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Phonon spectrum and the maintenance condition of crystalline beams
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It has been shown that the maintenance condition for a crystalline beam requires that there be no
resonance between the crystal’s phonon frequencies, and the frequency associated with a beam moving
through a lattice of Nsp periods. This resonance can be avoided provided that the phonon frequencies all
are below half the lattice frequency. Here, we study in detail the phonon modes of several crystalline
beams. The analytic results obtained in the smooth approximation are compared with numerical
evaluations employing Fourier transform of the molecular dynamics (MD) modes. The stability of
various crystalline structures is examined through systematic MD simulations based on several different
lattice designs. The maintenance condition, when combined with either the simple analytic theory or the
numerical evaluation of phonon modes, exhibits excellent agreement with the MD calculations of crystal
stability. A confirmed maintenance condition, derived from linear-resonance criteria, is that the lattice
frequency must not equal the sum of any two phonon frequencies.
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I. INTRODUCTION

In the work that first considered the properties of crys-
talline beams (‘‘crystals’’) in ‘‘real’’ circular accelerators
or storage rings, i.e., circular machines that allow the
formation and maintenance of the crystals, we proposed
two criteria. First, the machine cannot be a weak-focusing
one (i.e., a constant gradient at all azimuths), but must be a
strong-focusing one operating below the transition energy
[1]. The second, a maintenance condition for a crystalline
beam, requires that there is not a linear resonance between
the crystal’s phonon frequencies and the frequency asso-
ciated with a beam moving through a lattice of Nsp periods
[2,3]. This paper is devoted to studying this second crite-
rion, the maintenance condition.

Previously, the maintenance condition stated that the
lattice’s superperiodicity must be larger than 2

���
2
p

times
the maximum ‘‘bare’’ transverse (betatron) tune. For a
typical high-density crystalline beam (i.e., three-
dimensional crystal of multiple layers), the maximum
phonon frequency is nearly

���
2
p

times the higher single-
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particle betatron tune. Resonance can be avoided provided
that the phonon frequencies all are below half the lattice
frequency and, generally, we find that this is so. In this
paper, we closely examine cases from low- to high-beam
density, and study in detail phonon modes and the mainte-
nance condition.

As is well known, a variety of Coulomb crystals have
already been realized in compact ion traps by applying the
laser cooling method [4–6]. On the other hand, extensive
theoretical efforts for the last decade have shown that beam
crystallization in a circular accelerator is much more com-
plicated due mainly to the existence of dipole fields that
yield strong momentum dispersion [3,7,8]. In a dispersive
environment, we always need a special cooling force to
stabilize multidimensional crystalline structures. The im-
portance of momentum dispersion in the ultracold regime
has been experimentally confirmed with a circular Paul
trap where Coulomb crystals can be maintained only at
very low kinetic energy (below a few eV) [9]. Since any
beams in ring accelerators are exposed to much stronger
momentum dispersion and complex external fields, we
must overcome severe obstacles toward beam crystalliza-
tion in practice. In the present simulation study, an ideal 3D
1-1 © 2006 The American Physical Society
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cooling force is assumed to reach ordered states because
the stability of crystalline beams is of primary interest here.
We also pay little attention to the cooling process that
brings an ordinary ‘‘hot’’ beam to an ordered state; in other
words, we do not consider what happens before a crystal-
line ground state is reached.

The phonon modes are analyzed under the so-called
smooth approximation for a one-dimensional (1D) struc-
ture and numerically in general for multidimensional
ground-state structures. We then undertake a computa-
tional evaluation employing Fourier transform of particle
trajectory simulated with the molecular dynamics (MD)
method. We show that the maintenance condition, based on
the evaluated phonon modes, is in excellent agreement
with the MD simulations on stability; that is, it can explain
those cases we discovered that violate the simple criterion
of having all phonon modes below half the lattice
frequency.

The paper is organized as follows: In Sec. II, we present
the Hamiltonian employed, give various parameters, and
analytically evaluate the phonon spectrum. In Sec. III, we
introduce MD and employ it to determine, by Fourier
transform, the phonon spectrum. We confront in MD the
spectra with 1D crystals that are stable, or unstable. We
further investigate, in Sec. IV, the stability of crystalline
beams with multiple dimensions, adopting six different
lattice structures. Simulation results on the two existing
storage rings, TSR and ASTRID, are also discussed.
Finally, Sec. V has the discussions and a brief summary.

II. ANALYTICAL PHONON SPECTRUM

To calculate the approximate phonon modes of a crys-
talline beam, we assume that the external bending and
focusing forces are uniform in time (the smooth approxi-
mation). The rest-frame motions of particles interacting
through the Coulomb fields then are governed by the
Hamiltonian [10]
03420
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where �x and �y are the transverse betatron tunes, and � is
the Lorentz factor. In Eq. (1), all canonical variables are
scaled as dimensionless by expressing the time, t, in units
of R=��c, the spatial coordinates x, y, and z in units of the
characteristic interparticle distance � � �r0R2=�2�2�1=3,
and the energy in units of �2�2e2=�, where �c is the
velocity of the reference particle, r0 � e2=m0c

2 is its
classical radius, and R is the bending radius of the ring
under the dipole magnetic field [1]. The Coulomb potential
is given by

VC �
1

2

X
‘�m

1

jr‘ � rmj
; (2)

where

jr‘ � rmj � ��x‘ � xm�2 � �y‘ � ym�2 � �z‘ � zm�2�1=2:

(3)

The only nonlinear terms in the canonical equations of
motion are derivatives of VC that can be Taylor expanded
around the equilibrium positions, retaining only the linear
terms. Writing the spatial coordinates of ‘th ion in a
crystalline state as �X‘; Y‘; Z‘�, we have

x‘ � X‘ � �x‘; �x‘ � ~x‘ exp�i�!t� kZ‘��;

y‘ � Y‘ � �y‘; �y‘ � ~y‘ exp�i�!t� kZ‘��;

z‘ � Z‘ � �z‘; �z‘ � ~z‘ exp�i�!t� kZ‘��:

(4)

When there are N particles per unit cell of length L, we
obtain the linearized equations of motion in a storage ring,
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�X‘�Xm�
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2
p

,
‘ � 1; . . . ; N, and R‘mn � 0 term is excluded from the
double sum.

A. 1D crystalline beam

The configuration of a Coulomb crystal is 1D at a low
line density [1]. Then, we insert N � 1 and �X; Y; Z� �
�0; 0; 0� in Eqs. (5)–(7). The phonon bands can readily be
calculated as
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(8)

where

�2 � 2
X1
n�1

1� cos�kn=��

�n=��3

 0 (9)

with � being the scaled dimensionless line density defined
by � � N=L, and k varies from ��� to ��. The actual
line density � in the laboratory frame can be related to � as
� � �=����. Since all particles are aligned on axis, ��1 is
simply equal to the scaled interparticle distance in the
present 1D case. The phonon bands then satisfy the relationP3
j�1 !

2
j � �2
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y; !2

1 �!
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x ��2 and !2
3 � !2

1.
The frequency !2 corresponds to the motion polarized in
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FIG. 1. (Color) Dispersion function evaluated under the smooth
approximation of three 1D crystalline beams with � � 0:33,
0:56, and 1:04. The horizontal and vertical tunes are �x � 2:4
and �y � 2:2, respectively, and � � 1:000 016.
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y, while the frequencies, !1 and !3, correspond to the
motion coupled in the x and z directions.

A test particle deviating from its equilibrium position
experiences defocusing forces both horizontally (x) and
vertically (y), and focusing force longitudinally (z) through
Coulomb interaction. At a low beam density (� � 0:33
case of Figs. 1 and 2), the phonon frequencies in both
modes 1 and 2 shift downwards from the base tune, while
the frequency in mode 3 shifts upwards from 0 (Fig. 1).
Figure 2 shows the typical density of states.

When the beam’s density increases, the extent of fre-
quency downshift in mode 2, and upshift in mode 3, also
increases, as illustrated in Figs. 1 and 2. Because of the
coupling of horizontal and longitudinal motion, the fre-
quency in mode 1 also can shift upwards from the base tune
�x. The amount of upward frequency shift reaches a maxi-
mum when the density approaches the threshold of a
string-to-zigzag transition (Fig. 2). The maximum phonon
frequency for a stable 1D crystalline beam satisfies

!1;3;max �
�����������������
�2
x � �

2
y

q
; !2;max � �y: (10)

The maximum frequency is achieved when k � ��.
It is interesting to study the particle motion in real space

under different modes of eigenfrequency, especially when
the density approaches the value for a structure transition.
The linearized equations of motion for a 1D crystal are
given by
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(11)
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FIG. 2. (Color) Density of states corresponding to Fig. 1 eval-
uated under the smooth approximation at three beam densities
with � � 0:33, 0:56, and 1:04.
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FIG. 4. (Color) Density of states evaluated under the smooth
approximation for various 2D and 3D crystalline beams. We
assume that �x � 2:4, �y � 2:1, and � � 1:000016.
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The eigenfrequency !2 corresponds to the motion in the
vertical direction (~x � ~z � 0 and ~y � 0). The eigenfre-
quencies !1 and !3 correspond to the coupled motion
(~y � 0, ~x � 0, and ~z � 0) with the motions in the horizon-
tal and longitudinal directions in general 90� out-of-phase.

Consider the motion at k � �� that corresponds to the
maximum frequency upshift of mode 1 (!1) and downshift
of modes 2 and 3 (!2 and !3) (Fig. 1). At this k value,
nearest-neighbor particles ‘ and ‘� 1 move in the oppo-
site phase in each direction. In the case that the horizontal
focusing is stronger than the vertical focusing, i.e., �2

x �

�2 > �2
y, the mode!2 first approaches instability when the

density increases so that �2
y 
 �2 and!2 
 0. The thresh-

old density corresponds to [3]

�th �

��2
y

4:2

�
1=3
; for �2

x � �
2 > �2

y: (12)

Below this threshold, nearest-neighbor particles ‘ and ‘�
1 move in the opposite direction in y. Above this threshold,
the 1D structure is unstable in y; the stable structure is a 2D
zigzag extending in y.

Similarly, in the case that the vertical focusing is
stronger than the horizontal focusing, i.e., �2

y > �2
x � �

2,
the mode !3 first approaches instability when the density

increases so that �2
x � �2 
 �2, !3 
 0, and !1 
��������������������

2�2
x � �2

p
. The threshold density corresponds to

�th �

�
�2
x � �2

4:2

�
1=3
; for �2

y > �2
x � �

2: (13)

Below this threshold, nearest-neighbor particles ‘ and ‘�
1 move in the opposite direction in x corresponding to !3

(~z � ~y � 0 and ~x � 0). Above this threshold, the 1D
structure is unstable in x; the stable structure is a 2D zigzag
extending in x. The mode !1 corresponds to nearest-
neighbor particles ‘ and ‘� 1 moving in the opposite
direction in z (~x � ~y � 0 and ~z � 0); it is always stable.
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FIG. 3. Projections in the x-y (left) and z-� (right) planes of an on
particles per unit cell, where � � tan�1�y=x� is the polar angle.
respectively. The beam’s Lorentz relativistic factor is � � 1:000 016
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B. 2D and 3D crystalline beams

For a crystalline beam beyond one dimension, the dis-
persion relation cannot generally be solved analytically.
We first need to obtain the equilibrium crystalline structure
under the smooth approximation using a MD code. Then,
the dispersion relation and the density of states are eval-
uated with Li et al.’s numerical algorithm [2].

Figure 3 shows the ground-state structure of a three-
dimensional (3D) crystalline beam. The MD unit cell con-
tains 20 particles, and its length is L � 5 (thus, � � 4). At
this line density, the ground state is a set of helices formed
on a single-shell extending in the z direction.

Figure 4 shows the density of states of various two-
dimensional (2D) and three-dimensional (3D) crystalline
beams. Interestingly, the maximum frequency of the pho-
non bands always is below the square root of �2

x � �
2
y, i.e.,

!max �
�����������������
�2
x � �2

y

q
: (14)

This relation is expected to be a general one, independent
of the choice of the machine’s lattice parameters.
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e-shell, three-dimensional crystalline beam with � � 4:0 and 20
The horizontal and vertical tunes are �x � 2:4 and �y � 2:1,
.
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III. MAINTENANCE CONDITION OF ONE-
DIMENSIONAL CRYSTALS

The MD method enables us to directly evaluate the
phonon spectrum for a real lattice without using the smooth
approximation. What we must do is to determine a ground
state, and then, evaluate the density of states in the fre-
quency domain by Fourier analyzing the particle trajectory
under a small-amplitude vibration. From wide range of
choices, we here consider a set of model storage rings,
each consisting of 12 FODO cells. To study the lattice-
periodicity dependence of the phonon spectrum, we prop-
erly specify the field gradients of some quadrupole mag-
nets, controlling the machine’s superperiodicity Nsp. Six
lattices slightly different from each other are taken into
account; namely, Nsp � 1; 2; 3; 4; 6, and 12. For reference,
Fig. 5 depicts two of them. We assumed there is uniform
bending so that the design beam’s orbit is a circle of 1:0 m
in radius.

The maintenance condition based on linear-resonance
criteria is that the lattice frequency (Nsp) must not equal
the sum of any two phonon frequencies. In the following
subsections, MD results are given of the phonon spectra
of 1D chains circulating in the six model rings. Similarly
to the case in Fig. 4, we evaluate the phonon spectrum by
Fourier analyzing the small oscillations of particles about
the equilibrium orbits. The stability of 1D crystalline
beams is determined by tracking the time evolution of
the root-mean-squared (rms) emittance. The amount of
growth in Fig. 6 represents the ratio of rms emittances
before, and 100-turns after, removing the cooling force.
FIG. 5. Schematic layouts of the rings with (a) Nsp � 12 and
(b) Nsp � 6. These model rings are composed of 12 FODO cells.
In case (a), the ring consists of 12 identical FODO cells while, in
case (b), focusing-quadrupole (QF) magnets with different field
gradients (indicated by white and black squares) were used to
reduce the superperiodicity of the ring. A uniform dipole field
exists all around the rings, so that the beam’s orbit is a circle.
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A. Nsp � 12

The frequency shift of each mode in Fig. 6(a) behaves
similarly to that predicted by the smooth approximation
theory. As the beam’s density increases, the phonon fre-
quency in mode 1 shifts upwards from 2.4, in mode 2
downwards from 2.2, and in mode 3 upwards from 0. The
maximum frequency in mode 1 reaches 2.8 corresponding
to the threshold of the 1D-to-2D transition when � � 0:98.
Since all phonon modes are far from resonance, the 1D
crystalline chain always is stable when the density is below
this threshold.

B. Nsp � 6

Here, the frequency shifts show the same tendencies as
those in whichNsp � 12. The maximum frequency reaches
2.7 when � � 0:85, while the resonance line is located at
!1 � 3. Thus, the 1D crystalline chain again is stable
when the density is below the 1D-to-2D threshold.

C. Nsp � 4

The phonon frequencies in modes 1 and 3 shift only
slightly in the Nsp � 4 case when the line density in-
creases. The resonance condition is met when the mode-
2 frequency shifts downwards and eventually encounters
the resonance line, !2 � 2, as � approaches 0:45. As
shown in Fig. 6(c), the 1D chain configuration is com-
pletely destroyed at � 
 0:45 when the emittance blows
up.

D. Nsp � 3

The Nsp � 3 case appears substantially different from
the others. According to Fig. 6(d), the 1D crystal is stable
only for � � 0:33. However, in this region of � there is no
power density at half the lattice frequency, that is, 1.5. The
resonance instability observed here originates from the
sum of the modes near !1 � 2:5 and !3 � 0:5 hitting 3.

E. Nsp � 2

Similar to the Nsp � 4 case, the resonance condition is
met when the mode-2 frequency shifts downwards encoun-
tering the resonance line !2 � 2 as � approaches 0:45, as
shown in Fig. 6(e). When the density is increased to this
value, the stable crystalline state becomes an ‘‘excited
state’’ [11].

F. Nsp � 1

With Nsp � 1, the 1D crystal becomes unstable in the
region �> 0:33. Fourier analysis indicates that the phonon
frequency in mode 2 does not move much from the base
tune. In contrast, the frequencies in modes 1 and 3 shift
upwards, especially, !3 approaches 0.5 at higher line den-
sity. Thus, we conclude that the upshift of !3 causes
resonance.
1-5
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FIG. 6. (Color) Density of states and stability diagrams of 1D crystalline beams evaluated with MD simulations using MD supercells
of 24 particles. FODO-based model rings with Nsp � 12; 6; 4; 3; 2; 1 are used to verify the results in Sec. II A. In all cases, the bare
betatron tunes are ��x; �y� � �2:4; 2:2�. The vertical solid line in the stability diagrams indicates the threshold of 1D-to-2D transition,
while the broken line is the stability border of the 1D crystals. The parameter � represents the scaled line density evaluated in the beam
rest-frame. The actual line density in the laboratory frame is given by � � �=����. For example, for 24Mg� ions with a kinetic energy
of 360 keV (� � 1:000 016) in a storage ring of 1 m bending radius, we obtain �� � 12:6 	m. The stability of a 1D crystal at specific
line density is determined by checking the rms emittance 100 turns after removing the cooling force.
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We note that the threshold density corresponding to the
1D-to-2D transition obtained with the MD simulation us-
ing the actual storage-ring lattice agrees with the analytical
predictions [Eqs. (12) and (13)] using the smooth approxi-
mation within about 10%.

IV. STABILITY OF MULTIDIMENSIONAL
CRYSTALS

We now study the stability of crystalline beams with
nonzero transverse dimensions in the ground state. To
explore the dependence of stability on the machine’s latti-
ββ

η

ν

ν

ν

FIG. 7. (Color) Lattice functions of the test rings considered in Sec.
dispersion function. All the transverse tunes are set equal ��x � �y

03420
ces, we consider six storage rings that have different lattice
functions, as displayed in Fig. 7. CRYRING [12], TARN II
[13], and S-LSR [14] represent the cooler ring operating,
already shut down, and under construction, respectively.
Their lattice structures have sixfold symmetry. The other
three, test rings I, II, and III, are the models designed solely
for this simulation. Table I lists some important parame-
ters. The horizontal and vertical tunes are set equal, i.e.,
�x � �y�� �0�. The simulated beams are assumed to be
24Mg� ions traveling with a kinetic energy of 1 MeV.

Figure 8 has the stability diagrams obtained through MD
simulations. To test the beam’s stability, we adopt the
ν

ν

ν

IV. �x�y� is the horizontal (vertical) betatron function, and 
x the
� �0�.
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TABLE I. Main lattice parameters of six storage rings considered in Sec. IV.

Lattice Ring I Ring II Ring III CRYRING TARN II S-LSR

Superperiodicity Nsp 10 10 10 6 6 6
Circumference [m] 25.13 37.00 50.00 51.60 77.70 22.56
Bare betatron tunes �0 2:8� 3:9 3:4� 3:9 3:1� 3:9 2:0� 2:8 1:6� 2:3 1:6� 2:4

λ

ν ν

λ
λ

FIG. 8. (Color) Stability diagram of crystalline beams obtained by MD simulations. The ‘‘survival time’’ of a crystalline beam after
removing dissipation is represented by either a circle (�), a triangle (4), or a cross (	).� stands for stable over 104 turns,4 for melt
before 104 turns, and 	 for blow-up immediately after removing the cooling force. Different colors correspond to different crystalline
structures. The vertical broken line in each panel is �0 � Nsp=2

���
2
p

.

LI et al. Phys. Rev. ST Accel. Beams 9, 034201 (2006)
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following procedures: First, a strong 3D dissipative force is
applied to a beam of particular line density. After a crys-
talline state is reached, the cooling force is removed. (If an
ordered configuration cannot be established, we simply
leave the corresponding operating point on the stability
chart open.) When the beam is stable over 104 turns after
removing the cooling force, we mark a circle on the chart.
If the ‘‘survival time’’ is below 104 turns, then a triangle is
placed. A cross on the chart means that the crystal at the
point melted immediately after we stopped cooling. The
figure indicates that 3D crystals generally cannot be stabi-
lized once �0 exceeds around Nsp=2

���
2
p

. Specifically, a
multishell configuration with higher line density is less
stable than a 1D one with lower line density; the stability
clearly is improved by reducing the bare tunes. As ex-
pected, 1D crystals are quite stable compared to the other
multidimensional configurations. Since the phonon spec-
trum of a 1D crystalline chain is discrete, unlike those of
3D crystals as shown in Fig. 4, the 1D crystal can remain
free from resonance even in a high-�0 (higher than
Nsp=2

���
2
p

) region. Such features are shared by some crys-
tals of intermediate line densities with, e.g., 2D zigzag
ground-state structures.

The condition stated above, i.e. �0 <Nsp=2
���
2
p

, is deriv-
able from the well-known envelope equations [15] under
the smooth approximation; it is identical to the condition
that avoids the excitation of linear coherent resonance at
the space-charge limit. Therefore, we also investigated
whether the stability of 3D crystalline states can be deter-
mined by a standard beam-dynamics theory instead of by
the phonon theory. To obtain the stop bands of linear and
nonlinear resonances, we numerically solved the linearized
2D Vlasov-Poisson equations employing the Kapchinsky-
Vladimirsky (KV) model as a stationary state [16].
However, the stop band distribution derived from the
Vlasov analysis does not always explain the MD results
in Fig. 8 (see the appendix); the Vlasov prediction contra-
dicts the MD results in two of the six cases (Ring II and
CRYRING). We speculate that the longitudinal modes
neglected in the 2D Vlasov theory play a role when order-
ing starts to appear among the particles.

Finally, we briefly discuss the MD results based on the
lattice of two European storage ring where considerable
experimental effort had been devoted in 1990’s to generat-
ing an ordered beam with the laser cooling technique
[17,18]. This advanced cooling method was first success-
fully applied to circulating ion beams by the TSR group at
the Max Planck Institute in Heidelberg [17], and later by
the ASTRID group at Aarhus University in Denmark [18].
However, beam ordering has not yet been observed in
either machines.

The ASTRID ring lattice is fourfold symmetric, i.e.,
Nsp � 4, and a typical set of transverse tunes are �x �
2:6 and �y � 1:1. The general maintenance condition for a

3D crystal (14),
�����������������
�2
x � �2

y

q
< 2, is not satisfied. Indeed, we
03420
fail to form any 3D crystalline structure even with a strong
cooling force in MD simulations. At low densities, 1D
string crystals and 2D zigzag crystals extending in the y
direction are obtained with the ideal lattice [19].

The TSR ring lattice is twofold symmetric, i.e., Nsp � 2,
and a typical set of transverse tunes are �x � 2:6 and �y �
2:2. The general maintenance condition for a 3D crystal,�����������������
�2
x � �2

y

q
< 1, is again not satisfied. Not surprisingly, we

again fail to form any 3D crystalline structure in MD
simulations. At low densities, 1D string crystals are ob-
tained with the ideal lattice. Beyond 1D, the only structure
attained after many attempts is an unusual zigzag structure
that rotates along the longitudinal axis one revolution per
lattice period [19]. Although we succeeded in forming such
configurations, the line density has to be sufficiently low,
and the cooling force applied is unrealistically strong [20].
We thus expect that, in reality, it is extremely difficult to
reach a crystalline state in ASTRID and TSR.

V. DISCUSSIONS AND SUMMARY

In this paper, we focused on the maintenance condition
for a crystalline beam. We derived the phonon spectrum in
the smooth approximation and then compared it with that
obtained by Fourier transform from MD calculations.
Since the maintenance condition is primarily related to
the high frequency phonon modes and the dispersion of
high frequency modes are generally small, the number of
particles used in such MD simulations (24 particles in a
supercell in the present 1D case and several hundred in 3D
multishell cases) are adequate. Test simulation shows that
phonon density of states are not affected by increasing the
supercell size except near zero frequency. The mainte-
nance condition, based on the linear-resonance criteria, is
that the lattice superperiodicity must not be equal to the
sum of any two phonon frequencies, i.e., Nsp �

!i �!j�i; j � 1; 2; 3�. We also found that the maximum

phonon frequency is always below
�����������������
�2
x � �

2
y

q
. Since the

phonon spectrum of a 3D crystal is continuous, this con-
dition states that, for crystalline beams of high line-density,
half of the lattice superperiodicity must be greater than�����������������
�2
x � �

2
y

q
:

Nsp > 2
�����������������
�2
x � �

2
y

q
: (15)

When the two tunes are nearly equal, this leads to the
previously derived maintenance criterion �0 <Nsp=2

���
2
p

[3]. The formalism can be applied to crystal formation in
traps where � � 0; a similar maintenance condition holds.

Finally, we note that we paid little attention to whether
an ordinary high-temperature beam can be cooled to a
crystalline state with a realistic dissipative force. Since
resonance conditions of collective modes generally depend
on the beam’s density, the present stability criteria may
have to be modified in practice. A recent simulation study
1-9
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FIG. 9. (Color) Growth rates calculated by the linearized Vlasov
analysis. The lattices of CRYRING and TARN II with the
parameters in Table I were assumed. Resonance stop bands of
three different orders are plotted as a function of �0. The most
dangerous resonance is that of the second order.
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concluded that a complete suppression of linear resonances
over the whole density region may be needed for an
efficient cooling of the beam [21]. To meet this require-
ment, we need �0 <Nsp=4, which is more stringent than
the criterion stated in Eq. (15).

We thank A. Woodhead for reading and revising the
manuscript.

APPENDIX: STOP BANDS FROM LINEARIZED
VLASOV ANALYSIS

At high line-density, a crystalline beam has a multishell
configuration within which particles are almost uniformly
distributed and no random Coulomb collisions are present.
Therefore, we expected that the Vlasov analysis based on
the KV model [16] might be employed to predict the
transverse stability of 3D crystalline states. To check this
expectation, we evaluated the growth rates of linear and
nonlinear collective resonances by applying perturbation to
the stationary KV beam [22]. The results of this linearized
Vlasov analysis are given in Fig. 9 where resonance stop
bands of three lowest orders are plotted as a function of �0.
Since the crystalline beam is exactly at the space-charge
limit, we assumed that the effective betatron tunes are
equal to zero. In the case of TARN II, the second-order
resonance most dangerous to stability occurs when the bare
tune exceeds about 2.0. Recalling that Nsp � 6 in TARN II,
this observation agrees with the phonon theory’s predic-
tion, i.e., Eq. (15). However, the stop band distribution of
CRYRING, which has the same superperiodicity as TARN
II, cannot explain the MD results in Fig. 8. One possible
reason for that could be the neglect of the longitudinal
modes in the Vlasov theory. We thus conclude that the 2D
Vlasov analysis has limitations in predicting the transverse
stability of a crystalline beam.
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