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Molecular dynamics is employed to study the nature and magnitude of beam cooling that is required
in order to achieve a crystalline beam. Analysis is presented of a number of cooling systems now in use
or whose use is contemplated, none of which has been shown to be able to achieve the crystalline sta
However, for an adequately strong cooling system that produces on average a constantangular velocity
among the particles, a crystalline state can be achieved. In this paper, we present numerical value
for a particular example under typical experimental conditions; these values appear to be achievable i
practice. [S0031-9007(98)05644-0]
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For the last decade there has been interest in a
experimental effort to achieve crystalline beams. The
beams are sufficiently cold in the beam rest frame,
that the particles making up the beam “lock into”
position where the repelling Coulomb force just balanc
the external focusing force. Seen from the laboratory, t
whole ordered structure circulates at great speed. T
interest, besides intrinsically on this new state of matte
is primarily on the possibility of studying the physics o
completely space-charge dominated beams, the possib
of studying Wigner crystal, and the possibility of obtainin
high luminosity in colliders.

The ground state of a crystalline beam was propos
by Dikanskĭi and Pestrikov [1] based on an experiment
anomaly observed on an electron-cooled proton beam
the storage ring NAP-M, and was first studied using th
molecular dynamics (MD) method by Schiffer and co
workers [2]. At the same time, experimental efforts hav
succeeded in achieving very low beam temperatures,
not yet a crystalline state [3].

In a long series of papers we explored the conditio
for a crystalline beam ground state in a real storage ri
[4–7]. Despite the large amount of work and the man
publications in this field, there has not previously been
careful study of the nature and magnitude of the coolin
force required to reach a crystalline state (see the paper
Ref. [6]). We have undertaken such a study and report
the results in this Letter.

Particle motion can be described by a Hamiltonia
[4,6] in the rest framesx, y, z, td of a circulating reference
particle in which the orientation of the axes is rotating s
that the axes are constantly aligned to the radial (x), vertical
( y), and tangential (z) direction. Consider in general
a system of multispecies of particles under Coulom
interaction and external fields. Define a reference p
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ticle with electric chargeZ0e and atomic massM0, and
define for theith species of particles with chargeZie
and massMi , Zi ; ZiyZ0, andmi ; MiyM0. Measure
dimensions in units of the characteristic distancej with
j3  r0r2yb2g2, time in units of rybgc, and energy
in units of b2g2Z2

0e2yj, wherer0  Z2
0e2yM0c2 is the

classical radius,bc andgM0c2 are the velocity and energy
of the reference particle, andr is the radius of curvature in
bending regions of magnetic fieldB0. In a bending region
with pure dipole magnetic field, the Hamiltonian for par-
ticles of theith species is
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where the Coulomb potential is

VCi 
X

j

ZiZj

mi

q
sxj 2 xd2 1 s yj 2 yd2 1 szj 2 zd2

,

(2)

and the summationj is over all the other particles and
their image charges [4]. In a nonbending region with
longitudinal electric field and nondipole magnetic fields
the Hamiltonian is
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where the quadrupole, skew quadrupole, and sextupo
strengths are represented by

n1  2
r

B0

≠By
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, n1s  2

r
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, n2  2
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respectively. The electrical forceFs can be expressed
in terms of electrical fieldEs measured in the laboratory
frame,

Fs ; 2
≠Us

≠z


Zi

mi

Z0eEsj

M0c2

µ
r

jbg

∂2

.

In the usual case of a single species,Zi  mi  1.
We have done both analytic and numerical calculatio

using the equations derived from these Hamiltonians a
the MD methods [4]. Starting with a study of the groun
state, it has been shown that there are two necessary c
ditions for the formation and maintenance of a crystallin
beam. They are as follows: (1) The storage ring mu
be alternating-gradient (AG) focusing, and the energy
the beam must be less than the transition energy of t
ring; i.e., g , gT . (2) The ring lattice periodicity is at
least2

p
2 as high as the maximum betatron tune. Cond

tion (1) arises from the criterion of stable kinematic mo
tion under Coulomb interaction when particles are subje
to bending in a storage ring. Condition (2) arises from
the criterion that there is no linear resonance between
phonon modes of the crystalline structure and the mach
lattice periodicity.

Existing storage rings upon which attempts have be
made to obtain crystalline beams do not satisfy the con
tions just stated, although with minor modifications the
would. However, the TARN II lattice does satisfy them
Among a wide range of choice we choose the TARN
parameters [8] for the example of this Letter, as given
Table I. In Fig. 1, we show a set of three-dimension
(3D) stereoscopic pictures of a typical crystalline beam
its ground state, along with particle trajectories over a la
tice period. The bunching in the longitudinal direction o
this crystal ball is a result of the focusing force produce
by a radio-frequency (rf) electric voltageV sinshv0td (ex-
pressed in the laboratory frame) varying sinusoidally wit
time. In the absence of this rf focusing, one obtains a cry
talline state that extends over the full circumference of th
ring as depicted in Fig. 1 of Ref. [4].

We turn next to the subject of behavior of a crystal a
nonzero temperature. The crystal temperature is defined
be proportional to the deviations of momentum from the
ground-state values, then squared and averaged over m

TABLE I. Parameters of TARN II.

Quantity Value

Ring circumference,2pR 77.7 m
Number of lattice periods per turn 6
Horizontal and vertical tunes,nx , ny 1.68, 1.85
Transition energy,gT 1.87
Skew quad integral strength per period 0.02 m21

Dipole bending radius,r 4.01 m
Ion species 24Mg1

Kinetic energy 1 MeV
RF voltage,V per period 33.33 V
RF harmonic number,h 1000
Synchrotron tune,ns 0.107
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FIG. 1. A set of stereoscopic pictures of a crystal ball
TARN II at its ground state (a) (color), obtained by MD
calculation with 1000 particles (totalN  106 in the ring)
and displayed at the cooling location. (The stereosco
effect can best be seen by holding the paper close to y
nose.) The color code is associated with the scaled rad
distance from the axis. The object is finite in all thre
dimensions due to the transverse focusing forces of the exte
magnets and the longitudinal rf force. The physical dimensio
in the horizontal, vertical, and longitudinal directions ar
approximately 0.3, 0.2, and 8.0 mm, respectively. A typic
distance between ions is 30mm sj  23 mmd. The trajectory
over a lattice period of a typical particle is shown in (b) and (c
Lattice components in each period are displayed on the figu
D is a bending dipole section, QF, QD, and QS are focusin
defocusing, and skew quadrupoles, RF is the bunching rf cav
and C is the cooling section.

lattice locations and periods and over all the particles, i.
T  b2g2j2M0c2

P
ix,y,z ksDPid2ly2kBr2, wherekB is

the Boltzmann constant. Such an averaging is necess
because, without doing so, the quantities in the definiti
of temperature are functions of location and time. A mo
expansive discussion of the temperature is presented
Ref. [9]. A crystal in its ground statesT  0d, despite
its transverse breathing (due to the AG focusing) a
its longitudinal shear motion (due to straight sectio
and bend regions), will remain forever in the groun
state. That is, it willnot take up energy from the lattice
However, for any nonzero temperature the crystal w
continually absorb energy and so heat up. In the hi
temperature limit this is called intrabeam scattering, a
it becomes ever larger as the temperature decreases sim
because coulomb scattering increases as beam-occu
2607
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phase space area is reduced. On the other hand, at
low temperatures particles are frozen into a crystal and
longer move by each other. Thus the heating rate ha
maximum near the temperature at which ordering starts
occur. Using the MD method, we have studied the heati
rate as a function of the temperature. Figure 2 shows
results for the crystal ball case previously displayed
Fig. 1, and also compares the heating behavior of bo
bunched and coasting crystals at different density. F
simplicity without loss of generality [10], we assume tha
the beam temperature is isotropic. The heating behav
of bunched and coasting crystals are found to be simil
and the peak heating rate is proportional to the avera
linear density over the crystal. A cooling system must b
adequately powerful as to take the particles over the pe
heating value and on down to a crystal.

We are now ready to explore the nature of bea
cooling required in order to obtain a crystalline structur
In order to attain a crystalline state, the temperatu
must be low in all three directions. The laser cooling
which is the preferred method of reaching very low
temperatures, provides adequate longitudinal cooling
for it works on the Doppler principle, but it does not coo
in the transverse direction. There have been a num
of suggestions, and even experimental efforts, to provi
transverse cooling of the stored ion beams. Intrabe
scattering (“sympathetic cooling”) does give some coolin
in this direction and experimental observations of th
effect have been reported [11]. Coupling cavities [12
or regular rf cavities in a region where there is dispersio
[13], could provide significant energy transfer from th
longitudinal to the transverse phase space; this has b
proposed, but not yet experimentally attempted.

Neither of these approaches, sympathetic cooling
coupling cavities, has been shown to reach a crystall
beam (here approximatelyT , 0.02 K). Sympathetic
cooling is too slow, and the heat exchange becom
ineffective (Fig. 2) as the beam approaches an orde

FIG. 2. Heating rate curves for bunched beams (including t
one shown in Fig. 1) and coasting beams at different line
density. Except for the indicated 1D case, all the rest are 3
structures. The heating rate is significantly less for a 1D cryst
2608
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state [6]. Coupling cavities usually cease working befo
crystallization, as we have recently demonstrated using
MD method. For a single particle the coupling cavit
scheme is effective, but as ordering starts to appear
Coulomb interaction between the particles (or “tune shift
becomes strong and destroys the synchrobetatron coup
mechanism.

We have found that longitudinal cooling, when it resul
in a state where the momentum is a function of the tran
verse displacement, is effective in reaching a crystalli
state, i.e., a state in which particles of different radial pos
tion all have the same average angular velocity. We sh
call this method “tapered cooling.” The effect of coolin
is described by a reduction inPz in the cooling region by

DPz  2fzsPz 2 Cxzxd , (4)

where the coefficient describing the strength of cooling
fz , and the coefficient describing the extent of tapering
Cxz . With proper choice of parameters purely longitudin
cooling also results in transverse cooling (and therefore
crystalline state): The coupling betweenzandx is provided
by the dispersion at the cooling location, while couplin
betweenx and y is provided by the skew quadrupoles
With tapered cooling and activated skew quadrupole
temperature in the horizontal, vertical, and longitudin
directions can be reduced simultaneously. The accepta
strength of the skew quadrupoles is a function of th
difference in transverse tunes.

In the low-density limit where Coulomb interaction
between the particles is negligible, one can calcula
the cooling rate by evaluating the dispersion relatio
from the one-turn transfer matrix. In the case of wea
cooling, fz ø 1, and near a transverse coupling reso
nance, the transverse and longitudinal cooling rates
t21

x,y  GCxz and t21
z  fzv0y2p 2 4GCxz , where

G ; ghcfzv0y8pr, andhc is the dispersion at the lo-
cation of the cooling device. The single-particle stabilit
limit for the tapering coefficient isCxz # ryghc. When
the cooling rate is not small compared to 1, the dispersi
relation can be solved numerically.

The value ofCxz necessary to obtain a zero-temperatu
state is given simply by the requirement that the avera
angular velocity of the particles all are equal, i.e.,kÙzl  0,
or kPzl  grkxlyR, where2pR is the machine circum-
ference. Consequently,kCxzl  gryR, wherekCxzl is the
average over one lattice period ofCxz defined in Eq. (4).
In the laboratory frame, this argument is equivalent to wr
ing kxl  sRyg2d kDpypl, wherekDpypl is the average
fractional momentum, which may be compared with th
single-particle relation ofkxl  sRyg

2
T dDpyp. The value

of Cxz at a cooling section differs from the averagekCxzl
due to ground-state crystal breathing. Approximately, th
difference is given by the azimuthal variation of the single
particle dispersion. The optimum value ofCxz is inde-
pendent of the density, the bunching of the beam, and
cooling strengthfz . It can be precisely determined by a
numerical evaluation of the desired crystalline state.
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For the bunched crystal ball shown in Fig. 1, we fin
that Cxz must be near 0.26,fz larger than about 0.3
(at the peak of the heating curve), and skew quadrupo
parameters as given in Table I. Since there is n
qualitative difference between a bunched and a coast
beam in both heating (Fig. 2) and cooling behavior, w
for simplicity, present results for tapered cooling of
coasting beam (parameters in Table I above the dividi
line). In Fig. 3 we display the acceptable range (fo
T # 0.02 K) of tapering,Cxz , as a function of beam linear
density. The difference ofCxz from its optimum value
determines the lowest reachable crystal temperature, a
the acceptable range is not dependent onfz as long asfz

is large enough to overcome heating (Fig. 3). For 1D lo
density string structures, the acceptable ranges for b
Cxz and fz are drastically increased, but yet a taperin
is still needed to achieve a crystalline state. Numeric
evaluation of the single-particle dispersion relation yield
a stable range of0 , Cxz # 0.97.

In practice, in order to achieve a cooling system th
provides a constant angular velocity it is necessary to ha
dispersion in the cooling electrons (for electron cooling
or in the laser beam (for Doppler laser cooling). In eithe
case the dispersion that is required is very small a
can easily be provided by a bending magnet or a lig
prism. For the TARN II example with the laser cooling
at optimum tapering we would need the laser waveleng
to vary linearly by 0.01% (say, from 280.0 to 280.3 nm
horizontally across a beam of 1.5 mm. With the electro
cooling we would need the electron velocity to vary b
sDyyyd  0.01% across the same distance. Although th
degree of dispersion is small, it is, as we have emphasiz
in this Letter, essential for obtaining a crystalline beam.

In summary, the powerful numerical methods o
molecular dynamics allow one to determine the desire
crystalline state and the parameters necessary for achiev
it, as we have shown by an explicit example in this Lette
We have demonstrated that with a properly designed ri
(alternating gradient and high lattice periodicity), ope
ating below the transition energy and with a sufficientl

FIG. 3. Acceptable range of tapering coefficientssC2
xz , C1

xzd
and minimum cooling strengthf2

z , in order to achieve a
crystalline state, as a function of the number of particles in th
storage ring (i.e., beam linear density). Numerical evaluatio
of the single-particle dispersion relation described in the te
yields C1

xz of 0.97.
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powerful cooling system that produces a constant angul
velocity, one can achieve a crystalline beam. It appea
that these criterion can be met in practice.
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