callegarticle-core modeivhich was first the essence of halo prop_ertles._Further |nve_st|gat|0_ns, in par-
suggested by Gluckstern in an unpublished p&SEand was ticular, a careful comparison W|th se_lf-con_sgtent simulation
further developed by other researchggs8]. In this model, ~ "esults would be needed to confirm its validity. _
we usually take into account a Kapchinskij-Vladimirskij [N this paper, we show systematic self-consistent simula-
(KV) core[9] executing the lowest-order breathing oscilla- tion results to deepen our current understandings of halo for-
tion. Then, the motion of a test particle driven by the oscil-mation in a uniform focusing channel; where no structure-
lating core potential is analyzed, assuming that the core digdriven resonances can be excited. We develop here a
tribution is not affected by the existence of the test particlemultiparticle code dedicated to a breathing-mode study since
It is an easy matter to show that, because of the stabilityve are especially interested in the core oscillations caused by
of the core oscillation mod¢10], the particle-core model an initial beam-size mismatch. The beams considered in the
never provides an explanation as to why a fraction of beanfiollowing sections are thus kept strictly round throughout the
particles can escape from the core region, forming a halocchannel. In this case, the usual time-consuming two-
We may, however, recall that a realistic beam always in-dimensional(2D) particle-in-cell (PIC) algorithm becomes
volves some particles around the core as the tail. For thesennecessary because of the symmetry of the problem. In ad-
tail particles, this model might turn to a useful tool, since thedition, the accuracy of the present space-charge calculations
homogenization effedtL1] makes the real-space distribution should probably be higher than that of 2D PIC calculations,
of any dense core nearly uniform and, accordingly, thesince we only need 1D meshes and, consequently, a large

1063-651X/97/564)/469412)/$10.00 55 4694 © 1997 The American Physical Society



55 SIMULATION STUDY OF HALO FORMATION IN ... 4695

number of simulation particles are usable with less CPUs R(7)=2p=\k/e2a, and the tilde has been dropped. In

time. the rest of this paper, we always employ the scaled variables
The paper is organized as follows. We first give a briefwithout indicating the tilde.

review of the particle-core model in Sec. Il for the sake of As pointed out previously5], the particle-core resonance

completeness. In addition to the ordinary KV-based analysishecomes most predominant whies- 0. We, therefore, con-

an alternate algorithm with a waterbag core is presef&fl  sider the simpler equation

The 1D simulation procedure for breathing modes is then

described in Sec. lll. In Sec. 1V, the developed code is ap- r

plied to several different types of initial phase-space distri- 2 R2X (|x|=R)

butions in order to examine their stability properties. In Sec. d_X+X: (2.5
V, we try to draw, based on the present simulation results, dr '

x| =

some practical criteria useful for a linac design. Finally, the (IxI>R),

obtained results are summarized in Sec. VI.

instead of Eq.(2.4). In the particle-core algorithm, we first
Il. PARTICLE-CORE MODEL numerically integrate Eq(2.2) with the initial conditions,
e.g., p(r=0)=pupy and dp/d7)(7=0)=0, where u is
mismatch factof16], and the matched beam sigg can be
The first basis of the particle-core analysis is the envelopevaluated from
equation given by

A. The KV model

d’a K (eX S)2 2_
2, rm Po= . (2.6
2 a5t 1T (2.9 0

wherea andb are, respecti\/e|y' the rms beam size of theThe result is then substituted in E@S) to determine the
horizontal and vertical directiong is the constant parameter time evolution of the coordinate It is important to note that
related to the betatron tune in the absence of space charde,is the only parameter involved in the particle-core system.
K is the beam perveance, asfl.is the rms emittance of the ~ AS long as we assume that the real-space density is kept
horizontal motion. A similar equation holds for the vertical Uniform even in a mismatched beam, the set of the particle-
motion. Specificallya=b and e, =&Y, =¢ for breathing core equatlpns, ie., Eq$2.2) and (2.4), is self-consistent
oscillations. Equatiori2.1) can then be simplified to due to the I]nearlty of the mode. This suggests that we have
no chance in this model to observe halos, because halo for-
d2p T 1 mation is generally accompanied by the emittance growth
—tp=—+-—, (2.2 contradictory to the self-consistency of this system. How-
dr 2p  4p ever, once we initially have some particles outside the core,
they will readily be trapped by resonances acquiring large
where p=y2«x/sa=2kleb, I'=K/xe, and r=«z. The  gympjitudes. The trajectories of these particles may be deter-
parameteir can be related to the tune depressign.e., the mined, to a good approximation, with the particle-core
ratio of the space-charge depressed betatron frequency to thg|ysis, since any realistic dense core possesses an almost

zero-current frequency, as uniform distribution in real space and, thus, the resulting
1_,2 space-charge field resembles that of a KV beam except in the
= 7]’7 ' 2.3 vicinity of the core boundary17].

. . . . B. A waterbag model
Let us now introduce the convenient dimensionless ca-

nonical variables defined By= \i/er =10 B.=p, ke KV distribution has frequently been taken as a theoretical
and B,=p,/e, where {,6) denote |’oolar coordinates and basis of space-charge study because its linearity considerably

(p, ,p,) are the conjugate momenta. The independent variSimplifies analyses. However, there is no doubt that realistic
r» . .

able in this scaled system s The angular momentu, is intense beams contain a fully nonlinear nature. It may thus
a constant of motion in breathing round beamos ie be reasonable to try constructing an alternate particle-core

P,=L=const, since the angle coordinates cyclic. Then “algorithm with a nonlinear core potential even if the model is

assuming a KV core executing the lowest-order mode osciliny approximate. From this point of view, we introduce

lation, the equation of test-particle motion can be written a§1ere a wa‘gerbag core under a s_|mpI|fy|ng assumptlon:
Let us first start from the stationary waterbag density

r

. N lo(Lor)
d2r L2 R2" (r<mr) o4 nO(r):ﬁ[l_m , 2.7
—tr——= 2.4
dr r r

— (r>R), o .

r where |,(z) denotes the modified Bessel function of the

nth order,Py is the scaled radius of the matched waterbag-
which is the second basis of the particle-core analysis. Herdgeam boundaryl\N is the total number of ions, ang}, is the
the beam has the clear circular boundary whose scaled radigsnstant satisfying
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[WATERBAG MODEL]

FIG. 1. Poincaresurfaces of
section in the %,dx/d7) phase
space. The left figure is based on
the KV model and the right one
on the waterbag model. The con-
ditions that »=0.5 and u=1.1
have been assumed in both cases.

dx/dt
dx/dt

I 15(ZoPo) in which we are allowed to use the envelope functjdrr)
B2 L,(LoPo) ¥ (2.8)  identical to that already obtained in the KV-model analysis,
0 1215070 becausep(7) is independent of beam distributions in our

Assuming that the waterbag-type density is roughly main<ase. Finally, the time evolution ¢#(7) and{(r) are sub-
tained even for a mismatched beam, we may repRcand §t|tuted in Eq.(2.10 to investigate the single-particle mo-
Lo in Eq. (2.7 by P(7) and ¢(7) which represent, respec- tion.
tively, the boundary size of the mismatched waterbag core
and the variable satisfying the relation analogous to Eq. C. Numerical results

2.8, ie., For a systematic study of halo dynamics, it is convenient

T 14(¢P) to employ thePoincare mapping techniqudirst introduced
B21,(ZP) =1. (2.9 to the particle-core approach by Lagn|igl. As an example,
2(£ we show, in Fig. 1, the Poincasairfaces of section obtained

The equation of motion for a test particle with=0 is then ~ With 7=0.5 andu=1.1[18]. Not surprisingly, both pictures

given by look quite similar in the region outside the core separa-
torices. On the other hand, the inside of the waterbag core is
21,(8X) more complicated, exhibiting some higher-order islands
2 X (Ix|=P) which can never be found in the KV core at any density.
d“x L1o(LP) h h o of th .
FJ’_X: (2.10  Further, the core separatrix of the waterbag beam is no
r

longer elliptic as seen in the KV case, but has been distorted
to be a racetrack shape due to the core nonlinearity.
In a higher-density region, the waterbag core begins to
To make a physically meaningful comparison between reshow an even more interesting feature substantially different
sults from the KV model and those from the waterbag modelfrom the KV core. Figure @) illustrates the Poincarsurface
the two beam cores must be so-called equivalent; namelyf the section corresponding to a mismatched KV beam with
the second moments of both beams in a matched state mugt=0.2. Naturally, the inside of the core is still completely
coincide with each other. Needless to say, the valueg of regular. Contrarily, as demonstrated in Figh)2 the regular-
and . are taken to be the same in both modé¢7) and ity of the waterbag core with the samg and x has col-
{(7) can be found by solving Eq2.9) together with the lapsed, yielding a large stochastic domain around a certain

relation core boundary. Considering the nonlinear nature of a realistic
4 beam, there is no reason to deny the possibility of such a

2:i+ p2_ P_ 2.11) stochastic instability of the core tail which could somewhat

p I 2r ' enhance the halo intensity. Note further that, in this model,

o.e_—\@) 0.6 g — b) 0.8
0.4—N 0.4 %

FIG. 2. Poincaresurfaces of
section in the %,dx/d7) phase

5 0-2 5 02 5 0.2 space.(a) KV beam with =0.2
= 00 ] 0.0 2 0.0 and x=1.01, (b) waterbag beam
© 2 . — -0.2 with 7=0.2 andu=1.01, and(c)
- 0.4 waterbag beam withy=0.3 and
‘°~4“/ 0.4 0.6 p="1.01.
-0.6 -} _/l/l -0.6 48 0.8
0.0 0.4 0.8 0.0 0.4 08
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the transition to this major chaos takes place in the region 20
betweenn=0.2 and%=0.3. In fact, we can only observe Ap=—F—. (3.9
very thin layers of stochasticity in Fig.(® where =0.3 kV1—7n

has been assumed.
Recalling that the independent variable we have adopted is
1. SIMULATION METHOD 7=«z, the scaled plasma wave length=«\, again de-

) . ) _pends only ony.
We now describe a 1D simulation method for breathing |n order to figure out the adequate values of the simula-

beams. Because of the symmetry of breathing modes, thgon parameters, such as the number of particles, the size of
Hamiltonian governing the system of our interest is indepeniptegration step, etc., we performed preliminary runs em-
dent of the angle coordinaig even for mismatched beams. pjoying Gaussian beams. We then found that the results were
The azimuthal motion of each particle is then a simple rotajnsensitive to the radial mesh size provided that more than
tion with the constant angular momentum=L, which 100 meshes were taken over the length Regarding the
means that we do not have to care about the azimuthal dy;article number, only little change was observed between
namics. The equation of the radial motion can thus be writtefegyits with 10 particles and those with Foparticles. We,

in a closed form as therefore, decided to employ iQarticles for the sake of
2 2 reducing computing time. As to the integration step size, we
d_r+r_ L_:ME (r:7) (3.1)  tried three cases, i.e.@steps, 2! steps, and ¥ steps over
dr? P Ng "7 ' the characteristic length,, and again obtained good agree-

. ) . ments among the three outputs. To be on the safer side, we
whereq is the charge state of a single id, is the scaled chose 3! steps perr,. Note, however, that this number

radial component of the space-charge electric field dependsorresponds to the largest step size. As mentioned above, we
ing onr andr, and the constarit takes different values for have used the variable step-size algorithm, monitoring the
different particlesE, can readily be obtained, according to energy change of each particle in every integration step. The

Gauss’s law, as possible finest step size which may occur in our code has
_ been set to be,/2%°.
Er(r;7)=Q(r'T) , (3.2 We also calcullated the value of the quanij), where
27l (¢) stands for taking the average éfover the whole phase

space. Since straightforward algebra reveals the fact that
where Q(r;7) represent the total charge contained in the(¢) is exactly equal to 0.5 independent of beam distribution,
circular ~ region of the radius r; namely, we can use this quantity to check the accuracy of our numeri-
Q(r;m)=qf4drf Zdp f(r,p,;7) with f(r,p,;7) being the cal calculations. With the parameter setup determined above,
distribution function in the(,p,) phase space. Hence, all we (¢) oscillates about 0.5 with the amplitude less than 0.001,
have to do to evaluatgE, atr=rg is simply count the num- which suggests that our code possesses a sufficient accuracy.
ber of ions located in the region<r, at a given time. Fi- Finally, we compared solutions to the envelope equation
nally, substitution of Eq(3.2) into Eq.(3.1) yields the equa- with simulation results. Due to the independence of the en-

tion of motion velope equation on beam distributions as well as to the sym-
metry of breathing beams, the time evolution of the rms
d?r L? _&r;7) beam size obtained from a simulation must exactly coincide

a2t r_3:F r (3-3  With the numerical solution to Eq2.1) provided that the

corresponding time evolution of the rms emittance is used

where&(r;7)=Q(r; 7)/Ng. To determine the time evolution for e},cin Eg.(2.1). In fact, we always got perfect agreement
of the particle distribution, we here apply the second- orbetween them.
fourth-order symplectic integrator to Eq3.3), fixing the
function £(r; 7) within each time step. Moreover, we have
adopted the variable step-size scheme to improve the accu-
racy of the numerical integration. The best way to overcome the limitations of approximate

It is evident from Eq(3.3) that the free parameters which analytic approaches is to perform multiparticle simulations
must be given initially are only two; namely, the mismatchwhich enable us to self-consistently explore the fundamental
factor u and the space-charge factdi. The particle- properties of dense beams. In order for our simulation results
dependent constarlt can be obtained from the relation to be practically meaningful, we should let an input beam
L=xpy—Yypx once an initial distribution is generated in four- have some sufficiently realistic distribution. Since, in prac-
dimensional phase space. The matched rms beanpgime tice, the initial phase-space distribution of a beam injected
calculated with Eq(2.6). Noting Eq.(2.3), we may also say into a linac depends on various components, such as the
that, except for the mismatch factgr, the tune depression beam source, the short matching section between the source,
n is the only parameter necessary for the execution of thisnd the linac, etc., we treat, in the following, three different
simulation procedure. types of nonlinear distributions; namely, Gaussian-,

For later convenience, we here express the plasma waweaterbag-, and parabolic-type distributions. There is no
length\, by means ofp. Taking the conventional definition doubt that these distributions are more stable and realistic, at
of plasma frequency, e.g., E() in Ref.[10], it is straight-  least, than the KV distribution and are thus adequate to our
forward to show the relation purpose.

IV. STABILITY OF BREATHING BEAMS
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FIG. 3. Phase-space configurations of rms-matched beamspwith7 at7/7,=0 and/7,=20.

Let us first consider the beams initially rms matched. Fig-Each core is executing a rather large oscillation about uni-
ure 3 illustrates the phase-space configurations of the thrderm distribution in real space, which is the main cause of
beams with the tune depression of 0.7. The upper pictureBalo formation from rms-matched beams.
correspond to the initial distributions while the lower onesto  As long as we employ the concept of rms matching, it is
the distributions at/7,=20. Slight core distortion due to the generally impossible to avoid the plasma oscillations driven
weak density redistributiof19] can be observed in each through the initial density-redistribution process. As an ex-
case, but all beams look stable in this density region, aample, let us take a look at Fig. 5, in which the density
anticipated. In fact, almost no emittance growth was deevolution of an rms-matched Gaussian beam is demon-
tected. In thep= 0.3 case shown in Fig. 4, the situation turns strated. We see that the core has been dominated by a sig-
more complicated. We now observe the beam cores sunificant breathing oscillation involving higher-order modes.
rounded, more or less, by halo particles in all three cased.o prevent this, we must start with the stationary state which

S5 TR

2 - 2 — 2
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FIG. 4. Phase-space configurations of rms-matched beamsith3 at 7/ 7,= 20.
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FIG. 5. Time evolution of the real-space densitfy). The initial beam distribution is an rms-matched Gaussian wit0.3.
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FIG. 6. Phase-space configurations of mismatched beamsy#ith 3 at7/7,=20. Three different initial mismatches, i.g.=1.1, 1.3,
and 1.5, have been applied to Gaussian, waterbag, and parabolic beam.



4700 HIROMI OKAMOTO AND MASANORI IKEGAMI 55
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FIG. 7. Phase-space configurations of mismatched Gaussian beamg witlb andr/7,=20. Three different tune depressions, i.e.,
7=0.9, 0.5, and 0.1, have been considered. Note that the scale of ordinate is differentjin @hk case.

can be found by solving the Vlasov-Poisson equation systenthis question, let us trace back the particles which have even-
However, initial distributions employed in simulation studies tually formed a halo. As an example, we consider here the
are usually defined with a linear Hamiltonian because of difcase in Fig. 83), which shows a mismatched parabolic beam
ficulty in getting a self-consistent solution to the Vlasov- having already been transported by the distance of 200
Poisson equations. Then, as shown above, even an rmseparate the halo part of this beam, we check the maximum
matched beam can produce a halo when the density is highetatron amplitudes of individual particles, attaining Fig.
We now go to mismatched situations. Three different misg() e then trace back the selected halo particles to figure
match factors have been tried to obtain Fig. 6, where phasgs; where they came from. This procedure results in Fig.
space configurations al 7,= 20 are displayed. The tune de- g ingicating that the halo is largely composed of the par-
pression assumeq in these plgtures IS 03 Spemflcally, Whcles initially located in the tail region. We have verified,
observe halos with no exception. It is interesting that, i ith a number of simulations, that the main body of a halo

most cases, halo particles are not uniformly distribute originates from the fringe portion of a phase-space distribu-

around a core but travel along several specific orbits formmgion, which implies that the beam corerisughly stable even

narrow bands. Clearly, this tendency is more strengthened as .
Wwith a large mismatch.

the size of initial mismatch becomes larger. Naturally, larger This conclusion is further supported by the simulation re-

m'ﬂ%ﬂfg (7:ailéseb25heﬂoolgo(gsalrjgzzzne)l()%i?gsedh!]virr?;Il(insffere rﬁu't in Fig. 9 _V\_/here we have taken only the core part _of Fig.
(a) as an initial beam; namely, we have started with the

densm_es but the same mma[ m|sm§1tch, lp7=1.5. Halo beam from which the particles in Fig(l§ have been re-
formation appears to be quite serious even for the low-

density beam. It is worthwhile to note that, in the=0.1 moved. After traversing the transport system ofr20ong,

case, the core is surrounded not only by a usual halo ring bt e core beam in Fig.(8) has come to the state in Fig.
. . .~ We see that no halo has been regenerated, although the beam
also by a low-density cloud localized near the core. While.

. 0 vy
the maximum halo amplitudes have not changed much de|_ntenS|ty has been reduced about 16% compared to the origi

pending on the tune depression, the beam ofjtke).1 case hal begm in Fig. &) .due to the removal of the halo patrticles.
; . AR In addition, the emittance growth has also been completely
has clearly been widened in thmg direction in phase space,

which leads to a particularly large emittance growth. Thissuppressed while i the final state, illustrated in Fig) 8he

offect mav be explained by the stochastic core instabili/ ™S emittance was almost twice as large as the initial value.
y bé exp y Y The observations above suggest a possibility of eliminat-
observed in Fig. ).

ing halo particles by means of a simple collimator system.
One possibility is just to put a scraper of a finite length. It is
V. DISCUSSION obvious that a single momentary scraping does not work
since it only takes away a portion of a halo. The required
length of the scraper is the shortest, provided that a beam has
To avoid confusion, we may first need to have a consenalready reached the final saturated state. However, to have a
sus about what the tereore means. Actually, this term has satisfactory scraping effect, it may have to be much longer
sometimes been used to express the dense region of a be#iman the half betatron period/ 7« which could already be
in real space but we do not accept this definition here sincerather long for a dense beam. Moreover, in this halo-scraping
many halo particles can exist inside the real-space core acheme, we must be very careful about the effects of image
any time. Instead, we refer to the dense regionpirase charges induced on the scraper wall. The practicability of a
spaceas the beam core. It then becomes no problem to didong scraper may thus be uncertain.
tinguish a core region from a halo, as we have seen in the An alternate, probably more promising, possibility is the
simulation results given in Sec. IV. use of thin but several tapered collimators periodically in-
A question arises, however; namely, do halo particles restalled along the beam line. The tapering angle must be de-
ally keep staying outside the phase-space core? To answtarmined such that the effects of the geometrical wake, as

A. The origin of halo particles
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FIG. 8. Phase-space configurations of a parabolic beam#¥th.2 andu = 1.3 initially. (a) represents the phase-space profile after the
beam has been transported through a uniform channel gf Rdg. Only the halo particles seen (@ have been plotted ifb). Here, the
particle which achieved a betatron amplitude greater thax 32, has been defined as a halo particle. This corresponds to adopting
G=1.0 where the paramet€ is calledcore factor introduced in Sec. V Qc) shows the initial positions of the halo particles, obtained by
back tracking the particles ifb). Pay attention to the fact that the core region(bin is almost empty, which already implicates the core
stability.

well as the resistive wall wake, are minimized. Though it isis not very sensitive to the beam density. Though all three
not very clear whether a halo can completely be removed byypes of distributions yield halos aj=0.3, as already dem-
such a system, we could, at least, anticipate a significardnstrated in Fig. 4, the corresponding maximum beam ex-
reduction of the halo intensity. The required minimum num-tents are comparable to those in the lower-density region
ber of thin collimators may be two; namely, the first colli- where no remarkable halos have been developed. This im-
mator gets rid of about a half of a halo and, then, the secongjies that halo formation is not troublesome when a beam is
collimator installed some distan_ce away from _th_e first ONgitially rms matched.

scrapes most of the rest. But, to improve the efficiency of the e glight distribution dependence of halo size indicated
system, we need to employ more than two collimators 10y, £ig 10 s not of essential importance since it simply arises
;:ateq a bf't clostgr tlo .e",:‘Ch otthk;ar. The muflt!iz)le C.OH'TE.ittor SyZTrom the discrepancy of the initial beam-boundary sizes
em is of practical interest because of its simplicity, an : :
should be gtudied further as a possible halo-scr;)pingydevic%compare' for example, the upper pictures in Fig.|8 fact,

If we take the ratio to initial beam radius instead\&p,, the
result becomes much less dependent on beam distributions.
We then find that the growth rate of the beam boundary is
From a practical viewpoint, it is important to know how mostly less than about 10% for all three distributions even in
far halo particles can be away from the beam center. Accorda high-density region.
ing to our simulations, most initial beams come to a roughly For mismatched beams, we obtain Fig. 11 where the or-
saturated state before arriving #tr,=20, so we here con- dinate indicates the maximum halo size divided by2p,.
sider the largest particle amplitude recorded until then to b&Ve again notice that there exists no clear correlation be-
the maximum beam extent. Further, for Gaussian beams, weveen the scaled halo extent and tune depression. It is quite
initially truncate the tail particles at@a Figure 10 shows the interesting that even the distribution dependence of the halo
ratio of the maximum extent of halos from rms-matchedextent has disappeared when the magnitude of the initial mis-
beams to the radius of a matched KV beam, i.e.match exceeds some level. We can directly confirm this fact
V2po(=Ry). It is recognized that the largest halo amplitude by looking at the phase-space configurations in Fig. 6. While

B. The size of halo extent

@ | ®)

FIG. 9. Phase-space configurations of a core
beam.(a) shows the initial beam obtained by re-
moving the halo particles in Fig.(B8) from the
original beam in Fig. @). After traveling
through a uniform channel of 29 long, the core
beam in(a) reaches the distribution itb).
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1.8 Since beam density is known to be very quickly homog-
Gaussian enized, we start here marking halo particles after a beam
164 M travels through the channel by a distance of 5
o The halo intensities evaluated with the above-explained
3 A—A\&\&\A\P;abom method are demonstrated in Fig. 12, where the upper three
i 1.4 pictures correspond to theé= 1.2 cases, the middle three to
g the G=1.3 cases, and the lower three to tBe=1.4 cases.
T 124 The pictures on the left side, i.e., the=1.1 case, clearly
Waterbag show the natural tendency that halo intensity becomes
‘o smaller for a larger core factor. Whea=1.2, it appears,
B e e B E— against expectation, that halos have been more enhanced in a

00 02 04 06 08 1.0

Tune Depression lower-density region rather than in a higher-density region.

This is, however, largely due to the simple fact that a beam

. , core is more expanded in radius at a lower density.

FIG. 10. Maximum beam extent vs tune depressioms- Th iddl dl . f —15 look
matched cage The ordinate indicates the ratio of maximum halo e middle and lower pictures o Fhe_, ~ case loo
extent to the radius of matched KV coRy= y2po. roughly analogous to each other, which implicates that the

maximum radii of the strongly mismatched cores should

the halos have been more enlarged in Fig. 6 with increasin pically be less than arounq 1320, while they could be
initial mismatch, we may now state, based on the informa>CMeéwhat altered, depending on the density. The average
tion provided by Fig. 11, that it is simply because the halo@mount of a halo over the whole density region has been
extent scales ag when u is sufficiently above one. The calculated, in theu=1.5 case, to be 9'30./06(:1'2)' 8.2%
universality of the maximum beam size pointed out in Figs(G=1-3), and 7.3% €=1.4) for Gaussian beams, 6.4%
11(b) and 11c) leads us to the conclusion that the possible(Gzl'z)' 5.9% G=1.3), and 5.7% G =1.4) for parabolic
halo extent should be, at most, approximately 8mes the o€ams, and 5.1%@3=1.2), 2.9% G=1.3), and 2.7%

matched KV-beam siz€2p, regardless of beam density. (G=1.4) for yvaterbag beams. . .
i2§2po reg d The halo intensity evaluated with a specific core factor

should be of practical importance, since we generally care
about the real-space oscillation amplitudes of individual par-
The approximate stability of the beam core confirmed inticles either when designing a halo scraper or when deciding
Sec. V A allows us to estimate the intensity of the halo curthe minimum aperture size of a linac. It might, however, be
rent. To separate a halo part from a core part, we here set thrreaningful to evaluate the intensity of only the halo portion,
circular boundary in real space whose radius istaking into account the density dependence of the core size
r=Gu2p, where we call the paramet& core factor mentioned above. Figure 13 gives the result of the rough
Once a particle goes beyond this boundary, we simply regardstimate of halo intensity obtained by adjusting the value of
it as a halo particle. Note, however, that we should not ini-G. We now realize that a larger mismatch has caused a beam
tiate this procedure until the density-redistribution process i$0 generate a more serious halo. Further, it seems that the
completed. Otherwise, particles initially located near thehalo has been more enhanced at a higher density, while this
beam edge in real space may inevitably be counted as hatendency has been weakened as the density becomes lower.
particles, leading to an overestimation of the halo currentin particular, above around, say=0.5, no explicit correla-
Once initial beams have been redistributed to possess taon between halo current and tune depression is visible. Fig-
nearly uniform density, it then becomes unnecessary tare 13 also tells us that the waterbag distribution is relatively
worry, at least, about the possibility of such overestimationstable compared to the other two distributions. In fact, even

C. The intensity of halo current

2.4 4 2.4 7 2.4 1
(a) =1.1 (b) =13 (c) =1.5
2.2 = a 2.2+ i 2.2+ a
Gaussian Gaussian Gaussian
f 2.0 G—e—e———‘e\e\é/ ;‘9 2.0 Mc 2.0 O_e_e__e__e\g/
= = = N .
= 1.8 = 1.8 = 1.8 i
B g Parabolic 8 Parabolic
h w2
:,E: 1.6 Parabolic 2 1.6 :,E: 1.6
3 3 3 Waterbag
2 414 8 1.4 2 1.4
1.2 1.2 Waterbag 1.2
Waterbag
1.0 1.0 1.0 1
T T T T T 1 T T T T T 1 T T T T T 1
0.0 02 04 06 08 1.0 00 02 04 06 08 10 0.0 02 04 06 08 1.0
Tune Depression 1| Tune Depression 1 Tune Depression i}

FIG. 11. Maximum beam extent vs tune depressimismatched cageThe ordinate indicates the ratio of maximum halo extent to the
maximum radius of a mismatched KV core, i.24/2p,.



55 SIMULATION STUDY OF HALO FORMATION IN ... 4703

_ _ [G=17] _
£ 020 £ 0.20 — £ 020+
F (al) u=1.1 5 (bl) p=1.3 £ (cl) p=1.5
= = —_— = —_—
= 015 Gaussian 'z ¢ 45 . T 0154
g g Gavssian g ™ Gaussian
=] =] =]
= = =
2 0.10] \ & 010 g 0.10 -
= Parabolic - -7
= = =
’é’ Waterbag ‘2 Z
5 0.054 5 0.05 . § 0.05 Parabolic
E E Parabolic = \
< 2 Wat}: ‘ba £ Waterbag
£ 0.004 £ 0.00 2 Z 0.00-
I 1 T ¥ | I I I T | | 1 T i T T T L
00 02 04 06 08 1.0 00 02 04 06 08 10 00 02 04 06 08 10
Tune Depression | Tune Depression | Tune Depressionn
pmaenae
[G=13}
—_ e~ e} _—
& 0.20 £ 0.20 Z 0.20
£ (a2) p=i.1 5 b2) p=1.3 z (c2) pu=1.5
E - = T k= -
- £ 0.15 — .15 .
§ 0.15 5 0.15 g 0.15 Gaussian
A Gaussian ; X e
E £ Gaussian §
S0 N\/?J =™ £ %7
= S = .
,E Parabolic 2 Parabolic ‘E Parabolic
§ 0.05 — é 0.05 / § 0.05 Waterbag
= = 5 ’
2 G\B\S\S—B_?terbag 2 Watetbag 3
£ 0.00] Z 0.00 £ 0.00
~ T T T 1 1 1 | 1 T T T 1 ~ I T T T 1
00 02 04 06 08 1.0 00 02 04 06 08 10 00 02 04 06 08 1.0
Tune Depression Tune Depression 1 Tune Depression N
1G=1.4}
£ 0-20 1 & 0.20 2 0.20
w o= -
£ (a3) p=1.1 % (b3) p=1.3 § (c3) p=1.5
= T E T k= T
£ 0.15 £ 0.15 £ 0.15 -
3 3 g
; Gaussian |a = Parabolic
8 8 8
& 0104 & 0107 Gaussian & 0.104
) B 5
E 0.05 . Parabolic % 05 £ 0.05 - .
5 § 0. Parabolic 5 © Gaussian
= £ E Waterbag
2 2 Waterbag 2
Z 0.00+ = 0.00 — = 0.00 -
I 1 i J 1 | ~ T i | I I !
00 02 04 06 08 1.0 00 02 04 06 08 1.0 00 02 04 06 08 1.0

Tune Depression N Tune Depression n) Tune Depression |

FIG. 12. Halo intensity relative to total beam intensity vs tune depression. Halo intensity has been evaluatgd 20 with various
core factors and mismatch factors.

with a mismatch factor of 1.5, only less than 10% emittancehave confirmed the formation of a remarkable halo even in
growth, due to halo formation, took place in waterbag beamshe »=0.99 case provided that the mismatched is large.
when the density was modest. A key factor in explaining this
distribution dependence may be the difference of the nonlin-
ear field energies involved in initial beams. As analyzed in  As far as cylindrical beams propagating in a uniform fo-
previous works, the nonlinear field energy of a waterbagcusing channel are concerned, the deviation of beam distri-
beam is much smaller than those of the other two beamBution from the stationary state may be understood as the
(see, e.g., Ref[11]). Among the three distributions, the main cause of halo formation. Whenever a beam is not in its

Gaussian has the largest nonlinear field energy; namehPV" stationary state, it naturally tries to approach closer to

about seven times larger than the waterbag, and about thréféere’ minimizing the nonlinear field energy. During this pro-

times laraer than the parabolic. This mav be why halos fron €SS plasma oscillations are excited in the beam core, driv-
arg P ' y D y rT]ng a portion of it into a halo. Inversely speaking, if a beam
Gaussian beams are always most predominant.

" A _injected into a uniform channel fne grainedlymatched to
Finally, it is important to note that there may be a possi-it " there is no reason to expect the development of a halo

bility of observing halos produced by the same mechanismynless the distribution itself is intrinsically unstable against

as described here, even in a circular ion machine. In fact, wgerturbation. While several different factors have been con-

VI. SUMMARY
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FIG. 13. Halo intensity relative to total beam intensity vs tune depression. Halo intensity has been evaltfaiged 2. The core factor
has been modulated taking into account the density dependence of core radius; namely, a smaller value of core factor is usually adopted at
a higher density since a core is more strongly homogenized. Note that halos have been considerably enhanced in a very high-density region
due to the existence of the particle cloud around a gsee Fig. 7c)]. If we neglect the contribution from this cloud, the halo intensities at
7=0.1 are reduced to the 10% level or less.

sidered as the possible sources of halo formation, it seemsurrounding the core, for example, by means of a multicol-

after all, that the important point is how much a beam islimator system.

deviated from the stationary stdt20]. It has also been discovered that the maximum extent of
According to the present simulations, a beam core defineflalos normalized wittp, are surprisingly insensitive to the

in phase space is approximately stable regardless of its defune depression. In particular, the maximum halo size of a

sity and the size of mismatch. Most parts of a halo are thugaussian beam divided by its initial rms radius is indepen-

formed by the particles moving outside the core boundarygent of hoth the beam density and mismatch factor; namely,

This means tha_t we do not have to care too much about thl‘? always takes a value around,2 as indicated in Fig. 11.

el W.h'Ch enables some lons to escape from & oncerning the other two beam distributions, the maximum

core. The particle-core approach might, therefore, be helpf eam radii tend to be closer to that of the Gaussian case as

in exploring some features of halos although it definitely has‘[he degree of the initial mismatch increases. It may then be

limitations. luded that th - ¢ di f a hiah
Figure 13 suggests that a beam with a larger mismatcffoncuded that the minimum aperture radius ot a high-
ntensity linear machine must be greater than, at least,

yields a more dominant halo. Moreover, it also appears thd ’ i
halo intensity becomes less dependent on tune depression 4#tmax imes the matched KV-beam radiu@po, when one
a lower-density region. While the absolute amount of halg®*P€ects the possible maximum mismaich to:Qg..

particles changes associated with the beam distribution, it

could be around 5% or more of the total particle number

either when an initial beam is subjected to a large mismatch ACKNOWLEDGMENT

or when the beam density is extremely high. However, due

to the approximate stability of the phase-space core, we have The authors would like to thank Dr. K. Hirata and Dr. K.
a possibility of removing a large portion of the halo ring Oide for useful discussions.

[1] M. Reiser, inProceedings of the Particle Accelerator Confer- dall, in Proceedings of the Particle Accelerator Conference,
ence, San Francisco, 199IEEE, New York, 199}, p. 2497; Washington, D.C., 199Ref.[1], p. 3657.
A. Cucchetti, M. Reiser, and T. Wanglehid., p. 251; D. [7] 3. M. Lagniel, Nucl. Instrum. Methods 845, 46 (1994); 345
Kehne, M. Reiser, and H. Rudd, Rroceedings of the Particle 405 (1994.
Accelerator Conference, Washington, D.C., 19/EEE, New [8] A. Riabkoet al, Phys. Rev. B51, 3529(1995.
York, 1993, p. 65. [9] I. M. Kapchinskij and V. V. Vladimirskij, inProceedings of
[2] R. A. Jamesorfunpublished the International Conference on High Energy Accelerators
[3] Heavy lon Fusionedited by M. Reiser, T. Godlove, and R. (CERN, Geneva, 1959p. 274.

Bangerter, AIP Conf. Proc. No. 152IP, New York, 1986. [10] R. L. Gluckstern(unpublishedt it is not obvious whether the
[4] R. A. Jameson, Los Alamos Report LA-UR-93-1029, 1993 stability of the linear breathing mode is guaranteed when the

(unpublished size of an initial mismatch can no longer be treated as pertur-
[5] R. L. Gluckstern(unpublishegt Phys. Rev. Lett.73, 1247 bation. However, in the particle-core model, we simply assume
(1994). that a KV core executes a stable linear breathing oscillation in

[6] J. S. O'Connell, T. P. Wangler, R. S. Mills, and K. R. Cran- spite of a large mismatch.



55 SIMULATION STUDY OF HALO FORMATION IN ... 4705

[11] J. Struckmeier, J. Klabunde, and M. Reiser, Part. Accg147

(1984; O. A. Andersonjbid. 21, 197 (1987.

Egs. (2.9 and(2.11) to have a physical solutiony must be
less than about 1.15 wheyp=0.5.

[12] Needless to say, this sentence does not mean that the particlgt9] The stationary distribution of a dense beam is roughly uniform

core model gives us an exact picture of the halo formation
mechanism. For instance, the core separatrix of a realistic
beam, if we can rigorously define such a boundary, must defi-
nitely be different from that of a KV beam. In fact, as pointed

out in Sec. Il, the nonlinearly of a realistic beam may even
partly destroy the core stability, yielding a stochastic region

around the shrunk core.
[13] F. J. Sacherer, IEEE Trans. Nucl. SNiS-18 1101(1971).
[14] C. Chen and R. C. Davidson, Phys. Rev4& 5679(1994);
Phys. Rev. Lett72, 2195(1994).
[15] S. Y. Lee and A. Riabko, Phys. Rev.H, 1609(1995.

[16] In the present paper, we only consider mismatch factors

greater than one.

[17] Note that the phase-space distribution of a KV beam is quite
different from that of a more realistic beam even if both have

similar density profiles in real space.

[18] The maximum allowable value qgf is limited in this model
because of the assumption made. For example, in order for

in real space. Whenever the beam is deviated from the station-
ary state, it tries to approach closer to there, homogenizing its
real-space density. The density redistribution process should
thus have essentially nothing to do with resonances nor chaos.
See, e.g., Ref[11] or the excellent work by T. P. Wangler

et al, IEEE Trans. Nucl. SciNS-32 2196(1985 which has
been generalized by I. Hofmann and J. Struckmeier, Part. Ac-
cel. 21, 69 (1978.

[20] When the external restoring force varies periodically, the situ-

ation may become different as the envelope of even a fine-
grained matched beam can execute a large oscillation. It is not
very clear whether a matched beam in a periodic channel ex-
hibits the dynamical behavior analogous to that of a mis-
matched beam in a uniform channel. This problem will be
discussed in detail in a forthcoming paper.

[21] Waterbag core has a uniform particle distribution in phase

space.



