- 1 Phylogeography of an Australian termite, Amitermes laurensis (Isoptera, Termitidae),
- 2 with special reference to the variety of mound shapes.
- 3

4 Authors

- 5 Masato Ozeki¹, Yuji Isagi², Hiromi Tsubota³, Peter Jacklyn⁴ and David M.J.S. Bowman⁵
- 6 ¹ Graduate School for International Development and Cooperation, Hiroshima University,
- 7 Kagamiyama 1-5-1, Higashi-Hiroshima 739-8529, Japan.
- 8 ² Graduate School of Integrated Arts and Sciences, Hiroshima University, Kagamiyama
- 9 1-7-1, Higashi-Hiroshima 739-8521, Japan.
- ³ Miyajima Natural Botanical Garden, Graduate School of Science, Hiroshima University,
- 11 Mitsumaruko-yama 1156-2, Miyajima-cho, Hatsukaichi 739-0543, Japan.
- ⁴ Tropical Savannas CRC Charles Darwin University, Darwin Northern Territory 0909,
 ¹² ¹³ ¹⁴ ¹⁵ ¹⁵
- 13 Australia.
- 14 ⁵ School for Environmental Research Charles Darwin University, Darwin, Northern
- 15 Territory 0909, Australia.
- 16

17 Corresponding author

- 18 Yuji Isagi
- 19 Graduate School of Integrated Arts and Sciences, Hiroshima University, Kagamiyama
- 20 1-7-1, Higashi-Hiroshima 739-8521, Japan.
- 21 Tel: +81 82 424 6508, Fax: +81 82 424 0758
- 22 E-mail: isagiy@hiroshima-u.ac.jp

1 Abstract

2 In northern Australia, the debris-feeding termite Amitermes laurensis builds tall, 3 wedge-shaped mounds in the northern part of Cape York Peninsula and Arnhem Land, 4 where their habitats are seasonally flooded, and small dome shaped mounds in the 5 southeastern part of Cape York Peninsula, where their habitats are well-drained. 6 Phylogeographic analyses were conducted in 238 individuals from 30 populations using 7 the mitochondrial cytochrome oxidase II (COII) gene. DNA sequences of 50 haplotypes 8 were used to construct NJ, MP and ML trees. Phylogenetic trees for 16 Amitermes species 9 showed monophyly of A. laurensis, and that the variation of A. laurensis mounds did not 10 strongly correspond to the intraspecific phylogeny. It was observed that mounds with the 11 same shape were constructed by phylogenetically different groups under similar 12 environmental conditions, and different mounds shapes were built by phylogenetically 13 closely related groups under the different environmental conditions. Thus, 14 phylogenetically close groups of A. laurensis, in different habitats, may adapt to 15 environmental conditions by constructing different mound shapes. We also investigated 16 the phylogeographic structure of A. laurensis. The significant positive correlation between 17 genetic and geographical distances indicated isolation by distance, reflecting restricted 18 dispersal ability of alates. Although the overall genetic structure of A. laurensis showed 19 isolation by distance, we also identified two exceptions: (i) secondary contacts of 20 genetically divergent lineages in southern Cape York Peninsula, and (ii) low genetic 21 differences between geographically separated populations of Cape York Peninsula and 22 Arnhem Land. Therefore, the phylogeography of A. laurensis may reflect continuous gene 23 flow restricted to short distances and past changes of gene flow associated with the 24 fluctuation of environmental conditions accompanying the changing sea levels in the 25 Quaternary.

2 Key words: Amitermes laurensis, COII, intraspecific phylogeny, mound shape, termite

1 **1. Introduction**

2 The considerable structural diversity of termite nests is associated with 3 differences of social evolution, colony size and feeding habits, as well as the 4 establishment of a microclimate suitable for termites (Abe and Higashi, 2001). In northern 5 Australia, termite mounds are a characteristic feature of the tropical savanna biome. In 6 this region, several species of termites construct mounds of various shapes and size, from 7 small cones to large cathedrals, sometimes reaching 5m in height including the 8 remarkable north-south aligned wedge-shaped mounds built by species in the genus 9 Amitermes (Andersen and Jacklyn, 1993).

10 Termites of genus Amitermes, most species of which feed on grass or vegetable 11 debris, are found all over the continent, but are particularly abundant in northern and 12 western Australia. They are the largest Australian genus with 58 described species. Six 13 Amitermes species are known to build mounds, while most have either unknown nesting 14 habits or have subterranean colonies (Smith et al., 1998). One of the most interesting and 15 well known of these mounds is the tall wedge-shaped mound, with an elongated axis that 16 has a striking north-south orientation (referred to hereafter as meridional mounds). The 17 meridional termite mounds in seasonally flooded habitats in northern Australia are 18 constructed by two species; A. laurensis and A. meridionalis (the latter species constructs 19 only meridional mounds while the former builds more variables mound types). 20 Observational (Spain et al., 1983; Jacklyn, 1991; Korb, 2003) and experimental (Grigg, 21 1973; Jacklyn, 1992; Jacklyn and Munro, 2002) approaches have been used to study the 22 meridional mounds, mainly to investigate the adaptive values of this unique mound shape.

A. *laurensis* is widespread in Cape York Peninsula and Arnhem Land, two separated regions in northern Australia, while *A. meridionalis* is restricted to areas south and west of Darwin in the Northern Territory (Watson and Abbey, 1993; Fig. 1). *A. laurensis* constructs meridional mounds on Cape York Peninsula and Arnhem Land in

1 habitats that are flooded during the austral summer rainy season (known as the 'wet 2 season'). This species is known to construct a diversity of meridional mound types 3 differing in size, degree of elongation and number of buttresses and it also builds smaller 4 dome shaped mounds in the southeastern part of Cape York Peninsula, where the habitats 5 are well-drained (Fig. 2; Spain, 1983; Jacklyn, 1991; Korb, 2003; Fig. 2). Such large 6 variation of mound shape within one species is remarkable. Thus, it is sometimes doubted 7 whether A. laurensis is a single species that constructs different mounds or a complex of 8 species responsible for the differences in mound shapes (Jacklyn, 1991). Moreover, the 9 relationship between the intraspecific phylogeography and the different mound shapes is 10 interesting from an evolutionary perspective. It is unclear if differences in mound shapes 11 correspond to the intraspecific phylogeny and/or can vary depending on other factors such 12 as environmental conditions.

Termites expand their distribution by dispersal flights of winged reproductives known as alates. In general, alates have poor dispersal ability. Thus, gene flow of termites occurs mainly between nearby locations, and a pattern of genetic isolation with increasing distance is expected. Until now, only a few studies have been conducted to assess the genetic structure of termites, and they demonstrated the genetic isolation by distance over macrogeographic scale (Thompson and Hebert, 1998; Goodisman and Crozier, 2002).

19 Paleogeographical studies have showed large changes in land-sea distributions 20 associated with the wide continental shelf in northern Australia (e.g. Voris, 2000). For 21 example, such eustasy has seen the transformation of a freshwater lake in the late 22 Pleistocene, the so called 'Lake Carpentaria', to the current shallow sea that forms the 23 Gulf of Carpentaria (Smart, 1977; Torgersen et al., 1983; Torgersen et al., 1985; Jones 24 and Torgersen, 1988). There is emerging evidence that such marked changes to coastlines 25 and river drainages must have significantly impacted the distribution of organisms in 26 northern Australia throughout the Quaternary glacial cycles. For example,

1 phylogeographical studies have highlighted the significant effect of historical 2 environmental fluctuations on fresh water taxa (McGuigan et al., 2000; Bruyn et al., 2004). 3 Over the longer time scale of the Quaternary it has been suggested that the biogeographic 4 barrier of Gulf of Carpentalia may have driven the speciation of three Australian grass 5 finches, Poephilia (Jennings and Edwards, 2005). The wide and separated distribution of 6 A. laurensis renders it an excellent object for a phylogeographic study that may shed light 7 on the effect of historical environmental changes on northern Australian terrestrial taxa 8 with poor dispersal ability.

9 In this study, we investigated the phylogeography of *A. laurensis* from northern 10 Australia (1) to determine if *A. laurensis* is really a single species despite constructing 11 different mound types, (2) to look at the intraspecific mound shape polymorphism in a 12 phylogenetic context, (3) to examine whether or not the genetic structure of *A. laurensis* 13 shows genetic patterns of isolation by increasing distance, and (4) to evaluate the 14 inference of historical environmental fluctuations on terrestrial organisms in northern 15 Australia.

16

17 **2. Materials and methods**

18 2. 1. Insect material

19 Samples were collected from 30 sites covering the range of A. laurensis (Fig. 1) 20 from 2002 to 2004. A total of 238 individuals of A. laurensis were used for analyses 21 (Table 1). Samples of A. meridionalis and A. vitiosus, closely related species to A. 22 laurensis, were also collected to be used as outgroups. In order to analyze the 23 monophyletic nature of A. laurensis, 17 samples of another 15 Amitermes species (A. 24 accinctus, A. arcuatus, A. borevs, A. darwini, A. germanus, A. gracilis, A. inops, A. 25 meridionalis, A. obtusidaris, A. pavidus, A. peramatus, A. procervs, A. scopulus, A. 26 vitiosus, A. westraliensis) were obtained from The Australian National Insect Collection 1 (ANIC). All samples acquired were placed directly into absolute ethanol and stored at 2 4 °C until DNA extraction.

3

4

5

2.2. Mound Type Classification

We classified three mound types according to their volume, degree of meridional 6 elongation and amount of buttressing and sculpturing.

7 Strongly meridional mounds (examples 1-4 in Fig. 2, and A-1 and A-2 in Fig. 3) 8 These mounds have a high degree of meridional elongation i.e. the north-south length of 9 the base of the mound exceeds the east-west width by at least a factor of three. Large 10 mounds may have volumes exceeding $1 m^3$ and resemble tomb-stones. East-west 11 buttresses can be found on these mounds but they are almost always a small fraction of the 12 length of the north-south axis. These mounds are characterized by finely sculptured 13 features with buttresses and turrets that can taper to widths of a few millimeters.

14 Roughly meridional mounds (examples 5-8 in Fig. 2, and B-1 and B-2 in Fig. 3) 15 These mounds are meridionally elongated but to a lesser degree: i.e. the north-south 16 length of the base of the mound exceeds the east-west width only slightly - often by less 17 than a factor of two. Sometimes there are many buttress oriented both north-south and 18 east-west and these buttresses may rival the main axis of the mound in size. Sometimes 19 the buttresses appear to have become separated and resemble a cluster of columns. 20 Roughly meridional mounds may resemble tall pyramids (example 5 in Fig. 2 and B-1 in 21 Fig. 3), wedges or clusters of columns. These mounds can attain a large size and may 22 exceed 1 or 2m³ in volume. These mounds are also characterized by finely sculptured 23 features with buttresses and turrets that can taper to widths of a few millimeters.

24 Small dome mounds (examples 9-11 in Fig. 2 and C in Fig. 3) These mounds 25 grows to around 0.5m high and resemble irregular domes with no consistent orientation. 26 These mounds can overlap with very small examples of the meridional mound types in elongation and volume (a large dome mound may occassionaly be slightly meridionally
 elongated) however these mounds are quite distinct in other characters: they do not feature
 buttresses and the sculpturing is coarse - their surfaces are smooth undulations and are
 never drawn out into thin features.

- 5
- 6

2. 2. DNA extraction, PCR and direct sequencing

7 DNA was extracted from the termite head using standard SDS/proteinase K 8 protocol and phenol chloroform extractions (e.g., Sambrook and Russell, 2001). The 9 primers A-tLEU, 5'-ATG GCA GAT TAG TGC AAT GG-3' (forward); and B-tLYS, 10 5'-GTT TAA GAG ACC AGT ACT TG-3' (reverse) (Liu and Beckenbach, 1992) were 11 used to amplify the cytochrome oxidase II (COII) gene fragments. PCR was performed in 12 a thermal cycler (GeneAmp PCR System 2700, Applied Biosystems, Foster City, CA, 13 USA) under the following conditions: initial denaturation at 95 °C for 1 min; followed by 14 35 cycles of denaturation at 94 °C for 1 min, annealing at 50 °C for 1 min, and extension 15 at 70 °C for 2 min; and final extension at 70 °C for 7 min. The reaction was performed in 16 a 30 μ l final volume of the following solutions: 20.35 μ l of distilled water, 0.75 U of 17 TaKaRa Ex Taq (Takara Shuzo Co., Otsu, Japan), 3 µl of $10 \times Ex$ Taq buffer (Mg₂⁺ free), 18 2.4 µl of MgCl₂ (25 mM), 3.0 µl of dNTP Mixture (2.5 mM each), 0.3 µl of each primer 19 (50 pM), and 0.5 μ l of template DNA.

The PCR products were purified with a High Pure PCR Product Purification Kit (Roche Applied Science, Nonnenwald Penzberg, Germany). Purified products were used as templates for sequencing. Sequencing reactions were performed with ABI BigDyeTM Terminators Cycle Sequencing Kit version 3.1 (Applied Biosystems, Foster City, CA, USA) and a GeneAmp 2700 thermal cycler. Electrophoresis and data collection were performed using an ABI PRISM3100 Genetic Analyzer (Applied Biosystems, Foster City, CA, USA) following the manufacturer's protocol. Both strands of the amplified PCR 1 product were sequenced.

- 2
- 3

2.3. Sequence alignment and phylogeographic analyses

4 Sequencher 3.1.1 software (Gene Codes Corp., Ann Arbor, MI, USA) was used
5 to edit individual electropherograms. Nucleotide diversity, π (Nei, 1987), overall and
6 within individual populations, was calculated using DNASP 4.10. (Rozas et al., 2003).
7 There were no indels among the DNA sequences and consensus sequences were aligned
8 manually.

9 Based on the DNA sequences, intraspecific phylogenetic analyses were 10 performed using maximum likelihood (ML) criteria (Felsenstein, 1981) following the 11 methods of Tsubota et al. (2004). Prior to phylogenetic reconstruction, MrModeltest 2.2 12 (Nylander, 2004) was implemented in hierarchical likelihood ratio tests and the Akaike 13 information criterion (AIC; Akaike, 1974) to make a rational decision regarding the 14 nucleotide-based substitution model that best fitted our data, and the best model was used 15 for some adaptable analyses and AU test in the final stage of the analysis scheme. 16 Phylogenetic trees were constructed using the following six program packages to obtain 17 the candidate topologies: (1) MEGA 3.1 (Kumar et al., 2004) with neighbor-joining (NJ) 18 method (Saitou and Nei, 1987) using TN93 model (Tamura and Nei, 1993) with a gamma 19 distribution for rates among sites; (2) PAUP*4b10 (Swofford, 2002) with maximum 20 parsimony (MP) method (Fitch, 1971) using a heuristic search of 1,000 random addition 21 analyses with tree bisection-reconnection (TBR) branch-swapping under the assumption 22 of weighting transversions at 2; (3) PAUPRat (Sikes and Lews, 2001) over PAUP* with 23 MP method to implement Parsimony Ratchet searches (Nixon, 1999) using the Parsimony 24 Ratchet search strategy with random weighting of each characters in thirty 200 iteration 25 runs; (4) MOLPHY 2.3b3 (Adachi and Hasegawa, 1996) with the maximum-likelihood 26 (ML) method (Felsenstein, 1981) using HKY85 model (Hasegawa et al., 1985) and TN93

1 model; (5) PHYML 2.4.4 (Guindon and Gascuel, 2003) with ML method using GTR 2 (REV; Lanave et al. 1984; Tavaré, 1986; Rodriguez et al. 1990) + proportion invariant + 3 gamma (GTR + I + G) model; and (6) MrBayes 3 (Ronquist and Huelsenbeck, 2003) with 4 Bayesian inference (BI) method using GTR + I + G model with 10,000,000 generations. 5 Based on the ML criteria, a likelihood value was re-calculated for each topology obtained 6 by NJ, MP, ML and BI methods using the program packages PAML 3.15 (Yang, 1997; 7 updated March, 2006) with GTR + G model and CONSEL 0.1i (Shimodaira and 8 Hasegawa, 2001; updated Sept. 26, 2005). This involved the calculation of p-values of 9 confidence for candidate topologies with the approximately unbiased (AU) test 10 (Shimodaira, 2002) using the multiscale bootstrap technique to assess the significance of 11 the difference between the likelihood values of the best and the other topologies. A 50% 12 majority-rule condensed tree for the topologies with high ranking log-likelihood values 13 that passed the AU test was also computed by PHYLIP 3.65 (Felsenstein, 1989, 2005). 14 Supporting values (calculated probabilities or the consensus of the resulting topologies) 15 more than 50% were overlaid to assess the robustness of each branch of the condensed 16 topology: local bootstrap probabilities (LBP; Adachi and Hasegawa, 1996) using ML 17 method by MOLPHY with HKY85 model, classical bootstrap probabilities (BP; Efron, 18 1979; Felsenstein, 1985) based on 10,000 replications using NJ method by MEGA, 19 Bayesian posterior probabilities by MrBayes (PPB) and CONSEL (PPC), and the values 20 of percentage of supported topologies with high ranking log-likelihood values that passed 21 the AU test (AU) at 0.05 significance level are shown on or near each branch 22 (LBP/BP/PPB/PPC/AU; in %). Local bootstrap probability is a relative bootstrap 23 frequency obtained from a topology search by local rearrangements of MOLPHY. The 24 value is comparable with that of Felsenstein's (1985) bootstrap probability, and is a little 25 larger than the classical bootstrap probability.

26

To infer the genetic structure of A. laurensis, pairwise comparison between

1 genetic and geographical distances was conducted. When multiple samples with an 2 identical haplotype were found at one site, one representative sample was chosen. On the 3 other hand, when samples that had an identical haplotype were found in different sites, 4 each sample was used. The genetic distance between individuals was estimated following 5 the Kimura's 2-parameter model (Kimura, 1980) with MEGA. The geographical distance 6 was calculated from latitudes and longitudes of sampling sites. The significance of 7 correlation between genetic and geographical distances was assigned by the Mantel test 8 (Mantel, 1967) with 5,000 permutations, calculated using R-package (Casgrain and 9 Legendre, 2000).

10

11 **3. Results**

12 3. 1. Mound variations

13 The strongly meridional and roughly meridional mound types shared many 14 characteristics and both types were always found in seasonally waterlogged habitats. They 15 may represent examples from a continuum of mound types found in these habitats. There 16 was a sharp dichotomy, however, between the characteristics of the meridional mound 17 types and those of the small dome type mounds which were always found in well-drained 18 habitats (Fig. 3). Meridional mounds were found from northern part of seasonally flooded 19 habitats and small dome shaped mounds were restricted to southeastern part of 20 well-drained habitats (Fig. 1).

- 21
- 22

3. 2. DNA sequence variations

PCR amplification yielded a fragment of 662 base pairs of COII gene with no insertions and deletions from 238 individuals (excluding outgroups) of *A. laurensis* collected from 30 sites (Table 1 and Fig. 1). The nucleotide composition was A/T rich (A = 38.5%, T = 26.5, C = 21.4\%, G = 13.6%). There were 75 nucleotide sites observed to

1 vary, 52 of which were parsimony informative, of which 7 (13.5%) and 45 (86.5%) were 2 found at the first and third codon positions, respectively. The overall estimate of 3 nucleotide diversity, π , was 0.0185 with a standard error (SE) of 0.0007. From these 4 sequences, 50 unique haplotypes were obtained, of which 40 haplotypes were unique to 5 one site, while 10 other were shared among several sites. In each site, from 1 to 4 6 haplolypes were found, and the nucleotide diversity (π) within each population ranged 7 from 0 to 0.0161 (Table1). All sequences of A. laurensis were deposited in the DDBJ 8 database under Accession nos. AB240384 - AB240435.

- 9
- 10

3. 3. Phylogeographical analyses

11 The results of both methods by MrModeltest indicated the GTR + I + G 12 substitution model as the best fitted model for the dataset. A total of 181 distinct 13 topologies were obtained in the NJ, MP, ML and BI analyses, of which 164 topologies 14 passed the AU test: Fig. 4 shows the consensus tree of these 164 topologies. All the 15 analyses, and all the supporting values (LBP/BP/PPB/PPC/AU) supported the monophyly 16 of all the haplotypes of *A. laurensis* (supporting values = 99 – 100; Fig. 4). The 17 intraspecific phylogeny of *A. laurensis* produced six robust clades (clades A - F; Fig. 4).

18 The structure of intraspecific trees did not strongly correspond to the variations 19 in mound shapes. For example, clades B and D contained both meridional and small dome 20 type mounds (Fig. 4). In addition, identical haplotypes were sometimes shared among 21 several populations that built different mound types; haplotypes A-9, A-12, A-13 and E-1 22 were shared among populations constructing strongly meridional mounds and those 23 constructing roughly meridional mounds (Table 1). However, it is possible that there is 24 some genetic differentiation between meridional and dome mounds types because clades 25 D and F were dominated by small dome mound builders and no small dome mound 26 builders were found in clades A, C and E (Fig. 4).

1 Fig. 5 shows the geographical distribution of the six clades and the frequency of 2 haplotypes in each sampling site. The haplotypes of clade A were collected from the 3 northern to central part of Cape York Peninsula, clade B from central Cape York 4 Peninsula to the east coast, clades D and F from the southern part of Cape York 5 Peninsula, and clade E was restricted to the northern part of Arnhem Land. Thus, the 6 basic structure of the cladogram demonstrates geographical clustering. However, in 7 southern Cape York Peninsula, the distributions of several clades overlapped, and 8 haplotypes belonging to two different clades were found in one sampling site; Dunbar 9 (DU) and Dorunda (DO-2) had haplotypes belonging to clades C and D, and Maitland 10 Downs (MD) had haplotypes of clades B and D (Fig. 5).

A. *laurensis* is distributed in two geographically separated regions of Cape York Peninsula and Arnhem Land, but this species is known to be absent between these two regions (Watson and Abbey, 1993; personal observations) probably due to the drier climate and associated distinctive vegetation (Fox et al. 2001). Haplotypes belonging to clade C were found in southern Cape York Peninsula and Arnhem Land, although in each region there was geographical clustering amongst these clades: C-1 to C-6 in southern Cape York Peninsula and C-7 to C-14 in Arnhem Land (Figs. 4 and 5).

18

19 3. 4. Correlation between genetic and geographical distances

A pairwise comparison of genetic and geographical distances was conducted using 67 samples of *A. laurensis* that were selected to capture differences amongst mtDNA haplotypes and sampling locations. The scatter diagram of geographical distance against genetic difference of Kimura's 2-parameter distance is shown in Fig. 6. There was a significant correlation between geographical distance and genetic distance (Mantel test, r = 0.340, P < 0.05, Fig. 6). Thus, the hypothesis of genetic isolation by distance in *A. laurensis* is supported. 1

2 **4. Discussion**

3 4.1. Phylogeography and mound shape

The phylogenetic analyses showed monophyly in *A. laurensis* (Fig. 4) among 16 *Amitermes* species, suggesting that *A. laurensis* is a single species that constructs different shaped mounds. In the intraspecific phylogenies of *A. laurensis*, we identified 6 distinct clades (Fig. 4). The variation of mound shape in *A. laurensis* did not strongly correspond to the structure of clades.

9 In three sampling lacations (Maitland Downs (MD), Dunbar (DU) and Dorunda 10 (DO-2)), haplotypes belonging to two different clades were found to occur at the same 11 sampling site (Fig. 5) yet all the mounds had the same shape: small dome mounds were 12 constructed at MD and roughly meridional mounds were constructed at DU and DO-2 13 (Table 1). These results demonstrate that under the same environmental conditions 14 phylogenetically different groups can construct the same shaped mounds. In addition, four 15 identical haplotypes (A-9, A-12, A-13, E-1) were found in populations that produced 16 strongly meridional mounds (Low Lake, Sandy Creek and Tomkinson River-1) and 17 roughly meridional mounds (Nifold Plain, Orange Plains and Tomkinson River-2) (Table 18 1). These results suggest that phylogenetically close groups can construct different shaped 19 mounds under different environmental conditions.

A. *laurensis* is known to build meridional mounds in seasonally flooded habitats, and small dome mounds in well-drained habitats (Spain, 1983; Jacklyn, 1991, 1992; Korb, 2003). It seems one likely explanation of the meridional orientation is the maintenance of mound temperature. Termite mounds are affected by fluctuation of daily temperatures in the dry season, particularly because flooded habitats are low lying landscape features they pond cold air at night during the cool dry season (Jacklyn, 1992; Korb, 2003). Theoretical modeling of solar irradiance and measurement of mound temperatures has demonstrated

1 the thermo-stability of the eastern face of mounds (Jacklyn, 1992). Consistent with this 2 finding is the observation that termites aggregate on the eastern face in the morning, when 3 ambient temperature is low, during the dry season (Korb, 2003). In contrast, in 4 non-flooded habitats many termites avoid thermal stress by moving to subterranean 5 chambers (Bouillon, 1970; Noirot, 1970). Korb (2003) has also suggested that the 6 elongated shape of *Amitermes* mounds might be an adaptation to flooding during the rainy 7 season and proposed the following hypotheses: elongated mounds with a high ratio of 8 surface to volume, and thin walls create a stable microclimate, by ensuring the rapid 9 drying mounds following soaking rains and thereby, facilitating gas exchange by 10 increasing the porosity of the walls. Thus, the observed variation, of mound shape (that is 11 not phylogenetically constrained) in A. laurensis is probably determined by environmental 12 conditions, in particular to whether the habitat is seasonally-flooded or well-drained.

13 The restricted distribution of small dome mounds to south-eastern part of the 14 Cape York Peninsula (Fig. 1) and geographical clustering of each clade (Fig. 5) make it 15 difficult to deduce the capacity of each clade to build the three types of mounds. The 16 inclusion of some meridional mound builders to clades B, D and F that includes all the 17 dome mound builders (Fig. 4) suggests that each clade, including clades A, C, E, has the 18 capacity to build the three types of mounds. A single population made up of a single 19 haplotype may be able to build both strongly meridional and roughly meridional mounds 20 given that identical haplotypes were found in populations that build both types of mounds. 21 However, it remains uncertain whether colonies that build dome type mounds can build 22 meridional mounds in direct response to changing environmental cues and vice versa or 23 whether this can only occur through natural selection. The evidence for the latter view is 24 the failure to observe populations of the same haplotypes colonizing both waterlogged and 25 well-drained habitats by building both dome mounds and meridional mounds in areas 26 (such as Gamboola) where both mound types and habitats occur (see Table 1).

1

2 4. 2. Phylogeography

3 Assuming a stepping-stone model of population structure where dispersal is 4 limited by distance (Kimura and Weiss, 1964), a positive correlation between genetic and 5 geographical distances suggests that a population has existed for sufficient time to 6 establish equilibrium of genetic drift and gene flow (Hutchison and Templeton, 1999). 7 The dispersal of termites depends on the flight ability of the winged reproductives. 8 Previous studies have reported their poor dispersal ability. In general, alates are especially 9 suited to dispersal in calm air near the ground, and dispersal distances are limited to a few 10 kilometers (Garcia et al., 2002). A few studies have investigated the macrogeographic 11 patterns of the genetic structure of termite populations using DNA markers, and 12 demonstrated positive correlations between genetic and geographical distances 13 (Thompson and Hebert, 1998; Goodisman and Crozier, 2002). The poor dispersal ability 14 of alates and the small fractions of alates that go on to found new colonies were thought to 15 account for these genetic structures. Our demonstration of a positive correlation between 16 genetic and geographical distances (Fig. 6), and geographical clustering of phylogenetic 17 clades (Fig. 5) support the idea of isolation by distance (IBD).

18 However, two patterns of clade distribution cannot be explained by the IBD 19 model with equilibrium conditions under restricted gene flow due to poor alate dispersal. 20 (1) The wide and divided distribution of clade C. Although there is a biogeographic 21 barrier for A. laurensis in the southern Gulf of Carpentaria due to soil dryness, haplotypes 22 belonging to clade C were found in the geographically separated regions of southern Cape 23 York Peninsula and Arnhem Land (Fig. 5). It is implausible that these patterns have arisen 24 due to the migration of alates between southern Cape York Peninsula and Arnhem Land 25 (more than 500 km). Thus, the distribution of clade C is best explained as being due to 26 historical processes rather than as a consequence of contemporary gene flows under the 1 current environmental conditions. (2) Three sampling sites (Maitland Downs (MD), 2 Dunbar (DU) and Dorunda (DO-2)) at the base of Cape York showed high nucleotide 3 diversity (π) within populations (0.98 - 1.6%; Table 1) where one population had 4 haplotypes belonging to two genetically different clades (Fig. 5). These results also seem 5 to demonstrate the secondary contacts of genetically divergent lineages in the past.

6 Previous paleogeographical studies have documented that the northern part of 7 Australia, particularly around the Gulf of Carpentaria, underwent large eustasy in the last 8 glacial cycle, and therefore this probably occurred throughout the Quaternary (Smart, 9 1977; Torgersen et al., 1983; Torgersen et al., 1985; Jones and Torgersen, 1988). These 10 environmental fluctuations undoubtedly had a major impact on the gene flow and 11 historical distributions of the organisms distributed over northern Australia and the pattern 12 of gene flow between populations. During the Quaternary, the sea level of the Gulf 13 Carpentaria fell to form a freshwater lake (Smart, 1977; Torgersen et al., 1983; Torgersen 14 et al., 1985; Jones and Torgersen, 1988). Intraspecific phylogeographical studies have 15 demonstrated that this environmental fluctuation changed the direction and amount of 16 gene flow of the taxa distributed in this region. A phylogeographic study of freshwater 17 fish Melanotaenia collected from Australia and New Guinea was performed based on 18 mtDNA sequences (McGuigan et al., 2000). They showed that fish from southern New 19 Guinea and northern Australia form monophyletic clades. Bruyn et al. (2004) investigated 20 the intraspecific phylogeography of giant freshwater prawns (Macrobrachium 21 rosenbergii) collected from northern Australia, New Guinea and Irian Jaya. In that study, 22 specimens collected from Australian rivers that discharge into the Gulf of Carpentaria 23 formed a monophyletic clade. These results suggested that the fresh to brackish water of 24 Lake Carpentaria, formed approximately 80000 - 8500 years ago, provided a habitat for 25 fresh water taxa, and acted as a conduit for gene flow.

26

The exposure of the continental shelf with falling sea levels could have changed

1 the environmental conditions of the terrestrial area, and also changed the historical 2 distribution of terrestrial taxa. Formation of the lake Carpentaria as a result of marine 3 regression would have provided continuous moist habitats for A. laurensis between 4 Arnhem land and Cape York Peninsula. The remarkable distribution of clade C suggests 5 significant changes in the amount and direction of gene flow between populations of A. 6 laurensis around the Gulf of Carpentaria/Lake Carpentaria accompanied the changing 7 coastlines. However, it must be admitted that the palaeo-ecology of the habitats that 8 surrounded Lake Carpentaria is unknown.

9 Our work provides an initial framework for the phylogeography of terrestrial 10 taxa in northern Australia. It is to be expected that the opening and closing of the Gulf of 11 Carpentaria biogeographic barrier had a profound effect on the historical distribution and 12 gene flow of both terrestrial taxa and aquatic taxa (McGuigan et al., 2000; Bruyn et al., 13 2004). Elsewhere comparative phylogeographic approaches using multiple genetic 14 markers and several taxa have provided a vital framework for investigating historical 15 geographic events in biogeography (e.g., Bernatchez and Wilson, 1998; Schneider et al., 16 1998). Subsequent phylogeographic analyses of A. laurensis using other genetic markers 17 (e.g., sequence data of other mitochondrial genes and nuclear genes, AFLP data) and other 18 widespread taxa are needed to more fully understand the historical biogeography of 19 northern Australia.

20

21 **5.** Conclusion

To return to our original questions, we conclude that *Amitermes laurensis* is a species that constructs a range of differently shaped mounds. Mound shape was not closely coupled to intraspecific phylogeny but was consistently related to local environmental conditions showing the remarkable capacity of these termites to modify their mound types to suit these conditions. The mechanism by which this is achieved is

unclear. A. laurensis shows genetic patterns of isolation by increasing distance but the spatial pattern of the distribution of mound types suggests that populations have had time to make secondary contact after genetic differentiation. The phylogeography of *Amitermes laurensis* also indicates that its distribution has been affected by eustacy during the Quaternary and therefore *Amitermes laurensis* phylogeography provides insights into the historical biogeography of northern Australia, particularly the opening and closing of the Gulf of Carpentaria biogeographic barrier.

8

9 Acknowledgements

We thank T. Kondo, B. Murphy and K. Shigeta for assistance during field investigations and sampling, Dr Theo Evans for providing samples of *Amitermes* species held by The Australian National Insect Collection (ANIC). We are most grateful to J. Mabuhay and S. Kaneko for constructive comments on earlier drafts of this manuscript. This study was funded by grants from the Ministry of Education, Science, Sports and Culture of Japan and the Australian Research Council Key Centre for Tropical Wildlife Management.

References

2	Abe, T., Higashi, M., 2001. ISOPTERA. In: Simon, A.L. (Eds.), Encyclopedia of
3	Biodiversity. Academic Press, San Diego, London and Tokyo 3, pp. 581-611.
4	Adachi, J., Hasegawa, M., 1996. MOLPHY: Programs for Molecular Phylogenetics based
5	on Maximum Likelihood, Version 2.3. Institute of Statistical Mathematics, Tokyo.
6	Andersen, A., Jacklyn, P.M., 1993. Termites of the Top End. CSIRO Press, Australia.
7	Akaike, H., 1974. A new look at the statistical model identification. IEEE Trans. Automat.
8	Contr. AC-19, 716-723.
9	Bernatchez, L., Wilson, C.W., 1998. Comparative phylogeography of Nearctic and
10	Palearctic fishes. Mol. Ecol. 7, 431-452.
11	Bouillon, A., 1970. Termites of the Ethiopian region. In: Krishna, K., Weesner, F.M.
12	(Eds.), Biology of Termites. Academic Press, New York and London 2, pp. 153-280.
13	Bruyn, M., Wilson, J.C., Mather, P.B., 2004. Reconciling geography and genealogy:
14	phylogeography of giant freshwater prawns from the Lake Carpentaria region. Mol.
15	Ecol. 13, 3515-3526.
16	Casgrain, P., Legendre, P., 2000. The R Package for multivariate and spatial analysis,
17	Version 4.0. University of Montreal, Montreal, Quebec.
18	Efron, B., 1979. Bootstrap methods: another look at the jackknife. Ann. Stat. 7, 1-26.
19	Felsenstein, J., 1981. Evolutionary trees from DNA sequences: a maximum likelihood
20	approach. J. Mol. Evol. 17, 368-376.
21	Felsenstein, J., 1985. Confidence limits on phylogenetics: an approach using the bootstrap.
22	Evolution 39, 783-791.
23	Felsenstein, J., 1989. PHYLIP - Phylogeny Inference Package (Version 3.2). Cladistics 5,
24	164-166.
25	Felsenstein, J., 2005. PHYLIP (Phylogeny Inference Package) version 3.65. Distributed

by the author. Department of Genome Sciences, University of Washington, Seattle.

1	Fitch, W.M.,	1971.	Toward	defining	the	course	of	evolution:	minimum	change	for	a
2	specific tre	e topol	ogy. Sys	t. Zool. 20	0, 40	6-416.						

- Fox, I.D., Neldner, V.J., Wilson, G.W., Bannink, P.J., 2001. The Vegetation of the
 Australiam Tropical Savannas. Environmental Protection Agency, Brisbane.
- 5 Garcia, J., Maekawa, K., Miura, T., 2002. Population structure and genetic diversity in
- 6 insular populations of *Nasutitermes takasagoensis* (Isoptera: Termitidae) analyzed by
- 7 AFLP markers. Zool. Sci. 19, 1141-1146.
- 8 Goodisman, M.A.D., Crozier, R.H., 2002. Population and colony genetic structure of the
 9 primitive termite *Mastotermes darwiniensis*. Evolution 56, 70-83.
- 10 Grigg, C.G., 1973. Some consequences of the shape and orientation of 'magnetic' termite
- 11 mounds. Aust. J. Zool. 21, 231-237.
- Guindon, S., Gascuel, O., 2003. A simple, fast, and accurate algorithm to estimate large
 phylogenies by maximum likelihood. Syst. Biol. 52, 696-704.
- 14 Hasegawa, M., Kishino, H., Yano, K., 1985. Dating of the human-ape splitting by a
- 15 molecular clock of mitochondrial DNA. J. Mol. Evol. 22, 160-174.
- 16 Hutchison, D.W., Templeton, A.R., 1999. Correlation of pairwise genetic and geographic
- distance measures: Inferring the relative influences of gene flow and drift on thedistribution of genetic variability. Evolution 53, 1898-1914.
- 19 Jacklyn, P.M., 1991. Evidence for adaptive variation in the orientation of *Amitermes*
- 20 (Isoptera: Termitinae) mounds from northern Australia. Aust. J. Zool. 39, 569-577.
- Jacklyn, P.M., 1992. "Magnetic" termite mound surfaces are oriented to suit wind and
 shade conditions. Oecologia 91, 385-395.
- 23 Jacklyn, P.M., Munro, U., 2002. Evidence for the use of magnetic cues in mound
- construction by the termite *Amitermes meridionalis* (Isoptera: Termitinae). Aust. J.
 Zool. 50, 357-368.
- 26 Jennings, W.B., Edwards, S.V., 2005. Speciational history of Australian grass finches

1	(Poephila) inferred from thirty gene trees. Evolution 59, 2033-2047.
2	Jones, M.R., Torgersen, T., 1988. Late Quaternary evolution of Lake Carpentaria on the
3	Australia-New Guinea continental shelf. Aust. J. Earth Sci. 35, 313-324.
4	Kimura, M., 1980. A simple method for estimating evolutionary rate of base substitutions
5	through comparative studies of nucleotide sequences. J. Mol. Evol. 16, 111-120.
6	Kimura, M., Weiss, G.H., 1964. The stepping stone model of population structure and the
7	decrease of genetic correlation with distance. Genetics 7, 561-576.
8	Korb, J., 2003. The shape of compass termite mounds and its biological significance.
9	Insect. Soc. 50, 218-221.
10	Kumar, S., Tamura, K., Nei, M., 2004. MEGA3: Integrated software for Molecular
11	Evolutionary Genetics Analysis and sequence alignment. Brief. Bioinform. 5, 150-163.
12	Lanave, C., Preparata, G., Saccone, C., Serio, G., 1984. A new method for calculating
13	evolutionary substitution rates. J. Mol. Evol. 20, 86-93.
14	Liu, H., Beckenbach, A.T., 1992. Evolution of mitochondrial cytochrome oxidase II gene
15	among 10 orders of insect. Mol. Phylogenet. Evol. 1, 41-52.
16	Mantel, N., 1967. The detection of disease clustering and a generalized regression
17	approach. Cancer Res. 27, 209-220.
18	McGuigan, K., Zhu, D., Allen, G.R., Moritz, C., 2000. Phylogenetic relationships and
19	historical biogeography of melanotaeniid fishes in Australia and New Guinea. Mar.
20	Freshw. Res. 51, 713-723.
21	Nei, M., 1987. Molecular Evolutionary Genetics. Columbia University Press, New York.
22	Nixon, K.C., 1999. The parsimony ratchet, a new method for rapid parsimony analysis.
23	Cladistics 15, 407-414.
24	Noirot, C. 1970. The nests of termite. In: Krishna, K., Weesner, F.M. (Eds.), Biology of
25	Termites. Academic Press, New York and London 2, pp. 73-125.

26 Nylander, J. A. A., 2004. MrModeltest v2. Program distributed by the author.

1	Evolutionary	Biology	Centre.	Uppsala	University.
		05	,	- F F	

2	Rodriguez, F., Oliver, J. F., Marin, A., Medina, J. R., 1990. The general stochastic model
3	of nucleotide substitutions. J. Theor. Biol. 142, 485-501.
4	Ronquist, F., Huelsenbeck, J.P., 2003. MrBayes 3: Bayesian phylogenetic inference under
5	mixed models. Bioinform. 19, 1572-1574.
6	Rozas, J., Sanchez-del Barrio, J.C., Messeguer, X., Rozas, R., 2003. DnaSP, DNA
7	polymorphism analyses by the coalescent and other methods. Bioinformatics 19,
8	2496-2497.
9	Sambrook, J., Russell, D.W., 2001. Molecular Cloning: A Laboratory Manual, third ed.
10	Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.
11	Saitou, N., Nei, M., 1987. The neighbor-joining method: a new method for reconstructing
12	phylogenetic trees. Mol. Biol. Evol. 4, 406-425.
13	Shimodaira, H., 2002. An approximately unbiased test of phylogenetic tree selection. Syst.
14	Biol. 51, 492-508.
15	Shimodaira, H., Hasegawa, M., 2001. CONSEL: for assessing the confidence of
16	phylogenetic tree selection. Bioinform. 17, 1246-1247.
17	Schneider, C.J., Cunningham, M., Moritz, C., 1998. Comparative phylogeography and the
18	history of endemic vertebrates in the wet tropics rainforests of Australia. Mol. Ecol. 7,
19	487-498.
20	Sikes, D.S., Lewis, P.O., 2001. PAUPRat: A Tool to Implement Parsimony Ratchet
21	Searches Using PAUP*. University of Connecticut, Storrs, CT.
22	Smart, J., 1977. Late Quaternary sea level changes, Gulf of Carpentaria, Australia.
23	Geology 5, 755-759.
24	Smith, G.B., Roach, A.M.E., Rentz, D.C.F., Miller, L.R., Abbey, H.M., Watson, J.A.L.,
25	Balderson, J., Cassis, G., New, T.R., 1998. Zoological Catalogue of Australia Volume
26	23 Archaeognatha, Thysanura, Blattodea, Isoptera, Mantodea, Dermaptera,

1	Phasmatodea,	Embioptera,	Zoraptera.	CSIRO/ABRS	Australia.

2	Spain, A.V., Okello-Oloya, T., John, R.D., 1983. Orientarion of the termitaria of two
3	species of Amitermes (Isoptera : Termitinae) from northern Queensland. Aust. J. Zool.
4	31, 167-177.
5	Swofford, D.L., 2002. PAUP*. Phylogenetic Analysis Using Parsimony (* and Other
6	Methods). Sinauer Associates, Sunderland, MA.
7	Tamura, K., Nei, M., 1993. Estimation of the number of nucleotide substitutions in the
8	control region of mitochondrial DNA in humans and chimpanzees. Mol. Biol. Evol.
9	10, 512-526.
10	Tavaré, S., 1986. Some probabilistic and statistical problems in the analysis of DNA
11	sequences. In: Miura, R.M. (Ed.), Some mathematical questions in biology 17, DNA
12	sequence analysis. Am. Math. Soc., Providence, RI, pp. 57-86.
13	Thompson, J.D., Gibson, T.J., Plewniak, F., Jeanmougin, F., Higgens, D.G., 1997. The
14	ClustalX windows interface: flexible strategies for multiple sequence alignment aided
15	by quality analysis tools. Nucleic Acids Res. 24, 4876-4882.
16	Thompson, G.J., Hebert, D.N., 1998. Population genetic structure of the neotropical
17	termite Nasutitermes nigriceps (Isoptera: Termitidae). Heredity 80, 48-55.
18	Torgersen, T., Hutchinson, M.F., Searle, D.E., Nix, H.A., 1983. General bathymetry of the
19	Gulf of Carpentaria and the Quaternary physiography of Lake Carpentaria. Paleogeogr.
20	Paleoclimatol. Paleoecol. 41, 207-225.
21	Torgersen, T., Jones, M.R., Stephens, A.W., Searle, D.E., Ullman, W.J., 1985. Late
22	Quaternary hydrological change in the Gulf of Carpentaria. Nature 313, 785-787.
23	Tsubota, H., DeLuna, E., Gonzalez, D., Ignatov, M.S., Deguchi, H., 2004. Molecular
24	phylogenetic and ordinal relationships based on analyses of a large-scale data set of
25	600 rbcL sequences of mosses. Hikobia 14, 149-169.
26	Voris, H.K., 2000. Maps of Pleistocene sea-levels in South East Asia: shorelines, river

- 1 systems and time durations. J. biogeogr. 27, 1153-1167.
- 2 Watson, J.A.L., Abbey, H.M., 1993. Atlas of Australian Termites. CSIRO Press,
- 3 Canberra.
- 4 Yang, Z., 1997. PAML: a program package for phylogenetic analysis by maximum
- 5 likelihood. CABIOS 13, 555-556.

1 Figure legends

2

Figure 1 (a) The distribution of *A. laurensis* and *A. meridionalis* based on Watson and
Abbey (1993). (b) Map of North Australia depicting *A. laurensis* sample sites. The
symbols denote mound shapes. Squares, triangles and circles show strongly meridional,
roughly meridional and small dome shaped mounds, respectively.

7

8 Figure 2 Variation of the mound shapes in A. laurensis. Based on measurements and 9 observation (P. Jacklyn unpub. data) A. laurensis mounds can be classed into two broad 10 types based on mound volume, degree of meridional elongation (based on the ratio of the 11 N-S axis to the E-W axis) and the nature of mound construction. Meridional mounds vary 12 considerably in shape and size as shown by the eight representative mounds (1-8) but the 13 volume of mature mounds usually exceeds 0.5 m³ and there is almost always some degree 14 of meridional elongation, often to a marked degree. Meridional mounds are also 15 characterized by fine sculptured features often drawn out into thin buttresses. Meridional 16 mounds can be devided into two sub categories: strongly meridional (1 - 4) and roughly 17 reridional (5 - 8) mounds. For detail description see text. Dome mounds (9-11) rarely 18 exceed 0.5 m³, are not strongly elongated in any particular direction and do not have 19 buttresses.

20

Figure 3 Mounds of *A. laurensis*. (A) Strongly meridional mounds corresponding to the mound type 2 in Figure 2, showing the long N-S axis (A-1) and short E-W axis (A-2). (B) Roughly meridional mounds corresponding to mound type 5 in Figure 2 (B-1) and type 6 in Figure 2 (B-2). The strongly and roughly meridional mounds occurred in seasonally flooded habitats. (C) Smaller dome mounds corresponding to mound type 11 in Figure 1, being found in well-drained sites.

1

2 Figure 4 The intraspecific phylogeny of A. laurensis based on COII haplotypes depicted 3 by a 50% majority-rule condensed tree for the topologies with high ranking log-likelihood 4 values that passed the AU test by CONSEL. Supporting values (calculated probabilities or 5 the consensus of the resulting topologies) more than 50% were overlaid (less than 50%, 6 but the most support in each method, were indicated as a plus mark): local bootstrap 7 probabilities (LBP) using ML method by MOLPHY with HKY85 model, classical 8 bootstrap probabilities (BP) based on 10,000 replications using NJ method by MEGA, 9 Bayesian posterior probabilities by MrBayes (PPB) and CONSEL (PPC), and the values 10 of percentage of supported topologies with high ranking log-likelihood values that passed 11 the AU test are shown on or near each branch (LBP/BP/PPB/PPC/AU; in %). The root is 12 arbitrarily placed on the branch leading to the A. inops and A. perarmatus. The marks in 13 brackets indicate mound shapes; squares, triangles and circles show strongly meridional, 14 roughly meridional and small dome shaped mound, respectively.

15

Figure 5 Geographical distribution of six clades and frequency of mitochondrial DNA
haplotypes observed in *A. laurensis*. The clades and haplotype names correspond to Table
1 and Fig. 4. The frequency is represented in a pie-chart for each population.

19

Figure 6 A scatter diagram of the genetic difference in *A. laurensis* (Kimura 2-parameter
distance) plotted against geographical distances between sampling locations. Mantel test
was used to calculate the significance of the correlation by using 5000 permutations.