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A possible method to realize a dispersion-free storage ring is described. The simultaneous use of a
magnetic field B and an electric field E in bending regions, where the two fields are set perpendicular to
each other, enables us to control the effect of momentum dispersion. When the relation (1 + 1/y3)E(p) =
—vp X B is satisfied for a beam with the velocity vy, the linear dispersion can be completely eliminated all
around the ring. It is shown that the acceleration and deceleration induced by the electrostatic deflector
counteracts the heating mechanism due to the shearing force from dipole magnets. The dispersion-free
system is thus beneficial to producing ultracold beams. It looks probable that the technique will allow one
to achieve three-dimensional crystalline beams. At ICR Kyoto University, an ion cooler storage ring S-
LSR oriented for various beam physics purposes is now under construction. The application of the present

idea to S-LSR is discussed and the actual design of the dispersionless bend is given.
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I. INTRODUCTION

In recent years, considerable experimental effort has
been devoted in various fields to realize a low temperature
state of a multiparticle system. Laser cooling is the most
powerful means for this purpose. It is often applied to
charged particles confined in a plasma trap where
Coulomb crystallization, an ultimate low temperature
state, has already been achieved [1-3]. In the field of
beam physics, other cooling techniques, such as electron
cooling and stochastic cooling, have also been employed to
control the rest-frame temperature of ion beams. By using
the electron cooling technique, one-dimensional ordering
of an ultra-low-density ion beam has been established at
ESR and CRYRING [4,5] (although it is physically differ-
ent from a crystalline state [6]). The laser cooling experi-
ment at PALLAS, a circular RFQ trap [7], has shown the
observation of 2D and 3D crystalline beams at the very low
beam energy around 1 eV. Furthermore, the realization of a
bunched crystal beam has been reported [8]. However, the
3D crystallization of “fast ion beams™ has not been ac-
complished in storage rings yet.

Noting the similarity between ion traps and storage
rings, we naturally expect that Coulomb crystallization
may be achievable even for a fast stored beam.
Molecular dynamics (MD) studies have actually demon-
strated the possibility of a phase transition to a crystalline
beam [9,10]. According to advanced MD simulations
where the realistic lattice structure of a storage ring is
incorporated, a variety of crystalline configurations can
be formed in a properly designed ring when a sufficiently
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strong three-dimensional (3D) cooling force is available
[10-13]. On the other hand, it has also been pointed out
that the stability of a multidimensional crystalline beam
can be seriously affected by a dynamic effect peculiar to
storage rings.

The most essential difference between ion traps and
storage rings is whether the effect of momentum dispersion
exists. In circular machines such as a synchrotron, or a
storage ring, the closed orbit of a stored charged particle
depends on its energy deviation from the design value. The
existence of this dispersion inevitably yields dynamic cou-
pling between the horizontal coordinate and longitudinal
momentum of the particle, thus making the beam behavior
more complicated. If the dispersive effect is negligible,
then ion traps and storage rings become almost equivalent
[14], which means that we encounter no substantial ob-
stacle toward Coulomb crystallization. In general, how-
ever, strong momentum dispersion is inevitable as far as
regular storage rings are concerned. This is one primary
reason why the crystallization of fast stored beams is so
difficult and has not been accomplished yet.

The cooling force provided by a usual cooling device is
designed so as to equalize the longitudinal velocities of all
stored ions, but such a force is not suitable for a 3D
crystalline state with finite horizontal extent because of
the shearing force, as illustrated in Fig. 1. In order to
maintain a crystalline structure, stored particles must
have an identical “angular” velocity rather than an identi-
cal “linear” velocity; in other words, we must compensate
the difference in the revolution frequencies. As a solution
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FIG. 1. The conceptual illustration of the shearing force. If all
stored particles in a crystalline ground state have the same
longitudinal velocity, the revolution frequency of a radially outer
particle becomes longer than that of an inner particle.
Consequently, the two particles are more and more distanced
longitudinally every turn, which eventually leads to the melting
of the crystalline state. The strength of the shearing force is
closely related to the momentum dispersion, as shown in Sec. IIL.

of such a problem, tapered cooling has been proposed [12].
In tapered cooling, particles at different radial positions are
cooled towards different velocities in order to realize the
same angular momentum. However, no practical method to
generate a tapered light has been known. In this paper, we
propose an alternative scheme to stabilize 3D crystals,
namely, a storage ring that has deflection elements using
magnetic field and electric field simultaneously.

As first pointed out in Refs. [15,16], it is possible to
suppress the momentum dispersion by adding a horizontal
electrostatic field E in addition to the bending magnetic
field B. Such a deflection element is realized by combining
a dipole magnet and a cylindrical electrostatic deflector.
The electric force must be directed outward (Fig. 2),
namely, opposite to the direction of the magnetic force.
In order to eliminate the linear dispersion, we require the
following relation to be satisfied:

(1 4 %)E(po) — —v, X B, (1)
0

where 7y, is the Lorentz factor, v, is the velocity of the
reference particle, and p is the radius of curvature of the
design orbit in the bending region. The radial electric field
E can be provided by a cylindrical electrostatic deflector as
depicted in Fig. 2. Ideally, the bending electric field is
given by

Vo

E = ,
(Po) oo + x

2

where V) is a constant and x is the horizontal coordinate
measured from the design orbit. Employing such disper-
sion suppressors, we can construct a unique storage ring in

sector magnet

electrode

FIG. 2. Example of a dispersion suppressor. A curved electro-
static deflector is installed in the gap of a dipole magnet. Note
that the direction of the electric field is radially outward.

which the momentum dispersion is canceled throughout
the whole circumference by adjusting the ratio of the
electric and magnetic field strengths.

As we prove later, the scalar potential of the dispersion
suppressor causes the longitudinal acceleration (or decel-
eration) of particles, automatically equalizing their angular
velocities in the bending region. This means that, in a
storage ring constructed by such deflectors, it is likely
that 3D crystalline beams can be produced.

A small laser-equipped storage ring (S-LSR) is now
under construction at the ICR Kyoto University in collabo-
ration with the National Institute of Radiological Sciences
[17]. Laser and electron cooling techniques are to be
applied, at S-LSR, to ion beams that have relatively low
kinetic energies. The dispersion suppressor described
above is also used in order to demonstrate the practicability
and potential of a dispersionless system. As a possible
application of the dispersion-free operating mode, the laser
cooling of a 2*Mg™ beam is planned.

This paper is organized as follows: In Sec. II, we con-
sider the single-particle dynamics in the dispersion sup-
pressor. The Hamiltonian of a storage ring constructed by
dispersion suppressors is derived in Sec. III. In this section,
it is shown that the heating mechanism due to the shearing
force disappears at the dispersion-free condition. It is also
shown that the Hamiltonian of the dispersion-free storage
ring becomes equivalent to that of a linear ion trap. We then
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show, in Sec. IV, the actual design of the deflector installed
in S-LSR. The lattice functions in different operating
modes and the stability region of betatron motion are
also exhibited in this section. Considerations related to
the formation of a 3D crystal, both in general and then in
detail for the S-LSR ring, are presented in Sec. IV, and
summarized in Sec. V.

I1. DISPERSION SUPPRESSOR

The Hamiltonian of the dispersion suppressor is derived
in the Frenet-Serret coordinate system [18]. Choosing the
path length s as the independent variable, we obtain the
relativistic Hamiltonian that governs the motion of a
charged particle in a bending region where not only a
dipole magnetic field but also an electric field for disper-
sion compensation is present, of the form [19]

+ 2
H= —<1 + i>\/<7pl q¢D> —m*c* — p?—p3

Po ¢

g1+, )
Po

where m and ¢ are the rest mass and charge state of
particles, c is the speed of light, ¢ is the scalar potential
in the electrostatic deflector, p; is the longitudinal canoni-
cal momentum conjugate to time ¢, and we have assumed
that the vector potential A only has the longitudinal com-
ponent, i.e., A = (0,0, A,). By expanding the square root
and leaving only low-order terms, Eq. (3) becomes

2 + 2
H = —(1 + i)qAS - <1 + i);a + TPy
Po Po 2p

where p = mpByc =+/(p, + q¢)*/c* — m?c* with B
being the normalized velocity by the light speed c. The
scalar potential in the electrostatic deflector which is set
along the design orbit can be expressed as

bp =V, ln<1 + %) —y, 3 (i> 5)

n=1 n Po

The vector potential of the bending magnet is given by
B,
As = é(po + X), (6)

where By, is the dipole magnetic field. Note that the equi-
librium kinetic momentum po(= mBy7y,c) is not equal to
gByp due to the existence of the bending electric field.
Since the electric field strength is V,,/p, along the design
orbit, the equilibrium kinetic momentum becomes

qVo

= gB,py — —". 7
Po = qB,po Boc @)

The momentum deviation from the design momentum

Po = mBoyoc = +/E5/c*> — m*c? can approximately be

written as

AE — 1 (AE — 2
ApEp_poziqd’D__<—q¢D>’ (8)

Boc 2po\  Bocvo
where AE is the energy deviation from the design value
—AE = myyc? — (—p,). Inserting Eq. (6) and p = p, +
Ap into Eq. (4) and neglecting nonlinear terms, one finds

- V 1 Vi 2 A
s B 20
BoEo po 2 BioEo/\po Po/ Po
Ay
2
where the transverse momenta have been scaled to be
dimensionless; namely, p,,) = px(y)/ Po- Substitution of
Eq. (8) together with Eq. (5) into Eq. (9) yields the ap-
proximate Hamiltonian

AE x(_ qV, )_ AE 1<AE>2

®)

i=—

S = 4+ (==
B3Eo po Y$B3Es) BIEy  2v3\BEo
~2 + ~72 1 V. 2 2
4 P py+[1+—2<‘12°”x—2. (10)
2 Yo IBOEO 2Po

From this Hamiltonian, we obtain the horizontal equation
of motion in the bending region

d*x 1 /gVo\2]x 1 qVy AE
—2~_[1+2( 2E>}2 *<_ 22E> 2p
ds Yo \BoEo Po  Po Y5BoEo/ BoEo

(11)

Clearly, the last term in the right-hand side of Eq. (11)
gives rise to linear dispersion, and its coefficient 1/py(1 —
qVo/v3B3E,) decides the strength of the dispersion. It is
thus possible to control momentum dispersion over a wide
range by changing the electric and magnetic field strengths
with the condition (7) fulfilled. In particular, dispersive
effects can be minimized provided that

qVo
Vi, (2
which leads, by using Eq. (7), to Vy/p = B, - [Bc/(2 —
B2)]. This equation indicates that, when the beam energy is
high, a very large voltage is needed to compensate disper-
sive effects. Therefore, the present dispersion suppressor is
relevant only to low-energy beams. From Egs. (7) and (12),
we find (1 + 1/¥3)Vo/po = B, Boc that is identical to the
condition (1). When the dispersion-free condition (12) is
satisfied, the horizontal equation of motion in the bending
region becomes
2] 2

dx 1%, (13)

ds? Po
where the horizontal motion has been decoupled from the
longitudinal motion in linear approximation. It is possible
to construct a dispersion-free storage ring by using the
dispersion suppressors.
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III. APPLICATION TO A STORAGE RING

For the transport of charged particles, dispersion-free
deflection elements were proposed in [15,16]. But this
scheme has never been used in the design of synchrotrons
and storage rings up to now, because the required electric
fields become too large for particle beams used in these
accelerators. We propose the possibility of incorporating
this scheme in a low-energy storage ring. In this section,
we show some characteristics of a storage ring constructed
with dispersion suppressors.

A. Hamiltonian of a storage ring

A beam circulating in a dispersion-free storage ring
receives only the alternating focusing force, thus, one can
expect that the beam dynamics of the dispersion-free ring
coincides with that of a linear beam transport line or a
linear ion trap. In this section, the Hamiltonian of the
storage ring constructed with dispersion suppressors is
investigated. Here, a separated function type lattice is
assumed. When quadrupole magnets and an rf cavity are
taken into account in addition to dispersion suppressors,
the vector potential (6) becomes

B 1
A== 2o+ 1)+ 1B (2~ 2)+ 8,(5) 1 coswr + ho)
w
(14)

where B is the gradient of the quadrupole field. V¢ and ¢,
are a voltage amplitude and an initial phase of the rf cavity,
respectively, and & ,(s) is a periodic delta function. Since a
storage ring is considered now, the rf frequency w is
constant. The rf cavity is installed in the straight section
at the coordinate s = 0.

When Eq. (14) and p = py + Ap are inserted into
Eq. (4) and nonlinear terms are neglected, one finds

AE x( gk AE 1 / AE\2
2 1= 222 >_ 2 +—2< 2 )
BOEOP\ YoBoEo) BiEo 2v5\ByEo

pi+p2 1 |4
Px2Py (Ko + Ky?) — 8, () L cos(wr + ),
2 2 Po®

O=—

+

5)

where

1 L/ gk \27 _ qK, gk,
Kx=—2[1+—2<2 )}—— K, =-—.
Po Yo \BoEo Po Po

p, k, and K are functions of s; p = py, k = V|, in the
bending region, and p = o, k = 0 in other regions. K; is
B, in the quadrupole magnet region, and K; = 0 in other
regions.

B. Effect of the electrostatic potential

The electrostatic potential of the dispersion suppressor
causes the energy transfer between kinetic energy and
potential energy of charged particles while conserving
the total energy. Here, the total energy means summation

of the kinetic energy and potential energy and it corre-
sponds to E in the notation used in this paper. One can find
that AE is also an approximate constant of motion, if the rf
voltage is not imposed [see Eq. (15)]. On the other hand,
the kinetic energy and the momentum may not be constant,
in contrast with a conventional magnetic storage ring.

Suppose an ion beam is strongly cooled by a cooling
force in a storage ring. If the design orbit is linear, the
momentum spread eventually vanishes, i.e., Ap =0, at
low temperature limit where the beam is Coulomb crystal-
lized. As shown in Refs. [10,20], when the density of the
beam is low, the crystalline structure is a 1D chain. If the
density is larger than the 1D state, a 2D crystalline struc-
ture is developed in the weaker focusing direction. If the
density is enhanced more, the particles naturally arrange
into a 3D crystal structure, and the beam has a finite
horizontal extent. In an ordinary storage ring, however,
the condition Ap = 0 does not meet the stability require-
ment of a crystalline state with a finite horizontal extent
because the bending magnets generate momentum disper-
sion; as briefly discussed in Sec. I, a radially outer particle
must travel slightly faster than the inner particles, so as to
realize a condition such that the angular velocities of all
particles, rather than the linear velocity, are identical. The
stability of a multidimensional crystalline beam is, there-
fore, not guaranteed unless the cooling force is “tapered”
[12]. By contrast, the present dispersion-free system can
compensate the difference of the angular velocities even if
the cooling force is not tapered, because of the above
energy transfer mechanism. However, in order to realize
this condition, it is essential that the ring has a straight
section, in addition to satisfying a dispersion-free condi-
tion. The reason is as follows.

First, for pedagogical purposes, we consider a
dispersion-free ring with a constant bending field, i.e.,
the whole circumference of the ring is occupied by the
bending element. The cooling force acts so that the mo-
mentum spread approaches zero, and the momentum is
almost constant in this ring, like that of conventional rings.
If the beam has finite horizontal extent, this situation is not
suitable for the condition of a 3D crystal beam; namely, all
particles do not have the same angular momentum. This
ring is merely dispersion free.

Next, we consider a dispersion-free ring which has
straight sections. In such a ring, the momentum is not
constant because of the acceleration (or deceleration) of
the charged particle at the entrance (or exit) of the bending
section. The relation between the deviation of the total
energy AE and the momentum deviation Ap is given by
Eq. (8). If a beam is cooled at a straight section, the
momentum deviation Ap becomes zero and the energy
deviation AFE also becomes zero because of the zero scalar
potential. When a beam with a finite horizontal extent
enters into the bending region, the particles receive some
kinetic energy gain (loss) from the deflection electric field
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in exchange for loss (gain) of the potential energy. The
amount of the gain depends on the horizontal coordinate x.
When |x/pg| < 1, Eq. (5) gives ¢p = =V, - x/p, and,
accordingly, the potential along an inner orbit is higher
than that along an outer orbit; in other words, a particle
traveling in the region of negative x (positive x) is decel-
erated (accelerated) at the entrance of the electrostatic
deflector. At the exit, the opposite effect takes place, and
the particle recovers the original kinetic energy before
entering the bending region. Now, AE is zero, because of
the cooling at the straight section, and it is zero all around
the ring, since it is constant of motion. Then, if once an
ideal ground state [21] is reached, from Eq. (8), one obtains
the relation p = py + (gVo/Bocpo) - x. This relation can
be rewritten, with the condition (12), as p/py, =
1 + y%x/p, or, equivalently,

o+ X (16)

Yo Po

where v denotes the velocity of a particle at the horizontal
position x, and vq = Byc. It is now evident that the angular
velocities of all particles are approximately the same. We
can thus suggest that the stability of a three-dimensional
crystalline beam is greatly improved in the dispersion-free
storage ring presented in this paper.

Even if the storage ring satisfies the dispersion-free
condition, making particles to have the same angular ve-
locity is impossible without the straight section. Thus, it is
essential to ‘““cool at the straight section (which has no
electrostatic potential)”” and to cause the acceleration (or
deceleration) of the charged particle at the entrance (or
exit) of the bending section.

C. Analytical treatment of the shearing force

As shown in the previous subsection, the effect of ac-
celeration (or deceleration) at the boundary of the bending
section plays an important role. This effect is included in
the Hamiltonian formalism automatically in this paper.
Therefore, we can show these effects analytically. The first
term of the Hamiltonian (15) yields dynamic coupling
between the horizontal coordinates and longitudinal mo-
menta. From the derivation process of the horizontal equa-
tion of motion (11), one finds this shear term [22]
generates the dispersion term of the equation of motion.
We can show the shear term also generates the shearing
force. In order to show the effect of the shear term explic-
itly, the rf cavity is switched off. When the relative time
Ar =t — s/ Byc is introduced, from the Hamiltonian (15),
longitudinal equations of motion are given by

1 L) A5}
ds Boclp ¥§B5Eo Yo \BGEo/ |

d (—AE
- =0. 18
dS( Po > (1%

The first term on the right-hand side of Eq. (17) repre-
sents the shearing force, and it is generated from the
shear term. The second term represents the difference
of the revolution time caused by the energy deviation.
According to Eq. (17), in a crystalline state (where AE =
0, it is constant in the ring) with a finite horizontal extent x,
the difference of the revolution time is dominated by the
shearing force and its strength is proportional to the
strength of the dispersion; 1/p(1 — g/ Y3 B3E).

For the dispersion-free condition (12), the shearing force
canceled out and the revolution time does not depend on
the horizontal extent of the beam x. Therefore, in a storage
ring constructed with dispersion suppressors, the cancella-
tion of the shearing force is synonymous with the cancel-
lation of the dispersion.

The shear term is caused by the geometric factor of
bending; namely, this term exists because of the finite
bending radius p. This term causes a crucial difference
between the Hamiltonians of the storage ring and the linear
ion trap. Fortunately, this term is canceled out at the
dispersion-free condition. Then, although there are bend-
ing sections, the dynamics of the particle becomes the
same as the straight section. Therefore, in the dispersion-
free condition, the Hamiltonian (15) becomes equivalent to
the Hamiltonian of an rf linear ion trap, on the beam rest
frame. Thus, the beam behavior in the dispersion-free ring,
except for higher-order nonlinear terms, is similar to that in
the linear ion trap in which a multidimensional crystal
structure has been observed experimentally [23]. The dis-
cussion about nonlinear terms is performed in Sec. I'V.

D. Effect of the rf cavity

When the 1f voltage is imposed, only the longitudinal
equation of motion (18) is corrected [24]

d(AE) _ gV

e C sing, (19)

where the synchrotron phase ¢ = A¢p + ¢y = wAr + ¢,
is introduced and C is the length of reference orbit in the
ring. In the following, the initial phase of the rf cavity ¢ is
set to zero so that the reference particle may not have
energy gain and synchrotron oscillation. Then, Eq. (19)
gives an energy change so that the particles which are
deviated from the design phase experience oscillation.

In a low beam current limit in which the space charge
effect is negligible, the longitudinal equation of motion of
the dispersion-free storage ring becomes the synchrotron
equation which has phase slip factor n = —1/ 'y%. Thus the
synchrotron oscillation is stable. This result is reasonable,
because the phase slip factor is defined by n = a — 1/ 7%
and the momentum compaction factor of the dispersion-
free ring is zero; a =1/C §D,(s)/p(s)ds = 0. Here
D.(s) is the horizontal dispersion function of the ring,
and it is zero all around the dispersion-free ring. This result
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means the dispersion-free ring has infinite high transition
energy; v, = 1/+/a.

As shown in Ref. [11], there are so-called maintenance
conditions for realization of a crystal beam in a storage
ring. The first maintenance condition is that the beam
energy must be below the transition energy; y < 7y,. The
second condition is N > 2\/51/7, where N is the number of
the superperiod of the ring, and vy is the transverse tune.
The dispersion-free ring satisfies the first condition in
principle. If the dispersion-free storage ring has a larger
number of superperiods or a large bending radius, it is
thought to satisfy the second condition in general.
Consideration of the second maintenance condition is de-
scribed in Sec. IV B.

In the following, we consider the crystalline state, in
order to explain analytically the heating mechanism of the
crystalline beam induced by the dispersion. In a 3D crys-
talline state, betatron oscillation is strongly suppressed,
and the particles no longer oscillate across the reference
orbit. This means such particles always have the same sign
of xin Eq. (17). If a bunched 3D crystalline beam continues
to be cooled by a cooling force in the straight section, the
energy spread AE of Eq. (17) approaches zero. But, in the
bending region, the deviations of the synchrotron phases
A¢ = wAt of radially outer and inner particles are in-
creased because of the first term of Eq. (17) (shearing
force), if the dispersion-free condition is not satisfied.
This increase of the synchrotron phase deviation A¢ af-
fects the energy spread AE through Eq. (19). Eventually,
the energy spread is extended by the rf potential through
Eq. (19). Finally, this heating rate balances with the cool-
ing rate of the cooling force. Because of such a mechanism,
the reachable temperature of the 3D crystalline beam is
limited.

In the dispersion-free condition, this heating mechanism
is completely suppressed due to the cancellation of the first
term of Eq. (17), and the stability of the 3D crystalline
beam is greatly improved. In this state, the energy spread
AE of the final equilibrium state becomes zero. As shown
in Ref. [13], the synchrotron oscillation of the crystalline
beam is strongly suppressed despite the finite bunch length
(finite phase deviation A ¢). This is the same reason as the
suppression of the betatron oscillation of a 3D crystalline
beam which has a finite transverse extent. Thus, the syn-
chrotron motion of the 3D crystalline beam is suppressed
completely.

In order to realize a strong three-dimensional laser cool-
ing, the method of utilizing a synchrobetatron coupling
induced by the rf cavity [25] has been proposed. However,
in the dispersion-free storage ring, it is difficult to generate
synchrobetatron coupling by a normal f cavity, because
there is no dispersion. In the dispersion-free case, we can
use a coupling rf cavity [13,26] for the 3D cooling. The
coupling rf cavity scheme realizes the synchrobetatron
coupling by using a special mode of the rf electric field

which depends on the transverse position. For a low-energy
storage ring, even in the dispersion-free case, the coupling
rf cavity can create the enough coupling strength for 3D
cooling. The energy transfer between longitudinal motion
and transverse motion becomes comparable, in order, to
that of the energy of the laser photon for cooling, by
reasonable applied voltage to the coupling cavity.

IV. ION STORAGE RING S-LSR

A small laser-equipped storage ring has been developed
by the collaborations ICR Kyoto University and National
Institute of Radiological Sciences. In S-LSR, electron
cooling and laser cooling will be used to increase the phase
space density of the stored ion beam. One of the purposes is
to demonstrate the feasibility of crystallizing a stored
heavy ion beam [17]. The main parameters are listed in
Table 1. The lattice design is shown in Fig. 3. In this
section, a concrete method to realize a dispersion-free
ring is described taking the case of S-LSR as an example,
and the effects of the dispersion suppressor in the lattice of
S-LSR are shown.

A. Elements of S-LSR

The deflection elements for S-LSR have a structure as
shown in Fig. 4. Electrostatic deflectors are installed in all
the dipole magnets for the purpose of dispersion compen-
sation. The electric and magnetic fields needed for
dispersion-free storage of a 35 keV >*Mg* beam are 6.7 X
10* V/m and 0.252 T, respectively. The electrostatic de-
flectors are designed to be moved away radially, so that the
ring can be operated with the normal dispersion as well
(Fig. 4). Since the electrostatic deflector is to be installed in
the small gap of the dipole magnet, the vertical aperture is
limited to 26 mm (Fig. 5). Furthermore, the electric field of
the electrostatic deflector is reduced by the influence of the
wall of the vacuum vessel. By introducing intermediate
electrodes, the strength of the electric field at the center of
the aperture is maintained [27]. The horizontal aperture has
been determined as 30 mm compromising the available
aperture for beam injection or circulation and the deviation
of the radial distribution of the electric field. Namely, as the
horizontal aperture becomes wider, it becomes better for
the beam injection and circulation, but the deviation of the
radial distribution of the field from the ideal distribution
[Eq. (2)] becomes larger.

The momentum spread of the injected 2*Mg* beam with
the kinetic energy of 35 keV is expected to be less than
1073. The emittance of the 2*Mg™ beam which is directly
pulled out from the ion source is estimated to be about
4077 mm mrad. The >*Mg* beam will be injected into the
ring, without further acceleration. Since the aperture of the
electrostatic deflector is small, the small part of emittance
of the beam is selected by a double slit. The emittance of
the injected beam is to be adjusted to the size of 1 to
1077 mm mrad by the double slit. Dipole magnets for S-
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TABLE I. Main parameters of S-LSR (storage of 2*Mg™)
Quantity Value

Tons to be laser cooled HMmgt
Total kinetic energy 35 keV
Circumference 22.557 m
Radius of curvature at the bending section 1.05 m
Number of deflection elements 6
Deflection angle of each deflection element 60°
Gap height of the dipole magnet 70 mm

LSR have already been manufactured and their evaluation
by the field measurement has also been completed. The
design of electrostatic deflectors for S-LSR is finished and
they are now being manufactured.

The rf cavity shown in Fig. 3 is to be used for beam
bunching. When S-LSR is used as a magnetic storage ring,
this rf cavity also is to be used for the 3D cooling; its
parameters at the operating point (1.44, 1.44) are shown in
Table II. At this operating point, the needed values of the rf
voltage and the harmonic number become very large.
Therefore the 3D cooling will be performed at the operat-
ing point (2.067, 1.073), rather than this operating point.
For the dispersion-free mode of S-LSR, the rf cavity can be
used only for beam bunching. The phase slip factor of the
dispersion-free mode is always n = —1; on the other hand,

rf cavity
¢

)

'S /

laser cooling section

dipole magnet

FIG. 4. (Color) Deflection element for S-LSR. The deflection
element is constructed by a dipole magnet which has no field
gradient and a curved electrostatic deflector. The electrostatic
deflector is installed in the gap of the dipole magnet. The
electrostatic deflector can be moved out when the deflection
element is used as a normal dipole magnet.

the absolute value of 7 of the magnetic mode is usually less
than 1. Therefore, at the dispersion-free condition, the rf
voltage required for the same synchrotron tune is lower
than that of the magnetic mode. In order to realize the 3D

e “injection

&Y

=

T

—
e

? extraction
.

]

5/

. W

N\
QM2

FIG. 3. The lattice structure of S-LSR. The number of the superperiod is 6. An rf cavity is introduced for beam bunching. Especially,
in the case of only a magnetic storage ring, the rf cavity is also used for 3D cooling. For the dispersion-free condition, in addition to the
rf cavity, a coupling rf cavity is to be installed for 3D cooling. In the horizontal beam dynamics, the radial focusing effect of the
deflection element is utilized for beam focusing. Thus, all quadrupole magnets have diverging effect horizontally and focusing effect

vertically.
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cooling in the dispersion-free mode, in addition to the rf
cavity for beam bunching, a coupling rf cavity will be
added. The design of the coupling rf cavity needs further
investigation.

B. Transfer matrix formula

In this subsection, the lattice parameters of S-LSR
are calculated by the transfer matrix analysis [28]. The
|

cosvkL ﬁ sinvkL
—k sinvkL cosvkL
V- 0 0
0 0
- ﬁ % sinvkL — ﬁ 41 - cosvkL)
0 0

In this transfer matrix, L denotes the path length of
the reference particle in the dispersion suppressor, and
the following notations are introduced to simplify the
formula:

1 Vo271 V 1
=) o 0 wEe)
'Y() oEo Po 70:80E0 pO
(2D

First, the stable region of the betatron oscillation is
calculated. For the dispersion-free condition, the stable

Pole of the dipole magnet

~—main electrodes

70 26

30

! 92 _
| TTeeIee Tl |

unit : mm support t plate
I T |

7 77 0 Z
7 .. /////% .

/ 0
J—Wall of the vacuum vessel

FIG. 5. Cross section around the electrostatic deflector. The
height of the electrostatic deflector is limited by the gap size of
the dipole magnet and the vacuum vessel. The electrostatic
deflector is constructed by a pair of main electrodes and four
pairs of intermediate electrodes. The ideal field distribution is
maintained by the intermediate electrodes. In addition to the
electrodes, support plates and ceramic plates are introduced for
the purpose of keeping the position of the electrodes.

transfer matrix acts on the phase space coordinates
(X, Py ¥, Py, —cAt, W), where W = AE/B\E,. The trans-
fer matrix of the dispersion suppressor is derived by solv-
ing the canonical equation from the Hamiltonian (10).
From the canonical equation, one easily derives the rela-
tions between the slopes x/, y' and the normalized canoni-
cal momenta p,, py; x' = p,,y' = p,. Then the transfer
matrix becomes

0 0 0 BL 4(1 — cosvkL)
0 0 O BL % sm\/_L
0 1 0 0
2
0 0 1 —[;z‘i(L— s1n\/_L)—i-ﬁ22
0 0 O 1

|
region is shown in Fig. 6. The field gradient of QM1 and

QM2 in Fig. 3 (k; and k,) are used as the parameters. The
field gradients k; and k, are normalized by the magnetic
rigidity of the 35 keV **Mg* beam; k = B,/B,p,. The
stable regions of betatron oscillation are drawn by selecting
regions which satisfy the condition that the absolute value
of the trace of the transverse transfer matrix of one super-
period is less than 2. At the operating point A1 of Fig. 6, the
betatron tunes become (1.49, 3.49), and the value of the
beta functions becomes minimum in the stable region. The
beta functions of this operating point are shown in Fig. 7 as
the functions of the position s along the reference orbit.
The lattice parameters of the operating point A1 are com-
pared to those of magnetic mode. In the case of only
magnetic field, the horizontal and vertical tunes are set to
(1.44, 1.44). In this case, beta functions become as shown
in Fig. 8.

We have found that at almost all the usable operation
points, the dispersion-free case has a larger 8, than in the
magnetic case and the vertical tune is enhanced. The
reason for this can be found from Egs. (7) and (11). One
finds that the radial focusing of the dispersion suppressor
can be controllable without changing the bending radius by
changing the ratio of the two bending fields, and, at the

TABLE II. Main parameters of the rf cavity (3D cooling at the
magnetic mode).

Quantity Value
Ions to be laser cooled HMg*
Total kinetic energy 35 keV
Betatron tune (1.44, 1.44)
Synchrotron tune 0.44
rf voltage 125V
rf frequency 46.4 MHz
rf harmonics 2000
Momentum compaction factor 0.664
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FIG. 6. The stable region of the betatron oscillation. The stable
region is plotted on the focusing or defocusing quadrupole plane.
The beta functions of the operating point Al are given in Fig. 7.

dispersion-free condition, the radial focusing has twice the
strength of that of the dipole magnet. In S-LSR, the radial
focusing of the deflection element is utilized for the hori-
zontal focusing. Thus, the betatron motion of the beam is
greatly affected by the radial focusing strength of the
deflection element. In the horizontal direction, the strength
of the defocusing of the quadrupole magnet has to be
increased, in order to compensate for the increase of the
radial focusing. Naturally, in connection with it, the
focusing strength of the quadrupole magnet in the vertical
direction becomes large. Because of such reasons, the
betatron tune, especially the vertical tune of the

deflector quadrupole magnet
-

150 200 @ 25.0

00 50 100

s(m)
FIG. 7. Beta functions of the operating point A1 of Fig. 6. The
tune values are (1.49, 3.49). The beta functions are drawn as a
function of the position s. The positions of the deflectors and

quadrupole magnets are shown in the above diagram. D, is the
horizontal dispersion function.

FIG. 8. Beta functions as a function of the position s. In this
case deflection elements are used as conventional dipole mag-
nets. The betatron tune values are (1.44, 1.44).

dispersion-free mode, is increased and, thus, the second
criterion for maintaining the crystal beams cannot be
satisfied.

The lattice design of S-LSR had been designed to satisfy
the two theoretical requirements maintaining the crystal-
line structure (see Sec. III D) in the magnetic mode [29].
The dispersion-free mode of S-LSR has advantage in the
cancellation of the shear heating mechanism, although the
second criterion for maintaining the crystal beams is not
satisfied. Therefore, in order to achieve a crystal beam, a
different form of electric field is required (in order to
suppress the vertical tune in S-LSR). In fact, such a form
can be found, as will be described in a future publication.

C. Field error

A dispersion-free storage ring has never been con-
structed. Thus, we investigate the influence of the field
error of the dispersion suppressor. In the case of S-LSR,
the construction errors of the electrostatic deflector will
cause larger field error than that of the bending magnet
because of its structure, i.e., the gap of the electrostatic
deflector is smaller than that of the bending magnet, thus
the error of the gap size causes the larger error of the field
strength, and the existence of the intermediate electrodes
complicates the situation.

Closed orbit distortion (COD) is considered as an influ-
ence of the field error. The COD of the dispersion-free
mode of S-LSR should be estimated exactly, because the
horizontal aperture of the deflectors is only 30 mm. The
coefficient V; in the Hamiltonian (10) represents the
strength of the bending electric field. Thus, the error of
Vo will generate the closed orbit distortion. Similarly, the
error of the strength of the dipole magnetic field will
generate the COD. However, from the field measurement,
we found that the field distribution errors of the dipole
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magnets are much smaller compared with electric field,
and the individual difference of each magnetic field
strength can be corrected by adjusting the current with a
bypass circuit.

The main cause of the error of the bending electric
field is gap size error of the electrostatic deflector. But,
it is difficult to reduce the gap size error less than 0.1 mm
from the circumstances on manufacture. To cope with
such a situation, careful adjustment of applied voltage to
the main electrodes is planned, taking the real measured
gap size into account. In order to realize such adjustment,
every main electrode in the six deflection elements is
required to be powered by an individual high voltage
supply. With the condition that AV,/V,, is suppressed to
be less than 1.6 X 1074, the COD is expected to be less
than =1 mm, which is thought to be a tolerable size for
beam circulation.

D. Consideration of the nonlinear effect

We derive the higher-order Hamiltonian of the disper-
sion suppressor; see the Appendix. From the Hamiltonian
of the dispersion suppressor, the Hamiltonian of the dipole
magnet with flat field is easily derived by setting the
electric field V|, to zero. If the higher-order Hamiltonian
of the dispersion suppressor is investigated and compared
to that of the dipole magnet, one finds the dispersion
suppressor inevitably includes nonlinear terms, which are
thought to be generated by nonlinear field. The reason is
simple: the electric field has radial position dependence
(2), thus it includes nonlinear components inevitably. It is
expected that the larger nonlinear component of the dis-
persion suppressor limits the dynamic aperture and causes
resonances. The effect of such nonlinear components is
evaluated from the experimental result of the KEK electro-
static storage ring [30]. The Hamiltonian of the electro-
static deflector of the electrostatic storage ring is also
easily given, if the polarity of the scalar potential is re-
versed and the vector potential of the magnetic field is
eliminated from the Hamiltonian (3) and the equilibrium
condition (7). Then, one will find the nonlinear compo-
nents of the electrostatic deflector has the same formula as
that of the dispersion-free deflector.

In the KEK electrostatic storage ring, the measured 1/e
lifetimes of stored ions are from 12—-20 s. The major factor
determining the beam lifetime is interaction with the re-
sidual gas, rather than the nonlinear field effect. This result
means that the higher-order resonances and the reduction
of the dynamic aperture induced by nonlinear field com-
ponents do not give a large effect to the beam dynamics, in
a case considering a vacuum condition and a beam circu-
lation time similar to the KEK ring (if the tune value of the
operating point is selected suitably). Therefore, in the case
of S-LSR, a similar result is expected.

The bending radius of S-LSR (1.05 m) is larger than that
of the KEK electrostatic storage ring (0.25 m). According

to the higher-order Hamiltonian H, (see the Appendix), the
higher-order terms induced by the nonlinear component of
the bending electric field are in proportion to 1/p3 or 1/p}.
Therefore, if the bending radius p is increased, the total
effect of the nonlinear fields per one turn becomes smaller.
Furthermore, real aperture and beam emittance of S-LSR
are small originally, thus the reduction of the dynamic
aperture may not become the problem. It is known gener-
ally that the nonlinear effects become weak, as the beam
size and emittance are reduced. Therefore, once a crystal-
line beam (which is the ultimate low emittance beam) is
formed, the nonlinear effects become still smaller,
although the nonlinear effects may influence the formation
process of the crystal.

V. CONCLUSIONS

A method to realize a dispersion-free storage ring is
described. The dispersion-free storage ring might be useful
for the stabilization of a crystalline beam, because the
dynamics of the beam becomes equivalent to that of the
linear ion trap. MD simulations based on the Hamiltonian
without the shear term were already performed in Ref. [9],
and it showed the generation of a 3D crystalline beam,
although the beam focusing force of this MD simulation
was time independent. A MD simulation including the
time-dependent alternating focusing force and higher-
order nonlinear effects will be the scope of our further
investigation.

This scheme is introduced to the ion cooler ring S-LSR,
which is now under construction. In S-LSR, the dispersion
suppressor is realized by inserting a cylindrical electro-
static deflector into the small gap of the dipole magnet. The
calculation of the beam dynamics has been performed
based on the parameters of the deflectors. From the result
of the theoretical investigations, we have found that the
dispersion-free mode of S-LSR is a stable circulating mode
of the beam free from the shear heating mechanism, and
provides a lot of capability for beam dynamics study,
although the dispersion-free mode of S-LSR has such a
restriction as not satisfying the second maintenance con-
dition for beam crystallization. However, this problem can
be solved by introducing a different type of electrostatic
field. The details of the new type of electric field will be
reported in a future publication.
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APPENDIX: HIGHER-ORDER HAMILTONIAN

Here, we consider the Hamiltonian of the dispersion
suppressor up to the third order. In this case, if the
Hamiltonian (3) is expanded and the condition of the
equilibrium orbit (7) is substituted, it becomes

- V, 1 V 2 A
£ )
BiEy po 2 BoEo/\po Po) Po
LRt R_RYRA, B x
2 2 po 2 po

(AD)

The momentum p = +/(p, + q¢pp)?/c> — m*c? is ex-

panded up to the power of (AE — g¢p)?>, then the momen-
tum deviation can be written as

A AE - qép 1 <AE_¢]¢D>2+ 1
p [ ————
Boc 2po Bocvo ZP%?’%
% (AE - Q¢D>3.
Boc

When Eq. (A2) is inserted into (A1), the Hamiltonian
becomes

(A2)

FI=I:I] +I:12, (A3)

where A, is the Hamiltonian up to the second order and A,
is the third-order term:
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