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Abstract

We present a practical algorithm to determine the minimal genus of non-orientable
spanning surfaces for 2-bridge knots, called the crosscap numbers. We will exhibit
a table of crosscap numbers of 2-bridge knots up to 12 crossings (all 362 of them).
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1 Introduction

For a knot K in the 3-sphere S3, there is a connected compact embedded
surface F' in S whose boundary is K. In particular, F' can be chosen to be
orientable, and then it is called a Seifert surface for K. The genus g(K) of K
is the minimal number of genera of all Seifert surfaces for K. Thus the unknot
is the only knot of genus zero.

On the other hand, we can choose the above F' to be non-orientable, for
example, by adding a half-twisted band to a Seifert surface. In this paper,
such F' is referred to as a non-orientable spanning surface for K. We define
the crosscap number y(K) of a non-trivial knot K as the minimal number
of the first betti numbers ; of all non-orientable spanning surfaces for K,
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and set y(unknot) = 0 for convenience. We call v(K) the crosscap number
because it counts the number of ‘crosscap summands’ in the closed surface
obtained by capping off a non-orientable spanning surface with a disk, which
is well known to be a connected sum of projective planes. In the literature,
a crosscap number is also called a non-orientable genus [9]. For a non-trivial
knot K, if a non-orientable spanning surface F' satisfies ;(F) = v(K), then
F'is called a minimal genus non-orientable spanning surface for K.

In general, it is very hard to determine the crosscap number for a given knot.
Any minimal genus Seifert surface becomes a non-orientable spanning surface
for the same knot if we attach a small half-twisted band as above, and hence
we have an obvious inequality 7(K) < 2¢(K)+ 1. There are only a few results
about crosscap numbers of knots. Clark [4] introduced the notion of crosscap
number and pointed out that v(K) = 1 if and only if K is a 2-cabled knot.
He also asked about the existence of a knot satisfying the equality v(K) =
2g(K) + 1, and Murakami and Yasuhara [8] came up with the first example,
showing 7(74) = 3 algebraically. In [11], the crosscap numbers of torus knots
are completely determined.

The purpose of this paper is to determine the crosscap numbers of 2-bridge
knots, which form a special but important class of knots. For 2-bridge knots,
Hatcher and Thurston [7] constructed all incompressible, boundary-incompressible
orientable or non-orientable spanning surfaces. However, for the 2-bridge knot

74, @ minimal genus non-orientable spanning surface can be realized only by a
boundary-compressible surface. Then Bessho [1] proved that any incompress-
ible, boundary-compressible spanning surface for a 2-bridge knot becomes

an incompressible, boundary-incompressible surface after several boundary-
compressions. Therefore, theoretically, we can obtain v(K) as follows:

For a 2-bridge knot K, generate all incompressible, boundary-incompressible
spanning surfaces according to [7]. Let n be the minimal first betti number
of them. Then if n is realized by a non-orientable spanning surface, then
v(K) = n, and otherwise 7(K) = n + 1. Here, n equals the minimal length
of all continued fraction expansions for K.

However, an effective algorithm to determine n was missing, and one could
not tell, for example, for which 2-bridge knots, the equality v(K) = 2g(K)+1
holds.

In the following, we present a practical algorithm to find a shortest continued
fraction expansion for all rational numbers representing a 2-bridge knot K.
This enables us to determine the crosscap number from any continued frac-
tion expansion for K. The main tool is so-called the modular diagram, whose
vertices correspond to rational numbers, on which we introduce the notion of
depth. In Section 6, we exhibit a table of crosscap numbers of 2-bridge knots



up to 12 crossings (all 362 of them).

2 Statement of results

Let K be a 2-bridge knot S(g,p) in Schubert’s notation. Here, p and ¢ are
coprime integers, and ¢ is odd. As is well-known, S(q,p) and S(¢,p') are
equivalent if and only if ¢’ = ¢ and p’ = p** (mod ¢), and S(q, —p) gives the
mirror image of S(q, p).

Consider a subtractive continued fraction expansion of p/q (see [7])
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where r,b; € Z and b; # 0. The length of this expansion is n. Then K is
the boundary of the surface obtained by plumbing n bands in a row, the ith
band having b; half-twists (right-handed if b; > 0 and left-handed if b; < 0).
If some b; is odd, then the expansion is said to be of odd type. Otherwise, it
is of even type. Any fraction has expansions of odd type and even type, e.g.,
1/3=1-2/3 =1+[-2,—-2] = 1+4[—1,2]. In this paper, an expansion always
means a subtractive one. We remark the following equality:
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The crosscap number of a 2-bridge knot K can be described in terms of the
length of expansion corresponding to K. The first theorem is due to Bessho,
but we will give its proof for reader’s convenience in Section 3.

Theorem 1 (Bessho [1]) Let K be a 2-bridge knot.

(1) The crosscap number v(K) equals the minimal length of all expansions of
odd type of all fractions corresponding to K.



(2) If a minimal genus non-orientable spanning surface F for K is boundary-
compressible, then F' is obtained from a minimal genus Seifert surface for

K by attaching a Mdobius band as in Figure 1.
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Fig. 1. Mobius bands attached to Seifert surfaces

We present a practical algorithm to obtain a shortest expansion from any one

of p/q.

Theorem 2 Let p/q = r + [b1,bs, ..., b,] be an expansion obtained from an
arbitrary expansion of p/q by fully reducing the length by a repetition of the
following three reductions. Then n is the minimal length of all expansions of

p/q.

(1) Removal of coefficient 0.

[...,a,0,b,...]
[...,a,b,0] = [...,al,
[0,a,b,...] = —a+1b,...].

[...,a+0b,...],

(2) Removal of coefficient € = £1.

[...,a,e,b,...]=[..,a—e,b—¢,...],
[...,ae]=[..,a—¢],
r+lea,...]=(r+e)+la—¢,...]

(8) Removal of a subsequence 2¢,2¢ or 2e,3¢,...,3¢,2¢.
[...,a,25,35,...,35,25/,b,...,] = [...,a—5,—35,—35,...,—35/,1)—5,..
% m‘:I
[..,a,2e,3e,...,36e,2e] = [...,a—¢,—3e,—3¢,..., —3¢],

% m‘il
7“—1—[?5,36,...,36,2€,a,...] = (r+6)—|—[:36,—36,...,—354,@—5,...
;r; mtl
r+[2e,3¢e,...,36,2e] = (r+e)+[-3¢,—3¢,..., -3¢l
% mtl

(Here, € = £1, and possibly m = 2.)

-,



In Theorem 2, we fix a fraction p/q. Although there are infinitely many frac-
tions corresponding to a 2-bridge knot, the next theorem guarantees that we
can start from any fraction.

Theorem 3 Let K be a 2-bridge knot. If the reduction in Theorem 2 yields
a length n expansion, then n is the minimal length of all expansions of all
fractions corresponding to K.

The next theorem is the key to determine whether a fraction p/q admits a
shortest expansion of odd type.

Theorem 4 Two shortest expansions for p/q are deformed to each other by
a finite repetition of the following, where e = %1:

[...,a,2e,b,...]=[..,a—¢e,—2c,b—¢,...],
[...,a,2e] =[...,a —e,—2¢],
r+[2e,a,...] =(r+e)+[-25a—¢,...]

Theorem 5 Let K = S(q,p) be a 2-bridge knot. If a shortest expansion of
p/q obtained by Theorem 2 contains an odd coefficient or 2, then v(K) = n,
otherwise v(K) =n + 1, where n is the length of the expansion.

Remark that if there is a coefficient +2 in an expansion with only even coef-
ficients, then we can apply Theorem 4 to obtain an expansion of odd type.

Example 6 Let K = 6, in the knot table (see [10]). It is the 2-bridge knot
5(9,2). Then 2/9 = [5,2]. Thus v(K) = 2 by Theorem 5.

It is known that any 2-bridge knot K has a unique expansion of even type mod-
ulo integer parts, and the length of which equals 2g(K). As a direct corollary
to Theorem 5, we can completely characterize those 2-bridge knots satisfying
the equality v(K) = 2¢(K) + 1.

Corollary 7 For a 2-bridge knot K, the equality v(K) = 2g(K) + 1 holds if
and only if there is no coefficient +£2 in the (unique) expansion for K con-
taining only even coefficients.

Example 8 Let K =7, = S(15,4). Note that K has genus one. Since 4/15 =
[4,4], v(K) = 2g(K) 4+ 1 = 3 by Corollary 7. More examples will be given in
Section 5.

Some minimal genus non-orientable surfaces for 2-bridge knots are boundary-
incompressible, but others boundary-compressible, and some 2-bridge knots
have several such surfaces. This makes a strong contrast to the case of torus
knots, where minimal genus non-orientable spanning surfaces are boundary-



incompressible and even unique [11].

By the theorems above, we can characterize 2-bridge knots with boundary-
compressible minimal genus non-orientable spanning surfaces. It is unknown
whether Corollary 10 below generalizes to all knots.

Theorem 9 Let K = S(q,p) be a 2-bridge knot, and C the set of shortest
expansions for p/q. Then we have:

(1) C contains an expansion of odd type if and only if any minimal genus non-
orientable spanning surface for K is boundary-incompressible.

(2) C contains no expansion of odd type if and only if any minimal genus non-
orientable spanning surface for K is boundary-compressible.

The following is immediate from Theorem 9.

Corollary 10 A 2-bridge knot never has two minimal genus non-orientable
spanning surfaces such that one is boundary-incompressible and the other is
boundary-compressible.

In Section 4, we give an algorithm to visualize a minimal genus non-orientable
spanning surface for 2-bridge knots.

Theorem 11 Any 2-bridge knot K has a Conway diagram D such that a
manimal genus non-orientable spanning surface for K is obtained as a checker-
board surface on D.

Example 12 We note that such diagrams are not unique and not shortest
in general. Let K = S(15,4) as in Example 8 with v(K) = 3. Then the
Conway diagrams [2,1,5,—1,3] and [4,1,1,1,4] representing K respectively
yield a desired surface as a checker-board surface. It is interesting to confirm
Theorem 1(2) for these surfaces.

3 Proof of Theorem 1

Let K be a 2-bridge knot with a minimal genus non-orientable spanning sur-
face F. Let E(K) = S® — Int N(K) be its exterior. Then F N N(K) can be
assumed to be a collar neighborhood of OF in F, and hence we will use the
same notation F' for F'N E(K).

Lemma 13 F is incompressible in E(K).



PROOF. Assume not. Let D be a compressing disk for F'. Then 0D is an
orientation-preserving loop on F'. Let F’ be the resulting surface from F' by
compressing along D. Then x(F') = x(F) + 2. If F’ is disconnected, then it
consists of a closed orientable component F; and a non-orientable component
F2 with 8F2 7£ @ Since BI(FI) + /BI(FQ) == BI(F) and BI(FI) > 0, we have
B1(Fy) < B1(F). This contradicts the minimality of §,(F). If F’ is connected
and non-orientable, then (;(F') = [(1(F) — 2, a contradiction. Hence F” is
connected and orientable. This means that F' is a Seifert surface for K. Then

adding a small half-twisted band to F’ gives a non-orientable spanning surface
R for K with 8,(R) = f1(F') +1 = 5,(F) — 1, a contradiction. O

Proof of Theorem 1 (1) Let p/q = r + [by, b, ..., b,| be an expansion of
odd type of some fraction p/q for K. We assume that the length n is minimal
among all expansions of odd type of all fractions for K. The surface obtained
by plumbing n bands corresponding to this expansion in the usual way gives
a non-orientable spanning surface for K with the first betti number n. Thus
V(K) <n.

The argument to show n < ~(K) is divided into two cases according to the

boundary-incompressibility of a minimal genus non-orientable spanning sur-
face F.

First assume that K has a minimal genus non-orientable spanning surface
F which is boundary-incompressible. Then it is isotopic to one of the sur-
faces obtained by plumbing k£ bands corresponding to some expansion s +
[a1, ag, ..., ag] of some fraction for K with s € Z and |a;| > 2 for each i by
[7, Theorem 1(b)]. Hence v(K) = k. Since F' is non-orientable, this expansion
s + [ay,ag, ..., ar] must be of odd type. Thus n < k by the minimality of n,
and hence we have n < y(K).

Next, assume that any minimal genus non-orientable spanning surface F' for
K is boundary-compressible. Let D be a boundary-compressing disk such that
0D = a U 3, where DN F = « is a properly embedded essential arc in F' and
D NOE(K) = (. Then f intersects OF in two points. If these two points
have distinct signs (after orienting 8 and OF suitably), then 5 and a subarc
of OF bound a disk § in OF(K). Thus D U 6, pushed away from 0F(K)
slightly, gives a compressing disk for F', which contradicts Lemma 13. Hence
B intersects OF twice in the same direction. Let F; be the surface obtained
by boundary-compressing F' along D. From the above observation, Fj is a
connected surface with connected boundary. Also, we see 1 (Fy) = (1 (F) — 1.

Claim 14 F) is incompressible in E(K).



Proof of Claim 14 Let N(D) = D x [—1,1] be a product neighborhood of
D such that N(D)NF =0N(D)NF =« x[—1,1]. Then F} = (F — N(D)n
FYyu (D x {—1,1}). If F; is compressible, then it has a compressing disk E
disjoint from N (D). Since F is incompressible, 0F bounds a disk E" in F'. We
can choose E' disjoint from the disk o x [—1,1]. Thus OF bounds a disk in
Fi, a contradiction. O

If Fy is orientable, then it is boundary-incompressible. (Any orientable incom-
pressible surface in E(K) is boundary-incompressible if it has a connected
boundary.) If F} is non-orientable and boundary-compressible, we continue
a boundary-compression. Thus for some ¢ > 0 we have a sequence of incom-
pressible surfaces F' = Fy — F| — Fy — --- — Fy where 3,(F;) = 1 (F;_1)—1
for i = 1,2,...,¢ and F; is boundary-incompressible. By [7, Proposition 2],
OF, runs once longitudinally on 0F(K).

If F} is orientable, then it has minimal genus [7, Corollary]. Note that 5, (F;) =
p1(F) — € =~(K) — ¢ and that F, corresponds to the unique expansion r' +
(61,05, ...,b) ] with each b, even. Then (;(F;) = m. Since K admits an odd
type expansion of length m+1,n <m+1 = 3, (F;)+1 = y(K) —{+1 < y(K).
Thus we have n < v(K), and so y(K) =n and ¢ = 1.

If F} is non-orientable, then F} is isotopic to some surface obtained by plumbing
k bands and n < k as before. Since 3, (Fy) =k, n < k = v(K)—{ < v(K) < n,
a contradiction. Thus such a case never occurs.

(2) If a minimal genus non-orientable spanning surface F' is boundary-compressible,
then the above argument shows that boundary-compressing F' gives a minimal
genus Seifert surface @) for K. Then F is obtained from ) C E(K) by attach-

ing a band b = [0,1] x [0, 1] C OE(K) such that bNQ =[0,1] x {0,1}. In fact,
since OF runs once longitudinally on 0F(K), there are only two possibilities

for b as shown in Figure 1. Thus F' is obtained from () by adding a Md&bius
band locally as desired. O

4 Calculation by the modular diagram

We use the modular diagram D as shown in Figure 2 to compute the crosscap
numbers of 2-bridge knots. This diagram comes from the action of PSL(2,7Z)
on the hyperbolic plane. (But D is distorted to space the vertices evenly along
the circle.)

The vertices are labelled with Q U {1/0}, inductively: Start with 1/0 and 0/1
at the ends of the ‘horizontal” edge. If two vertices of a triangle are already



labelled with a/b and ¢/d, then the remaining vertex of the triangle is labelled
(a+¢)/(b+d). (This is the rule to label the vertices on the upper circle only,
and for those on the lower circle, regard 1/0 and 0/1 as —1/0 and —0/1.)

We call the third vertex the child of the first two vertices, which themselves
are called the parents, and call the edge connecting the parents the longest
side of a triangle. Note that two vertices a/b and c¢/d are connected by an
edge if and only if |ad — bc| = 1.

We will identify a vertex with the corresponding label for convenience. In fact,
all rational numbers appear on the circle with the usual order. That is, if the
vertices u and v correspond to a/b and ¢/d, respectively, and if a/b < ¢/d in
Q, then u and v lie on the circle with the counterclockwise orientation in the
order u, v.

Fig. 2. The modular diagram D

An edge-path from 1/0 to p/q in D corresponds uniquely to an expansion
p/q = 1+ [b1,ba,...,b,], where the partial sums p;/q; = 7 + [b1,ba, ..., b;]
(po/qo = r) are the successive vertices of the edge-path. At the vertex p; 1/¢; 1
the path turns left or right across |b;| triangles, left if b; > 0 and right if b; < 0.
See Figure 3. If an edge-path corresponds to an expansion of odd type, then
the path is also said to be of odd type.

We assign the depth d(v) to each vertex v on D. First, set d(v) = 0 for
v € ZU{1/0}. If a triangle in D has vertices a/b, ¢/d and (a+c¢)/(b+d), then
define the depth of the child from those of parents by setting

d((a+¢)/(b+ d)) = min{d(a/b), d(c/d)} + 1.



3/5=0+[2,2,~1] 5/3=2+(-2,1]
Fig. 3. Edge-paths from 1/0 to p/q

Thus all vertices can be assigned the depths. Notice that if two vertices v and
v are connected by an edge in D, then |d(u) — d(v)| < 1. Also there are only
three kinds of triangles in D as shown in Figure 4, where depths of vertices
are indicated, except triangles with vertices {1/0,n,n + 1} of depth 0 where
n € Z.

Fig. 4. Triangles

Lemma 15 Let { be the length of a shortest edge-path from 1/0 to p/q # 1/0.
Then d(p/q) = ¢ — 1.

PROOF. By the definition of depth, there is an edge-path from 1/0 to p/q
of length d(p/q) + 1. Thus ¢ < d(p/q) + 1. Conversely, let & be a shortest
edge-path from 1/0 to p/q. Recall that |d(u) — d(v)| < 1 for any consecutive
vertices u,v on &. In particular, d(1/0) = d(vy) = 0, where vy is the second
vertex on &, and hence d(p/q) < ¢ — 1. Thus we have d(p/q) =¢—1. O

The next theorem gives a criterion for a shortest edge-path in terms of depths.

Theorem 16 An edge-path & :1/0 — vy — v; = vg = -+ = v, =p/q # 1/0
is shortest if and only if d(v;) =i fori=0,1,2,...,n.
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PROOF. Assume that ¢ is shortest. Then d(v,) = n by Lemma 15. Since the
depth can increase by at most one along ¢ and d(vg) = 0, d(v;) = ¢ for each i.

Conversely, since d(v,) = n, any edge-path from 1/0 to p/q has length at least
n + 1 by Lemma 15. Thus we can conclude that £ is shortest. O

Proof of Theorem 2 Let p/q = r + [by,ba,...,b,] be an expansion fully
reduced by the reductions in the statement of Theorem 2. Let £ : 1/0 —
vo — v = - — v, = p/q be the edge-path corresponding to the expansion.
Suppose that the expansion is not of minimal length, that is, £ is not short-
est. Then the sequence S of depths d(vy), d(vy), d(va), ..., d(v,) is not strictly
increasing by Theorem 16. Notice that d(vy) = 0.

First, suppose that S contains 7 — 1,¢,7 — 1 as a subsequence. Then we can
see that there is a triangle of Figure 4(1) such that £ runs along the shorter
two edges. This means that some coefficient b; is £1, a contradiction.

If § contains 0, 0, then b; = £1, a contradiction. Thus S contains 1—1,%,4,...,1
(i is repeated k (> 2) times) for some 7 > 1. We choose ¢ minimal among such
subsequences of S.

Let u; and us be the depth 7 vertices on &, appearing in the order usy, uy;. We
can suppose that the vertex before us on & has depth 7 —1. There is the unique
triangle T} which contains the edge between u; and us as one of two shorter
edges. Without loss of generality, we can assume that 7} has the form of Figure
4(3). Let wy be the remaining vertex of Tj. If uy is the child of {uy,w;}, then
§ contains the edges w; — us — w;. Then some b; = —1, a contradiction.
Hence w; is the child of {uy, w;}. Let Ty be the (unique) triangle sharing the
edge between uy and wy with 77, and let ug be the remaining vertex of T5. See
Figure 5(1). (Since d(w;) = i—1 and d(uy) = i, us is located in this position.)
Then d(us) =i or i — 1. If d(u3) = ¢, then £ contains wy — ug — uy, SO some
coefficient is —1. Thus d(u3) = ¢ — 1. If £ contains w; — uy — uq, then some
coefficient is —1 again. Hence & contains us — us — uy.

If « = 1, then d(u3) = d(w;) = 0. By the minimality of i, ug = vy. Thus &
contains 1/0 — ug — us — uq, so by = by = —2, a contradiction. (If 7} has
the form of Figure 4(2), then we encounter 1 or 2,2.)

Suppose i > 2. Let T3 be the triangle sharing the edge between u3 and w; with
Ty, and let wy be the remaining vertex of Tj. If us is the child of {wy,ws},
then d(we) = i — 2, and £ contains wy — uz — uy — uj. Then we have
—2,—2 in the coefficients, a contradiction. Hence wy is the child of {ug, wy},
and d(wse) = i — 2. See Figure 5(2). Let T} be the triangle sharing the edge
between us and wy with 73, and let uy be the remaining vertex of 7. Then
ug is the child of {u4, wy}, and so d(uy) = i —1 or i — 2. If d(uy) = i — 1,

11



(1) (2)
Fig. 5. Paths uo — u; and ug — ug — u3

then & contains wy — u3 — us — uy. Then we have —2, —2 in the coefficients.
Hence d(u4) = ¢ — 2. If £ contains wy — uz — uy — wug, then we have
—2,—2 again. Thus & contains uy — uz — us — wu;. See Figure 6(1). If
i = 2, then d(uy4) = d(wy) = 0 and hence uy = vg (# 1/0). Thus £ contains
1/0 — uy — uz — ug — uy,s0 by = —2, by = —3 and by = —2, a contradiction.
Thus 7 > 3.

(1) (2)

Fig. 6. Paths uqs — us — ug — u; and us — ug — uz — ug — Uy

Continuing this process, we obtain the triangles T},T5, ..., Ty;, where Ty,
is the form of Figure 4(3), and T, is of Figure 4(1). Also, 7} has vertices
{uy, ug, w1}, Tom 1 (m > 2) has vertices {w, 1, W, Umi1}, and Ty, (M > 1)
has vertices {upmy1, Umi2, W}, and d(uy) = i, d(u;) =i — j+ 2 for j > 2,
d(wj) =i —j for j > 1. The path £ contains the edges u; o — uiy1 — -+ —
uy — uy. Since d(u;y) = 0, ujy9 = vo. Then —2,—3,...,—3, —2 appears in
the coefficients, a contradiction. (If 77 has the form of Figure 4(2), then we

12



encounter 1 or 2,3,3,...,3,2 in the coefficients.) O

Lemma 17 Let p/q and p'/q" be two fractions for a 2-bridge knot K. Then
there exists a one-to-one correspondence between the set of all expansions for
p/q and that of p'/q', such that the correspondence preserves both length and
type of expansions.

PROOF. Since both p/q and p'/q’ represent the same knot, ¢ = ¢’ and (i)
p = p (mod ¢) or (ii) pp’ = 1 (mod q). Suppose p/q = p'/q + s, where
s € Z. Then for any expansion r + [ay, as,...,a,] of p/q, we can associate
r— s+ [ay,ag,...,a,] of p'/q. Therefore, it suffices to establish a one-to-
one correspondence only for p/q and p'/q lying between 0 and 1. Under such
a restriction, suppose that pp’ = 1 (mod ¢). Then it is well known that if
[a1,as,...,a,] = p/q then [a,,..., as,a;] = p'/q. Thus we can establish a
required one-to-one correspondence. O

Proof of Theorem 3 Let p/q be a fraction corresponding to K. Let n be the
minimal length of an expansion of p/q obtained by the reduction of Theorem
2. If another fraction for K admits an expansion of length shorter than n, then
p/q has an expansion of the same length by Lemma 17. This contradicts the
minimality of n. O

Next, we consider when there exists a shortest edge-path from 1/0 to p/q,
which is of odd type. A rectangle in D is the union of two triangles sharing
one edge.

Lemma 18 Assume that a shortest edge-path & from 1/0 to p/q is not of odd
type. If there is a rectangle in D containing two successive edges of &, then
there is a shortest edge-path of odd type from 1/0 to p/q.

PROOF. Without loss of generality, we can assume that the successive two
edges on &, v;_s — v;_1; and v,_; — v; lie on a rectangle which is the union
of two triangles whose vertices {v; o,v; 1,v,_;} and {v;_1,v]_;,v;}. Then we
replace these two edges by v; 9 — v/ ; and v} | — v;. This will change & to
a new shortest edge-path of odd type. For, if v; o # 1/0, then the expansion
corresponding to £ changes from r+[...,a,£2,b,...]tor+[...,aF1,F2,bF

I,...J,orr+[...;a,£2) tor+[...,aF 1,F2]. If v;_5 = 1/0, then v;_; € Z.
Thus £ corresponds to an expansion p/q = v;_1 + [£2,a,...]. Then the new
edge-path corresponds to v; 1 £ 1+ [F2,aF1,...]. O

13



The deformation used in the proof of Lemma 18 is referred to as a rectangle
move.

Proof of Theorem 4 Let
g:1/0—>U0—>U1—>U2—>"‘_>Un:p/q7

&:1/0 > v, = v > vy — - = =p/q

be two shortest edge-paths from 1/0 to p/q. Recall that each of v; and v} has
depth ¢ for any ¢ by Theorem 16. In particular, vy, v, € Z.

Suppose vy # v. We may assume that vy < vj. Since p/q € (vg — 1,v9 + 1)
and p/q € (vj — 1,v) + 1), vj — vy = 1. In fact, v; and v] lie in the interval
(v, vg). Let u be the child of {vg, vy}. Then d(u) = 1. If neither of vy nor v} is
u, then we would have p/q < u < p/q, a contradiction. Hence we may assume
vy = u. Then a single application of rectangle move on & changes the edges
1/0 - v — vy =uto 1/0 — vy — u.

Suppose that v; = v; for 0 < 7 < k and vy # vi,, for some k > 0. If
Vkp1 < Vg = Uy < Vo OF Upyr > Up = v, > vy, then we would have
p/q < v = v, < p/q, a contradiction. Hence we consider only the case
where vj41, v, > vy = v The case where vy, v}, < v, = v, is similar.
Without loss of generality, assume v}, < vjp41. Then p/q lies in the interval
(Vg 1, Uk41). If there is a vertex u with depth k£ + 1 inside the interval, then
we have p/q < u < p/q, a contradiction. Hence there are a triangle A; whose
vertices are vy, vp41 and vy, and a triangle Ay whose vertices are vi41, v},
and w. Here, vy, v}, are the parents of w. If w = p/q, then vy = v} _,.
Then £ can be changed to & by the rectangle move on A; U A,. Otherwise
p/q lies in (v, w) or (w,vky1). Then w = vj4o in the former case, and
w = v}, in the latter. After the rectangle move on A; U Ay to & or &, we
have vj41 = v ;. Thus, £ can be changed to &' gradually. O

Proof of Theorem 5 If a shortest expansion of p/q obtained by Theorem
2 contains an odd coefficient, then v(K) = n by Theorems 1 and 3. Let ¢
be the corresponding edge-path and assume that £ is of even type. If the
expansion contains a coefficient +2, then there is a rectangle in D containing
two successive edges of £&. Hence a rectangle move creates another shortest
edge-path of odd type by Lemma 18. Then v(K) = n as above. Otherwise &
is the unique shortest edge-path from 1/0 to p/q by Theorem 4.

If another fraction for K admits an expansion of odd type of length n, then
p/q also admits an expansion of odd type of length n by Lemma 17. Thus
there is no expansion of odd type of length n, and so y(K) =n+1. O
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Proof of Corollary 7 It is well known that even type expansions for a 2-
bridge knot are unique modulo integer parts, and the length equals 2¢g(K). If
the expansion does not contain 42, then it is shortest by Theorem 2. Hence
v(K) = 2g(K) + 1 by Theorem 5. If the expansion contains +2, then there
is another expansion of odd type with the same length by Lemma 18. This
means that v(K) < 2¢g(K). O

Proof of Theorem 9 Let F' be a minimal genus non-orientable spanning
surface for K. By Lemma 13, F' is incompressible.

First, assume that the minimal length n of expansions of all fractions for K
is realized by an expansion of odd type.

If F' is boundary-compressible, then boundary-compression yields a minimal
genus Seifert surface S for K with (,(S) = [i(F) — 1 as in the proof of
Theorem 1. Note that S is isotopic to a plumbing surface corresponding to
the unique expansion with only even coefficients. In particular, such expansion
has length n — 1. This contradicts the minimality of n. Hence F' is boundary-
incompressible. (In this case F' is isotopic to a plumbing surface by [7].)

Next, assume that only expansions of even type realize the minimal length
n. If F' is boundary-incompressible, then F' is isotopic to a plumbing surface
which corresponds to some expansion of odd type, which has length k£ >
n + 1. Indeed, k = n + 1 by the minimality of 5;(F). If F' corresponds to an
expansion r + [by, by, ..., b,41], then |b;| > 2 for each 7 by [7]. This expansion
is not shortest, and hence the sequence by, bo, ..., b, contains a subsequence
2¢,3¢e,...,3¢,2¢, ¢ = £1, where the number of 3¢ may be zero, by Theorem
2. But such expansion can be reduced as shown in Theorem 2. In particular,
we have a shorter expansion of odd type, a contradiction. Thus F' must be
boundary-compressible. O

Proof of Theorem 11 Let K = S(q,p) with y(K) = . We omit the trivial
case v = 1. Let C' = [ay, by, ag, by, - - -] be a shortest expansion for p/q among
those of odd type. To be precise take [a;, by, -, a(y41)/2) if 7 is odd and if
otherwise, take [a,by,- -, b, /2). Figure 7(1) represents a Conway diagram for
K = S(q,p) of length ~. Deform it to Figure 7(3) through (2) corresponding
to the expansion C' = [a; — 1,—1,b1,1,a9,—1,by,1,---], which ends with
a(y4+1y/2 + 1 (resp. 1) if v is odd (resp. even). Then we have a desired Conway
diagram with a checkerboard surface F' with S(F') = . We remark it is not
preferable if a; — 1 = 0 or a(,11);2 + 1 = 0. In that case, apply the following:
Take the mirror image of K and thus change all the signs of C', apply the
deformation in Figure 7, and the take the mirror image again. Then we obtain
a desired Conway diagram for K. (This modification works since C has at
most one coefficient +1 because of the minimality of y.) O
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Fig. 7. Deformation of Conway diagram

5 Examples

In [12], it is proved that any positive integer can appear as the crosscap number
of some pretzel knot. We can show that such examples can be found among
2-bridge knots.

As seen in Section 6, among 2-bridge knots up to 12 crossings, exactly 74, 83,
95, 103, 11asss, 11ases, 12a1166 and 12a1087 do not have a shortest expansion of
odd type and hence satisfy the equality y(K) = 2¢g(K) + 1. The next example
also gives an infinite series of such 2-bridge knots, as a generalization of [8].

Example 19 Let K,,, be the 2-bridge knot corresponding to [m, 4,4, ..., 4]
of length n for any n > 1. When n =1, K,,; = S(m, 1).

If m is odd and m > 3, then this expansion is shortest by Theorem 2. Thus
Y(Kym,n) = n by Theorem 5. Also, if m # m/, then K,,, , and K, ,, have distinct
denominators, and hence they are not equivalent. Thus we have infinitely many
2-bridge knots K, ,, with v(K,,,) = n for any n > 1.

If m and n are even and m > 4, n > 2, then g(K,,,) = n/2. By Corollary 7,
Y(Kmn) = n+1. Also, distinct m’s give distinct knots. Thus we have infinitely
many 2-bridge knots K, , satisfying the equality v(K,,) = 29(Kpn ) + 1.

The Murasugi sum of two minimal genus Seifert surfaces gives a minimal genus
Seifert surface [6]. Finally, we give the examples of 2-bridge knots, showing
that an analogous statement does not hold in non-orientable case. This is a
generalization of Bessho’s example [1].

Example 20 For any odd integer m > 3, let K,,, be the 2-bridge knot cor-
responding to [m,2]. Then v(K) = 2 and its minimal genus non-orientable
spanning surface F' is obtained by plumbing two bands with m and 2 half-
twists respectively. Let R be the Murasugi sum of two copies F} and F; of F'.
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Here, the plumbing disks are chosen to lie in the band with 2 half-twists of F}
and in the band with 2 half-twists of F,. Then 1(R) = 4. But R is the 2-
bridge knot corresponding to [m, 2,2, m|. Since [m, 2,2, m| = [m—1, -3, m—1],
it has crosscap number 3. Also, distinct m’s give inequivalent knots. Thus the
Murasugi sum of two minimal genus non-orientable spanning surfaces is not
necessarily minimal genus.

6 Table

Here is the table of crosscap numbers of 362 2-bridge knots up to 12 crossings.
The numbering of knots with 10 or less crossings follows that of [10]. For 11,
12 crossings knots, we have used Dowker-Thistlethwaite notation. The last
column gives a minimal length subtractive continued fraction expansion of
p/q. We chose them to be of odd type except for the ones (indicated by x*)
where the shortest expansion is unique and of even type. We referred to [2]
for 2-bridge knots up to 10 crossings, to [3] for those of 11 and 12 crossings,
for which we also used a table compiled by David De Wit [5].

knot p/q v continued fraction knot p/q v continued fraction
3 1/3 3] 4, 2/5 2 [3,2]

51 1/5 1 [9] D9 3/7 2 [2,-3]

64 2/9 2 [5,2] 62 4/11 2 [3,4]

63 5/13 3 [3,2,-2] 7 1/7 1 7]

7y 5/11 2 [2,-5] 73 4/13 2 [3,—4]

T4 4/15 3 [4,4]* 75 /17 3 [2,-2,3]
76 7/19 3 [3,3,-2] 77 8/21 3 |[3,3,3]

81 2/13 2 [7,2] 89 6/17 2 [3,6]

83 4/17 3[4, —-4) 84 5/19 2 [4,5]

86 10/23 3 [2,-3,3] 87 9/23 3 [3,2,—4]
8 9/25 3 [3,4,-2] 8 7/25 3 [4,2,-3]
81  10/27 3 [3,3,-3] 812  12/29 4 [3,2,4,2]
83 11/29 3 [3,3,4] 814 12/31 4 [3,2,-2,2]
9 1/9 1 9] 99 7/15 2 [2,-T]
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knot p/q v continued fraction knot p/q v continued fraction
93 6/19 2 [3,-6] 9,4 5/21 2 [4,-5]

95 6/23 3 [4,6]* 9% 5/271 3 [5,-2,2]

9; 13/29 3 [2,—4,3] 9 11/31 3 [3,5,—2]

99 9/31 3 [3,-2,4] 99 10/33 3 [3,-3,3]
9, 14/33 3 [2,-3,-5] 912 13/35 3 [3,3,—4]

9,5 10/37 3 [4,3,-3] 9.4 14/37 3 [3,3,5]

955 16/39 4 [2,-2,3,-2] 9,7 14/39 3 [3,5,3]

95 17/41 4 [2,-2,2,-3] 959 16/41 4 [3,2,-3,2]
99 15/41 3 [3,4, 4] 99 18/43 4 [2,-3,-2,3]
995  19/45 4 [2,-3,-3,2] 996  18/47 4 [3,3,2,-3]
997  19/49 4 [3,2,-3,-3] 951  21/55 4 [3,3,3,3]
10, 2/17 2 [9,2] 10, 8/23 2 [3,8]

103  6/25 3 [4,—6]" 10, 7/27 2 [4,7]

105 13/33 3 [3,2,—6] 106 16/37 3 [2,-3,5]
10, 16/43 3 [3,3,-5] 10s  6/29 2 [5,6]

10  11/39 3 [4,2,-5] 10,0 17/45 3 [3,3,6]

107 13/43 3 [3,-3,4] 10, 17/47 3 [3 4, 4]
1013 22/53 4 [3,2,3, —4] 1014 22/57 4 3, 2,4]
105 19/43 3 [2,—4,-5] 10,6 14/47 3 [3, —5]
107 9/41 3 [5,2,—4] 10,3 23/55 4 [2,—3 —2,4|
10,9 14/51 3 [4,3,5] 100 16/35 3 [2,-5,3]
105  16/45 3 [3,5,—3] 105, 13/49 3 [4,4,-3]
1053 23/59 4 [3,2,-3,3] 1054 24/55 4 [2,-3,2,-3]
1095 24/65 4 [3,3,-2,3] 106 17/61 4 [4,2,-2,3]
10o; 27/71 4 [3,3,3,-3] 105 19/53 3 [3,5,4]

109 26/63 4 [2,-2,3,4] 1030 26/67 4 [3,2,—3, —4]
1031 25/57 4 [2,—4,-2,3] 1032 29/69 4 [2,-3,-3,—4]
1033 18/65 4 [4,3,2,—3] 1034 13/37 3 [3,6,—2]
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knot  p/q v continued fraction knot  p/q v continued fraction
1035 20/49 4 [3,2,6,2] 1036 20/51 4 [3,2,—4,2]

1037 23/53 4 [2,-3,3,-2] 1038 25/59 4 [2,-3,-4,2]
1039 22/61 4 [3,4,-2,2] 1049 29/75 5 [3,2,-2,2,—2]
1044 26/71 4 [3,4,3,-2] 1042 31/81 5 [3,3,2,—2,2]
1043 27/73 4 [3,3,-3,-3] 1044 30/79 4 [3,3,4,3]

1045 34/89 5 [3,3,3,2, 2] 1la;3  28/61 4 [2,-6,—3,—2]
1lase 20/43 3 [2,-7,-3] 1lags 27/59 4 [2,-5,2,—2]
1lazs  36/83 4 [2,-3,4,3] 1laz;  55/131 5 [2,-3,-3,-3,-3]
1lagy 44/101 5 [2,-3,3,2,-2] 1lags 47/107 5 [2,—4,-2,2,3]
1lagg 44/119 5 [3,3, —2,2] 1lagy 23/87 4 [4,4,—2,-3]
1lag; 50/129 5 [3,2,—3,—-3,-3] 1lags 41/93 4 [2,—4,—5,—-3]
1lags 33/73 4 [2,-5,-3,2] 1lags 50/121 5 [2,-2,3,3,3]
1lags 18/77 4 [4,—4,-3,-2] 1laj0 35/97 4 [3,4,-3,-3]
1lay;y; 37/103 4 [3,5,3,3] 1lay;  49/117 5 [2,-3,-2,3,3]
1lapg 34/77 4 [2,—4,-5,-2] 1lajy  45/109 5 [2,-2,3,3,-2]
1lajp; 50/119 5 [2,-3,-3,-3,2] 1laye 17/65 3 [4,6,3]

1layyy 17/73 4 [4,-3,2,-2] 1layys 22/83 4 [4,4,-3,-2]
1lasy 30/67 4 [2,—4,3, 2] 1lajse 46/111 5 [2,-2,2,—3, —3]
1laee 14/59 3 [4,-5, —3] 1lajzg 28/79 4 [3,5,—2, 3]
1layzs  41/105 5 [3,2, 2,2] 1layze 31/111 5 [4,2,-3,-2,2]
1laj;; 21/97 4 [5,3,3, 3] 1laj;g 34/123 5 [4,2,—2,—-3,—3]
1layzg 20/57 3 [3,7,3] 1lajge 25/89 4 [4,2,—4, 3]
1lagy 13/73 4 [6,2,—2, 3] 1lags 34/115 5 [3,-3,-2,2,3]
1lajgs 19/87 4 [5,2 -3, -3] 1laigs 30/109 4 [4,3,4,3]

1laige 39/95 5 [2,— —2,2] 1lajgg 14/67 3 [5,5,3]

1lajee 18/85 4 [5,3 —3] 1laje; 19/83 4 [4,-3,-3,2]
1lajge 26/97 4 [4,4,3, —2] 1lajes 29/95 4 [3,—4,-3,-3]
1lajes 8/53 3 [7,3,3] 1lages 11/63 3 [6,4,3]
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knot  p/q v continued fraction knot  p/q v continued fraction
1lagey 30/101 4 [3,-3,—4,—3] 1lages 25/91 4 [4,3,—4, 2]
1lages 7/47 3 [7,3,— ] 1lage; 26/85 4 [3,—4,-3,2]
1lages 31/105 5 [3,-3,—2,2,—2] 1lage 16/73 4 [5,2,—3,2]
1lagy; 12/67 4 [6,2,—3, 2] 1laggy 23/85 4 [4,3,-3,2]
1lagey 27/89 4 [3,-3,3,3] 1lages 11/53 3 [5,5,—2]

1lagge 20/71 4 [4,2,-5, 2] 1lagyy 16/71 4 [4,-2,3, 2]
1lasze 8/51 3 [6,—3,-3] 1lasss 5/37 3 [7,-2,2]

1lagss 22/71 4 [3,—4,2, 2] 1lagss 29/99 5 [3,-2,2,-2,2]
1lagsg 12/65 4 [5,-2,2, 2] 1lagyy 9/47 3 [5,—4,2]

1lagyz 20/69 4 [3,-2,4, 2] 1lagye 13/41 3 [3,-6,2]

1lasy; 2/19 2 [9,-2] 1lagee 29/105 4 [4,3,3,4]

1lage; 18/83 4 [5,2,—2, —4] 1lages 15/71 3 [5,4,4]

1lagey 25/93 4 [4,3, -2, —4] 1lage 14/61 3 [4,-3,-5]
1lag;; 18/79 4 [4,— 2, 3] 1lagsz 14/65 3 [5,3,5]

1lagsy 9/49 3 [5,—-2 4] 1lagss 17/75 4 [4,-2,2, 3]
1lagse 11/59 3 [5,—3,—4] 1lags; 26/89 4 [3,-2,3,4]
1lagze 13/55 3 [4,— ] 1lagyy 19/61 3 [3,—5,—4]
1lagsy  4/29 2 [7,—4] 1lagsz 4/31 3 [8,4]

1lagss 7/45 3 [6,—2,3] 1lagse 24/79 4 [3,-3,2,-3]
1lagsy 27/91 4 [3,-3,-3,3] 1lagss  5/31 2 [6,-5]

1lagse 10/53 3 [5,-3,3] 1lagee 10/57 3 [6,3, 3]

1lages 6/35 3 [6,6]" 1lages 3/25 2 [8,-3]

1lages 16/51 3 [3,-5,3] 1lags; 1/11 1 [11]

12a3s  33/71 4 [2,-6,2,3] 12a169 23/49 3 [2,-8,-3]
12a197 32/69 4 [2,-6,3,2] 12as04 76/173 5 [2,—4,-3,—3,-3]
12a906 47/105 4 [2,—4 4, 3] 12a99; 66/169 5 [3,2,—4, -3, —3]
12a996 75/181 6 [2,— —2,2,3]  12a939 40/87 4 [2,—6,-3,2]
12a941 57/127 5 [2,-4,3,2,-2] 12a943 60/133 5 [2,—4,2,3, 3]
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knot  p/q v continued fraction knot  p/q v continued fraction
12a947 71/163 5 [2,-3,3,3,3] 12a951 59/159 5 [3,3,-3,2,3]
12a954 23/97 4 [4,-4,2,3] 12a955 28/107 4 [4,5,—2, 3]
12a957 80/191 6 [2,-2,2,3,—2,—-3] 12a5 52/115 4 [2,—5 —4,-3]
12a300 68/155 5 [2,-3,2,4,3] 12a300 61/147 5 [2,— —4,-3]
12a303 64/153 5 [2,-2,2,5,3] 12a306 64/147 5 [2,-3,3,3,-2]
12a3; 69/157 5 [2,—4,-3,-3,2] 12a330 43/95 4 [2,-5,—4,2]
12a373  45/127 4 [3,6,3, 3] 12a379 17/71 3 [4,—6,—3]
12a380 20/77 3 [4,7,3] 12a384 62/151 5 [2,-2,3, -3, —3]
12a385 66/161 5 [2,-2,4,3,3] 12a406 74/179 6 [2,-2,3,2,-2,2]
12a405 37/81 4 [2,-5,3, —2] 12a437 65/149 5 [2,— -3, -3]
12a447 43/121 4 [3,5,—3, 3] 12a45¢ 27/103 4 [4,5,—2 2]
12a471 38/85 4 [2,-4,5 2] 12a477 70/169 6 [2,— -2,3,2]
12a480 22/93 4 [4,-4,3,2] 12a497 81/209 6 [3,2, -3,-2,2,3]
12a498 76/207 5 [3,4,3,3, 3] 12a499 89/233 6 [3,3,3,3,2,—2]
12a500 60/167 5 [3,4 -3, -3] 12a50; 55/199 5 [4,3,3,3 3]
12a500 37/91 4 [2,—2 6 3] 12a506 68/185 5 [3,3 —4,-3]
12a508 56/129 5 [2,-3,3,-2,2] 12a50 81/193 6 [2, -2,2,3,3, -2]
12a5; 51/125 5 [2,-2,5,2,—2] 12a52 64/151 5 [2,-3,—4,2,3]
12a54 79/187 5 [2,—3 —4,-3,-3] 12as7; 52/145 4 [3,5,4,3]

12a58 34/157 5 [5,2, -3, -3] 12a59 25/111 4 [4,-2,4, 3]
12a500 36/133 4 [4,3,—4, 3] 12a50; 48/113 4 [2,-3,—6,—3]
12a590 73/173 5 [2,-3,-3,3,3] 12a508 67/183 5 [3,4,4,2, 2]
12a530, 33/125 4 [4,5,3,-2] 12a533 31/137 5 [4,-2,3,2,-2]
12a534 44/163 5 [4,3,—-3,-2,2] 12a535 47/175 5 [4,3 -3, -3]
12a536 29/137 4 [5,4,3,3] 12a537 50/179 5 [4,2,—3, -3, —3]
12a533 13/83 4 [6,-2,2,3] 12a539 44/145 5 [3, -3,3,2,-2]
12a540 49/165 5 [3,-3,-3,2,3] 12a541 41/153 4 [4,4,4,3]

12a545 63/143 5 [2,—4,-3,2, —2] 12a5490 26/111 4 [4,—4,-3,2]

21



knot  p/q v continued fraction knot  p/q v continued fraction
12a550 34/149 5 [4,-2,2,3,3] 12a55; 18/103 4 [6,3,—2, —3]
12a55, 30/131 4 [4,-3,—4, 3] 12a579 49/177 5 [4,2,—2,—4, —3]
12a580 11/69 3 [6,—4,—3] 12a581 36/119 4 [3,-3,4,3]
12a580 39/131 4 [3,-3,—5,—3] 12a583 45/161 5 [4,2,—3,-3,2]
12a584 31/143 5 [5,2,—2,-3,2] 12a585 50/181 5 [4,3,3,3, —2]
12a595 30/139 4 [5,3,4,3] 12a596 14/81 3 [6,5,3]

12a597 26/123 4 [5,4,3, 2] 12ag00 25/109 4 [4,-3,—4,2]
12ag0; 34/127 4 [4,4,5,2] 12ag43 23/99 4 [4,-3,3,-2]
12ag44 30/113 4 [4,4,-3,2] 12ag49 27/127 4 [5,3,-3, 3]
12ag50 46/165 5 [4,2,—2,3,3] 12a¢51 17/97 4 [6,3,-2,2]
12ag50 46/155 5 [3,-3,—-3,2,—2]  12ags2 29/107 4 [4,3,—4,2]
12ag84 41/135 5 [3,-3,2,-2,2] 12ag90 20/89 4 [4,-2,5,2]
12ag9; 12/77 4 [6,-2,3,2] 12a713 39/139 5 [4,2,-3,2,—-2]
12a714 19/107 4 [6,3,3, 2] 12a715 50/169 5 [3,-3,—3,-3,2]
12a716  5/43 3 19,2,-2] 12a717 28/89 4 [3,—6,—2,2]
12an13  41/141 5 [3,-2,4,2,-2] 12a790 21/113 4 [5,—3,-3,—3]
12a791 50/171 5 [3,-2,3,3, 3] 12a790  3/29 2 [10,3]

12a703 20/63 3 [3,-7,—3] 12a704 31/107 4 [3,-2,5,3]
12a796 19/103 4 [5,-2,3, 3] 12a797 46/157 5 [3,-2,2, -3, —3]
12a798 29/133 5 [5,2,—2,2,—2] 12a799 46/167 5 [4,3,3,-2,2]
12a731 22/105 4 [5,4,-2,2] 12a730 18/95 4 [5,-3,2,3]
12a733 14/73 3 [5,—5,—3] 12a736  43/141 5 [3,-3,2,3,-2]
12a733 37/119 4 [3,-5,—-3,—3] 12a740 35/113 4 [3,—4,3,3]
12a743 12/79 4 [7,2,-2,2] 12a744 8/61 3 [8,3,3]

12a745 8/59 3 [7,-3,-3] 12a758 31/113 4 [4,3,5, 2]
12a759 9/61 3 [7,4,-2] 12a760 34/111 4 [3,—4,—4,2]
12a761 41/139 5 [3,-2,2,4,—2] 12a760  7/51 3 [7,-3,2]

12a763 30/97 4 [3,—4,3, 2] 12a764 39/133 5 [3,-2,2,-3,2]
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knot p/q v continued fraction knot p/q v continued fraction
12a773  20/91 4 [4,-2,-5,2] 12a774  16/89 4 [5,—2,—4,2]
12a775  16/87 4 [5,—2,3,-2] 12a79;  13/63 3 [5,6,—2]
12a790  24/85 4 [4,2,-5, 2] 12a796  11/57 3 [5,—5,2]
12a797  24/83 4 [3,— —2] 12ag02  15/47 3 [3,-7,2]
12ag03  2/21 2 [11, ] 12a1095 29/127 4 [4,-3, -3, —4]
12a1004 40/149 4 [4,4,3,4] 12a1029 19/81 3 [4,—4,— ]
12a1030 19/91 3 [5,5,4] 12a1033 25/107 4 [4,-3,2,4]
12a1034 32/121 4 [4,5,2, 3] 12a1039 37/137 4 [4,3,-3,—4]
12a1040 26/115 4 [4,-2,3,4] 12a1195 23/101 4 [4,-2,2,5]
12a119¢ 26/119 4 [5,2,—3,—4] 12a1197  22/97 4 [5,2,3,—4]
12a1128  9/59 3 [7,2,—4] 12a1129  23/105 4 [4,—2,—4,3]
12a1130 27/125 4 [5,3,3,—3] 12a133, 11/73 3 [7,3,4]
12a1132  40/131 4 [3,—4, -3, —4] 12a1133 47/159 5 [3,—2,2,3,4]
12a1134  7/53 3 [8,2,-3] 12a1135 32/103 4 [3,—4,2,4]
12a113¢  43/147 5 [3,-2,3,2, 3| 12a113s 14/79 3 [6,3,5]
12a1139 18/101 4 [6,3,2, —3] 12a1140 18/97 4 [5,—2,2,4]
12a1145 15/79 3 [5,—4, —4] 12a1146  34/117 4 [3,—-2,4,4]
12a114s  23/73 3 [3,—6, —4] 12a1149 4/35 2 [9,4]
12a1157  5/39 2 [8,5] 12a1155 16/77 3 [5,5,—3]
12a1159 24/113 4 [5,3,-2,3] 12a1167 14/75 3 [5,—3, 5]
12a1162  13/69 3 [5,—3,4] 12a1163 24/103 4 [4,-3,2,-3]
12a1165 16/67 3 [4,-5,3] 12a1166 4/33 3 [8,—4]
12a1973 11/61 3 [6,2, 5] 12a1974 17/95 4 [6,2,—2,3]
12a1975 44/149 5 [3,-3,-2,2,-3]  12a1976 13/75 3 [6,4,—3]
12a1977 37/121 4 [3,—4,-3,3] 12a197s  6/41 2 [7,6]

12a1979¢ 10/67 3 [7,3,-3] 12a198; 33/109 4 [3,-3,3,-3]
12a1080  10/63 3 [6,—3,3] 12a1087 6/37 3 [6,—6]"
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