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Nonadiabatic unimolecular reaction kinetic theory based
on /th-order semi-Markov model
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We present a microcanonical kinetic theory, which we refer to atiherder semi-Markov phase
space theorySMI-PST), for nonadiabatic unimolecular dissociations dominated by standard surface
hopping dynamics. In this theory, reaction dynamics is considered as a stochastic transport, which
is described as alth-order Markov chain, among cells produced from partition of the available
phase space. Kinetic equations are derived by importing residence time of stay cells as a random
variable into the Markov chain. An efficient method to determine the parameters of the kinetic
equations is developed, which is made up of Monte Carlo phase space integration and short-time
trajectory calculations. As a test calculation, thelSAST has been applied to a model system for

the predissociation of collinear,®. We show that the SMPST works well, giving rate coefficients

of much better accuracy than conventional statistical theory and of comparable accuracy to standard
trajectory calculations with a lower computational effort. 2002 American Institute of Physics.
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I. INTRODUCTION according to recrossing motion of a crossing seam.

The present theory can be divided into three paibs.
ase space partition into cells. Transport of phase points
among cells is treated as #h-order Markov chain. A man-
ner of symbolic dynamics provides a refined description for
he procesdii) Conversion of discrete time into real time for
he transport process, i.e., replacing the Markov chain into
the corresponding semi-Markov process. This is achieved by
introducing a sort of local equilibrium assumption that dis-
tribution in eachn—1 dimensional small hypersurface

as?umpnotn, the ;ollowmg co;d;n_(t))n? are suppolsedlfor a '®wheren is the dimensionality of the available phase space
action system. phase space distribution in a molecular regiog,; q 4 “isoage hypersurface,” is regarded as microcanonical,

is supposed to be maintained in the equilibrium distributionbut one dimension that runs along trajectories is in nonequi-

thrpughout the rga_ctlon, anq all states in th?. phase SPAGRrium. Kinetic equations describing the population decay
arrive at a transition state in equal probability. In otherare obtained in this partiii) Computational method to de-

words, _the mt;:;:r?k?leculatr. enertgy re(;jlstrlgutlon IS trap'ddmtermine the parameters contained in the kinetic equations and
comparison wi € reaction rate and a phase point Wanaey o6 the kinetic equations. An efficient computational

tht? avza;la:ble_r;r)]hase space efrgodmglly utntlll It Ic(j)cates tr;et.tra yrocedure for the special condition when only two primitive
sttion state. 1he progress of expenimental and computationgle s gefined below are available is also proposed. This is

works has revealed that there exist reaction systems f ade up of Monte Carlo phase space integration and short-

which the theories fail to estimate the rates because of thf'fme trajectory calculations

breakdown of the assumption. Especially, such unusual reac- As a test calculation, we apply the $RST with two

t'O?S have geen |n\/|(|es(;|%ated F\{/llgg\(/l)yilyhfor_unlmolecular re'primitive cells to a model system of spin-forbidden predis-
actions, and are called “non- ehavior. sociation of collinear O

Some advanced statistical theories which predict or ac-
count for the nonstatistical behavior have been propds¥d.
Almpst all suph theories deal with reactions on adliabatlc po- N20(12+)—>N2(129+)+ oC3P). 1)
tentials. In this paper we propose an advanced microcanoni-
cal statistical theory, called tHéh-order semi-Markov phase

space theorySMI-PST), for nonadiabatic unimolecular reac- g reaction involves two diabatic potential energy surfaces,
tions. Our theory is closely related to theories which decomy,, airactive singlet state potentid) that traps the reactant
pose reaction dynamics into a hierarchy of recrossingngjecyle, and a repulsive triplet state poter¥iglthat leads
motion.~""In our theory, reaction dynamics is decomposedine reactant into the product. The model of dynamics for our

test case is identical with that in Ref. 19. At tire 0, only
dElectronic mail: saito@chem.sci.hiroshima-u.ac.jp an initial ensemble distributed on the statg is prepared. A

The conventional statistical reaction theories such as thg,h
transition state theoly and Rice—Ramsperger—Kassel—
Marcus(RRKM) theony > are widely utilized to predict the
rates of elementary chemical reactions. In this theory th
estimation of reaction rates is performed without dynamical
scrutiny by adopting a statistical approximation called “tran-
sition state” assumptiof-® “ A priori equal probability” is
the central component of this. la priori equal probability

0021-9606/2002/116(20)/8660/17/$19.00 8660 © 2002 American Institute of Physics
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phase point in the ensemble moves dp followed by a
classical equation of motion. The standard “surface hop-
ping” assumption is supposed; that is, transition between two
states must occur only locally on the crossing seamnde-
fined as

£&:={a/AV(q)=0}, )

where q is a coordinate in the configuration space, and
AV(q) is the energy difference between the two potential
surfaces. When a trajectory passes acgyss transitionV
— Vg may occur with a probability depending on the phase
space coordinate of the crossing point. The flux frgmto
V, is supposed to be negligible. Phase points passing
through the seang from the inner side of the potential well
without a transitionV,— Vg will soon return toé from the
outer side. Marks and Thompson developed the nonadiabatiG. 1. Schematic drawing of segments in available phase spagera-
Monte Carlo transition state theofMMC-TST) based on the jectory {x;} is divided by an oriented surface of sectiri into segments
conventional statistical reaction theory by treating a uretum_{g;‘_}. A point in E*_ is_includ_ed not in the end point of the earlier segment
flux” statistically.lg in tlmg but thg begmn:)ng point of the later segment.‘ Iptegemrresponds to
the discrete time and, denotes the segment containing

In Sec. Il we present the SMPST. In Sec. Il the theory

is applied to the reaction of collinear,®. The results are

compared with the results of trajectory calculations and the o
NMC-TST. Since the associative law.Afj0A,)0A4;=A;0(A,0A45)

holds, we can denote4;0.A,)0A; as.A;0.A4,0A4; without
ambiguity. Further, O A;:=A4,04,0,---,04, is also
well-defined.

A. Symbolic dynamics In this paper we deal with dynamics on an indecompos-

In this subsection we describe a phase space partitioﬂbIe §ubset of phase space of the stgle denoted byl that
and prepare a notation. is, ' is an ergodic subset of an energy hypersurfddéone

For completeness, we shall review set-theoretic terms,

5 interested in dynamics of a decomposable manifold, the
“partition” and a “cell.” A family of sets A, whose cardi- ynamics can be constructed from the set of elementary in-
nality is not necessarily countable, is called a partition of

adecomposable dynamics.
setX, and each element of is a “cell’ when the following Suppose a Poincamurface of section traversed by tra-
conditions hold:

jectories inl’

Il. THEORY

A, 3 =" i={xe T (x)=0%,00 (x>0}, )
U A=X 4) wherex denotes a phase poirg,, (X) is a particular element
Ac A ' of the configuration coordinate of andq is some fixed
value of the coordinate element. The secfibh divides each
ANB=y if A#B for all Ac ABe A (5 trajectory {x]teR} in T into Z*-to-* segments

For example, {{1,5{2,4,{3},{6}} is a partition of {Xt|t§+(x)$t<t§:1(x)}nez, wherex; is the classical time
{1,2,...,6, and the subsetd 5}, {2,4}, {3}, and{6} are the evolution of x after timet, {t?(x)}(--~<t§1(x)<t§+(x)
cells of the partition. _ N <0<td (x)<tZ (x)<---) is a set of times at which the

A patrtition of a partition of a seX provides a pqmtlon of trajectory passes acrods (see Fig. 1 andR andZ is the
the setX as follows. LetA:={As|se S} be a partition ofX, et of all real numbers and all integers, respectively. Hereaf-
and A’ :={A¢[se S'} be a partition ofA (eachA is a subset tgr s+ to-5* segments are called “segments” for short.
of A). Itis clear that the family of sefiua.a’/Als€S'}isa  The temporal length of each segment is supposed to be sig-
partition of X. For example{{1,5,{3}}, {{2,41.{6}}} is a par-  nificantly short in comparison with the reaction time scale. It
tition of {{1,5,{2,4,{3}.{6}}), and{{1,3,9, {2,4,8} is a parti-  is important to note that the set of all segments in the system,
tion of {1,2, . .. 6. denoted byG, is a partition ofl",** and that a partitiofA¢}

We define a combination of two partitions: il;  of G provides a partitiod A} of T'; i.e., Al is a phase space
:={Allse S,} and A,:={AZ|se S,} are partitions of an iden- region occupied by all segments containedAig. In this
tical setX, then sense, we shall regard a partition Gfalso as a partition

1 2 of I.

A ={A NA, 7[5, € 51,5, € S5} © Let g7 be a segment defined to be

provides a finer partition oK. For example, g;‘::{xt|t§+(x)st<t§:1(x)}. ®)

{{1234.(56.78)0{135.{24.68.(7}) A segmentg? is a set of phase points containing=T".
={{1.31.{2,4.{5}.{6.8}.{7}}}. Generally
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xe g, 9 l=mg—me+1, (17)
wherev(x,t) is a function giving an integer such that signifies a length of the finite sequence. Ldie the set of all
. ) finite sequences with a fixeah, and m. . The number of
2 (X)=<t<t>,,(x). (100  elements irC is equal tong.to thelth power. However, not

L b . h haII sequences i@ exist as cells in the system. We denote a
etu be a mapping operator that maps a segment to thg,ce o containing only actual cells bqy;s:-

consecutive one Although a dynamical system of finite sequences asymp-

quzng“, (12) totically approaches a system of bi-infinite sequences with
. increasingl, there are intrinsic differences between the two
that is systems. First, whereas bi-infinite sequences divide the avail-
MAN_ ~n+m able phase space into the infinite number of cells, finite se-
U0, =0x . (12)

quences divide the space into finite cells. Second, more re-
Suppose a partition ofs into Ngge cells, PO::{R2|S markably, whereas the dynamics of a bi-infinite sequence is
e o}, wherea:={0,1, . .. Ngaes— 1}. We refer to these cells deterministic, finite sequence dynamics is indeterministic or
as “primitive cells.” Let RY' be a set of segments defined to stochastic. A finite sequence generally evolves into one out
be of Ny different sequences by indeterministic or stochastic
Mmoo dynamics, providedn, and m. are fixed. For instance,
Re=U"R;. (13 when ng,=4, then (012.302 may be evolved into
Since the mappingi:G—G is bijective, a family of sets (123.020, (123.023, (123.022, or (123.023. We approxi-
Pmi={RT|se o} is also a partition ofG for an arbitrary in-  Mately regard the transport dynamics amalgs; as a Mar-

tegerm. kov chain, i.e., the dynamics amofiy as anlth order Mar-
Consider a partition*__,P,. We represent a cell KOV chain. _ _
ARZAR AR NR-1NR-2N--- as a bi-infinite sym- We introduce a notation and terminology as follows: for
52 Sl SO S—l 5_2

a cellCeCyy
bol sequence-{-s,5;.5¢S_1S_»"-+), where a “.” is placed exist

between two symbols corresponding7g and P, (we omit par(smq-”sl.so---smb)

a “.”when it is not needed This sequence denotes not only

a cell of a partition” andG but also an itinerary of a phase  *=Cexist /{(SSn_"**S2.S1"**Sm_+1)[sE€ 0}, (18)
point; if a phase pointx is contained in {-s,S;

.SpS_1S_»"**), a pointx, must be contained in a primitive chi(Sm_"+S1-S0*Sm, )

O .
cell Rsv(x,t) at tlme.t'. . ::Cexistn{(smq—l' **Sp-S-1" 'SmDS)|SE o} (19
From the definition
C e We call parC the “parents,” chiC the “children” for C. If
UTRG=Rs . (14 g"is contained in a celC, g7~ * andg!** must be contained

in cells which are one of the parents and one of the children

Thus, we have )
of the cellC, respectively.

um(---NRgNRg MRy N
ﬂRS’m“ﬁ Rgmngmflm...) B. Kinetic formulation
—m+1 —m -m-—1
We start on kinetic formulation based on the usual dy-

namics. From Liouville’s theorem, the time evolution of re-
actant phase space distributip(ix,t) is given by

p(Xa,t+AD=p(X,1)Q(X,At), (20)

for an intervalAt=0, whereQ(x,At) is the probability that
the phase point will not lead to a transitio’/ ,— Vg within
um(--51.808 1) =("*"S_my1.S-mS-m-1"").  (16) At

— 1 -1
_(...QRTST11+ mRSmongl_l M-
1 0 -1
NRY MR} NR;' N--). (15)

This equation shows that acts for bi-infinite sequences as
the “shift map”

The shift map dynamics of bi-infinite sequences repro- B B
duces a feature of the original dynamicsloif the partition Q(X’At)'_te{ltgx)} [1=Prodx)], (21)
{Rg} is defined properly. Since we are interested in the pro- O<t<At
cess where phase points pass across the sgdimis an where{té () V(- <t& ,(x) <t{ () =0<ti(x) <t{(x)<---) is

i DY O i
acceptable choice th&U---URy is tge set of aIIOsegm(_ants a set of timers at which the trajectofy|t € R} passes across
passing acrosg and the complemerR;, ;U---UR

Nyae 15 the crossing seardy andPy,q(X) is the probability of a tran-

the set of all segments do not. _ sition V,— Vg at xe £€. The reactant populatioN(t) is ob-
From a practical point of view, we approximately trun- tained from the distribution by

cate bi-infinite sequences into “coarse-grained” counterparts
(Sm_'**S1.S¢**Sm_), Wherem.; and m,. are integers such N(t) =(p(x,1)), (22)
thatm4,=0=m. . A positive integer where(---) denotes a phase space average
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pdXF(x) On constructing the kinetic theory we suppose the fol-
(F(x))i=———, (23 lowing two approximations(i) The phase space distribution
Jrdx within an isoage hypersurface in a c€le Cyist, defined by
whereF(Xx) is an arbitrary function. i =Ixe Clr(x)= 33
Next, we derive kinetic equations for the $MST on o(n)={xeClr()=1} 33
the basis of the above consideration. From £, xtegg is regarded as microcanonical. In other words, we directly

) This implies thatgx Y0+ hence,u gx consider nonstatistical distribution with only one dimension
along segmentsii) An occurrence of a transitiovi,— Vg of

a phase poink is delayed until the next passagexoécross
gyt (24 =*; that is, we replace transition timg(x) with t2"(x)

s+ s+ X
Consider two phase poinksandx’ :=x;. The pointx’ is such thatty, ;()<ti(X) =<ty () without change of the

contained ing’®"Y. In addition, consider another phase transmon probability. A typical 7sq (or a typical t
point x” which is the beginning point of a segment —tm 1) is so short compared to the time scale of reaction
gmt t)_g , wherem is an arbitrary integer. From the that the error caused by this approximation is negligible in
the kinetic model.

Under these conditions, the time evolution of an age
tE*(x) Xt (%) respecuvely Therefore, the following gistribution function is provided bysee Appendix A

relation holds:

andx; e g,
=umg ™Y with an arbitrary integem. Therefore we obtain

9=

t

standpomts ofx and x’, we have x” —xtz+ x and
x.)

Sc(7)
+ f +At)=fc(r—At,t) ————
ti+u(x,t)(x):t+t§:(xt)- (25) c(rt+At)=fc(7-At1) So(7—AD)
We introducer and 7¢¢q as for O<At<r, (34)
7(X)=—1t3 (X), (26) -
X . . fo (0= > d7 BE (n)fc(rt), (35)
Tsed @):=t7 () —t5 (N =t] (X)+7(x), 27 Cepac’ -0

wherex in Eq.(27) is an arbitrary phase point containedgn with

7(x) is referred to as the “age,” which signifies the elapsed STr(x C)o 0

time for the pointx from the last entrance into the current  S.(7): Lo JIX(95/C) Pl 7eed 9) ~ >, (36)

segment, anckseg(g) represents the temporal length of the ([ 7(x)]1x(gIC))

segmentg. Slncet (x)>0 andt0 (x)<0 the relation 0

sr(x)<rseg(gg) holds for an arbitrary poinkeI". From Bc (7)

Eqs.(25) and (26), we obtain _{Qued 8 A 7se 8 — 71T 70 IX(GHIC ) X(GFIC))
() =t (). (29) (370 1x(92IC) Ol 7sed 9) — 71) |
Let x(aJA) be a characteristic function defined to equal 37

unity if ae A (or aCA) and zero otherwisén this papera

is a phase point or a segment, aAds a phase space re- Qsed 9):= H [1—PhodX)], (39

gions. Note that te{tfoo}

X(X|C)=x(g}[C), (29 § =it oo

With C e Ceyisrs SINCEX is contained |rgx (where we use the wherex in Eq. (38) is an arbitrary point irg, and 6(x) is the
idea thatC is not only a set of segments but also a set ofUNit step function

phase points We shall usually emplow(gx|C) rather than 1 if x>0 (39)
x(x|C) in expressions since one discerns more easily that A(X):= '
this value remains unchanged as longxais placed on an 0 if x<0. (40
identical segment. Generally, It is evident from the definition that
X(x|C)=x(g3|C) = x(g;™*"[C). (30 Se(0)=1, (41)
Let fc(7,t) be the distribution of ager in a cell C > when r.< 42
€ Coyist, andNc(t) be the population irC Sel(7a)=Se(m) Ta= b 42

and thatf(7,t) must be zero for allr such thatSc(7)=0.

fe(nt)=(eL 700~ Tlx(g:|C)p(x.1), @D BS'(T) is defined for a pair oC andC’ such thatC’ is a
child of C. Qse{9) is a probability that a phase point passing

Ne(t) =(x(g5IC)p(x,t)) = j dr fe(rt). (32 through the segmeng will not result in a transitionV,

— Vg within g. All fractional expressions in Eq$34), (36),
The total population is given bM(t)=2c..  N¢(t). and Eq.(37) satisfy the condition that when a denominator

exist



8664 J. Chem. Phys., Vol. 116, No. 20, 22 May 2002

Kawano, Takahashi, and Saito

vanishes, the corresponding numerator also vanishes. We déhe value ofW(7) is meaningless fot such thatS(7) is

fine 0/0 to be 0O for the fractions. Equatio34) and (35)
describe the kinetics of our statistical model.
The physical meaning d:(7) is shown by the follow-

ing consideration. Assume the simple situation where no

transitionV,— Vg occurs; themQg.{g) is settled unity for
all geG. Let f&{r) denote the stationary distribution of
fc(7,t) with the normalization condition

2 def?:o(T):
CeCexist /0

Namely, f&{ 7) is the age distribution i€ when a microca-
nonical distribution is achieved if". From Egs.(34) and
(35), we have

(43

fel 1) =acSc(7), (44)
FO0)= > “dr BS (1)f&Y 1), (45)
Cepac’ 7O
where
aci= fga(O), (46)

(] Tsed 99 — 718L 7(¥) 1x (g3 C ) x (99 C))

EC, T):=
¢ (S 7(X)1x(92 C) O] Teed 9D — 71)

(47)
Equation(44) shows thatS-(7) is equal to the equilibrium

age distribution function, except for a constant factor. The

factor a¢, is found from the simultaneous equatiof#s),
(44), (45), (46), and (47).

C. Computational method

Hereafter, we stipulate that a range of an integral con-
tains the lower limit but does not contain the upper limit.
This is essential for integrals with the Dirac delta function;

for arbitrarya andb such thata<<b and an arbitrary function
F(x)

b
f dx F(x)8(x—c)=6°(c)F(c), (48)
a
where
b 1 if asc<b
Galc) = 0 otherwise’ (49
The following relation will be used several times:
s+ )
J 1%t F(gl) 8l m(x)]
t (X
— ti2++1() J+V(><t i+]
=07 T e0IFLg, " *=Flg ). (50

It is more convenient to numerically solve the kinetic

equations(34) and (35 for the following W¢(7,t) than
fo(r,t):

fe(7,t)=Sc(7)We(T,1). (51)

zero, since ¢(,t) vanishes wheneved(7) is zero. Substi-
tuting Eq.(51) into Egs.(34) and (35), we obtain

We(7+ At t+At)=W(7,t) for >0, At>0, (52
We (0= S | drBS (NSe(nWe(rt). (53
CepaC’

To apply numerical integration in Eq53), we shall dis-
cretize bothr andt with a constant stegt>0. W is ap-
proximated with respect ta by rectangular strips with the
same widthAt

We(7,t): ~We(7,t), (54)
wherez is an integer such that
(i— 12 At<7<(i+1/2)At. (55)
From Egs.(52), (53), and(54),
We(i+ 11+ At) =We(i,t), (56)
Nmax
We(0= 3 X DE (HWe(i), (57)
CepacC’ =0

where n, iS an integer such thaDS’(I)zO for all &
>Nimaxe andDE (7) is

DE ()= f

(—1/2) At

(ot 1/2)At
(58

d7 BE (7)Sc(7).

The functionsSc(7) and DS (z) should be found to
solve the kinetic equations. Since we have assumed tieat
ergodic, a phase space average may be rewritten into a time
average for almost everywhere=I".%°

(F(x))= lim —f dt F(x,), (59

'[—»oc

whereF(x) is an arbitrary function. This may be rewritten as
a segment averag&vhich is more useful for ys

F(x))=li G gt
(Fom ”Lnl §+1( X)— to (X) 'Z: E 0 -
(60)
Substituting Eq(60) into Eq. (36), we obtain
Sc(7)
s of'“( " 7(x) (9] ©) 0 7sed 05) — 71dt
= lim =
o oS o n(x) (g <)t
HIN se ix_ i(C
i 21=0 [ 7sed 9%) — 71X (94 C) 61)

=L ox(gy/C)
where the last step comes from E¢B0), (30), and(50). Let
C be (smq---sl.so-~-sm>). If and only if a segmeny is
contained in a celh, thenu™g is contained inu™A. Thus

n—o
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<
X80 =11 x(gRL)
J=mp

mq

= Il x(uigyju”RL) (62)

j=f
my

=TI x(g"IRY).
J=my )

Substituting Eq(62) into Eq.(61), we obtain

S o0l Tsed G — TII, x(95'IRS)

Sc(7)= lim . (63)
n—o Ein:O j:mDX(gX J|R(S)j

From Egs.(58) and(60)

FEIRNA Qued 02) O med 99 — 718 7() 1x(92 C) x(gE C )
(8L 7(x)1x(gYC))

DE' ()=

: i+109
(ARG ;f()dt Qsed 95) A 7sed G5) — 7101 7(x) Ix (05 |C) x (9] C")

= lim
oo i1
" zi“zoft;&x dt o[ 7(x)]x(g3|C)
i ] A TE 0Qued 030 Al Teed 83— 71x( C)x(g} H[C)
e = ox(9yC)
_ i S oQued GIX(GIOIx(,IC! )0 T Tsed )] -
e =" ox(g4C) '

LetCbe (Sm_*S1.So"**Sm_) andC’ be (Sm_—1°+Sp.S—1"**Sy_—1) (remember tha€ must be a parent &'). Then, we have
my
x(gxlcmg'“m')=x[g'x|<sm<---sl.so---smbsmyu]i_ﬂ XGRS (65
=y —

From Egs.(62), (64), and(65)

Einonseégx)a(H—igzi:[ Seég ]H] m —1X(gi><_j|jo)

DS (7)= lim . (66)
oo I X(gX‘|jo

Taking n as a large integer, one can determfeand Dg’ from Egs.(63) and (66) using trajectory calculations. This
method would be inefficient when a passage processamirossé is rare. We now propose a dynamical and statistical hybrid

method to efficiently determin8; and Dg'.

In this method, we suppose two primitive celléj is theset of all segments that pass across the crossing &eamd Rg
is the complement. Consider a narrow voluB& T such thatC =, and let=Z* be ENRYJ. Itis evident from the definitions
thatall segments iR} andfewsegments irR) must pass througB, and thaall segments iR andno segments iR must
pass througtE*. We have(see Appendix B
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Zme (WO O 7o 0) = 71T, X (0[RS )=+
Sc(7)= : (67)
Zme WO (g IRg))=+
AR e (W00 Qe 07 )06 Tt Tsed GO, (971 IRY)) =
DE (1) = : (69)

#{lm 71}Eme{l <1}<W(X)H

wherew(x) is the reciprocal of a temporal length giﬂE

-1
W(x)::{f : Mgt xxJBE)| (69
5 (%
(--*)z« is the phase space average restrictef in
J=+dXF(x)
F(X))gs i=—, 70
(F(x))= [ondx (70)

#S denotes the number of elements of the Seand{1!} is
a set of indices depending ¢8;,S; 1, . .. .,S;} defined to be

{1{}::{m|sm:l,me{i,i+l, it

e.g., ifC=(---011.001 00%:-), {13 ;}={2,1,—2,—5}.
Here, we employ the following abbreviation:

(71

mg 1*m>

—— ——

0:=(0--+0-0---0),

li

(72

my 1m>
1:=(0---0-0-- 1)

D ——

(73
1

mg+l 1—
—_——

01:=(00---0-0- -

I+1

”’D

-1 ) (74)

where a *--" denotes sequence of 0’91 is a subset of 1
into which a flux from Oflows directly. The remainder 1
—01=(10--0.0--1) is occupied by a region into which a
flux from (1---0.0 --0) flows directly.

Since Eqgs(67) and(68) are inapplicable foC=0, this
cell must be specially dealt with. Celll@as two children, 0
itself and 1 We treat the transport process frontd@0 im-

X(g

J|R2j)>s*

wheree is a sufficiently short time. The numerator signifies
the flux from Oto 1 across= ™, and the denominator is the
normalized density of statd®lDOS), of O, i.e., the ratio of
density of states of @ density of states df. A factor of 1/2
and an absolute value sign | appearing in the original
RRKM expression is unnecessary for E@5) since the re-
verse flux from_1to O has already been excluded.

The numerator of Eq(75) is reduced to

(x(g2_|0x(g5 D a6 () —a%1a6 (X))

:<X(XIE*)><W(X)I_Hn x(gT>‘1‘1|R8>> (76)

=l
=
=

The denominator of Eq(75) can be obtained indirectly by
subtracting the sum of the NDOSs of the other cells from
unity. The NDOS of a celC+#0 is obtained from

(x(X|EX))
(X(GlC)) ="

#{1n)

X 2 wooTsed o) H X(OIRY )

me {17} =*

>
(77)

where @mq"'sl-SO"'SmD) :=C. See Appendix B for the

derivation of Eqs(76) and (77).

All phase space integrals in Eq®7) and (68) take the
form of (w(x)F(x))=+, and Eqs.(76) and (77) have inte-
grals(w(x)F(x))=+ and(x(x|E*)). These integrals can be
evaluated using Monte Carlo phase space integration involv-
ing short-time trajectory calculations. On the standard Monte
Carlo integration, these are evaluated by

plicitly, and approximately consider that the process from 0

to 1 obeys the first-order rate law; that is, the distribution (X(x|”*)>~— 2 X(x|”*)— (78
function of time required in which phase points go through 0 #x
to 1is described by Xp; exp(—kpit)Ko; is the rate coeffi-
cient for the process. The rate coefficidqt is determined
by a similar manner as the conventional RRKM theot, (WOOF (X)) e = —— ZX* W(X)F(x), (79
ie., Xe
(@2 10x(a2 D) dlge(x)—9%1G6 (X)) whereX is a finite set of phase points drawn uniformly from
Kop:= — ° , (75 I', andX* is the intersection oft and E*. To reduce the

(x(92]0))

required trajectory calculations effectively, we use the fol-
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lowing algorithm for the evaluation: The following four sets 1.0 ' ' ' ' i '
are assembled from: (i) X;:=XYNE, (ii) X}, assembled by
thinning outx; randomly; (i) &, :=X,NE*; (iv) Xy, as-
sembled by drawing from;;, with a probability proportional $
to w(x). Note thatxD XD X, DX, DX, . Then, the inte- E;
grals are evaluated by

20 ~
(x(x|ZH)=2onE (80)
S A s
no/ 9
(W(X)) = . .
(W(X)F(X)ygs = —"" E F(x), (81) FIG. 2. The contour plot of potential energy surfaces used in this study, the
Xy xedy crossing seamsg (dashed ling and the surface of sectidh™ (dot-dashed

. . . line) of the collinear NO. The dot-dashed line corresponds to the normal
where Eqg. (81) is based on an importance sampling mode of the symmetric stretching. The abscissa and the ordinate express the
technique? The averagéw(x) )=« on the right-hand side of lengths of Ncentej—O and N—N, respectively, wheeg:=Bohr radius.

Eq. (81) can be obtained by

(W(X))g+= L > wx). (82)  nonical withinxe Z. Note that Eq(81) is kept intact so long
# X X< X as the relative distribution withire E is unchanged.

Another trajectory-economizing technique which we em- The concrete algorithm of the Monte Carlo integration
ployed in use of time reversal trajectories based on the tim@nd short-time trajectory calculations for the ERBST are
reversal symmetry of classical dynamics and adiabatic trardescribed in Appendix C.
sition probability of our model.

In addition, we consider the improvement of the Monte
Carlo integration of x(x|E*)) obtained from Eq(80). The  Ill. APPLICATION
cor_wergfnce of#]/#_X is slow becaL_Jse of the small NDOS 5 podel system
ratio of £ to I'. To bring about a rapid convergence, we can
use an importance sampling technidéean ensemble en- As a test calculation, the statistical model is applied to a
hancing the distribution irE is employed for the Monte Model system of collinear JO with a potential energy sur-
Carlo sampling ofY. Equation(80) is changed into the fol- face defined by Zahretal?® at total energies E

lowing equations: =64,65 ... ,80kcal mol ™. A contour plot of the potential
energy surface is shown in Fig. 2.
HX Zge x Q1Y) The Landau—Zener formutais utilized as the transition

(X(X|E*))= (83 probability

HX S HX)

where((x) is a weight function of the Monte Carlo sam- Py (X):=1—ex
pling and we impos&)(x) that the distribution is microca-

—2mV3,

| (84)
i|AF(Q).v(x)]

TABLE I. Values of parameters used in the calculations.

Method Parameter Value
EMS (common Number of incubation steps 510"
Number of atoms moved in each step 3
Trajectory calculations Number of trajectoridé; 5x10°
EMS steps between successive two trajectories x 10
Step size/f$ 0.50
NMC-TST Number of sampled state, 4x10°
Critical surface width in potential energy difference, 0.20
2e/kcal mol™?
Number of momenta set generated at critical surface, 10
Nmon
SMI-PST Number of sampled statdg,c 2x 10
Number of trajectoriesi\,y 5x10°
Width of Z in potential energy difference gtkcal mol™* 1.0
Factor for importance sampling,, 4.0
Step size for integration of kinetic equationst/fs 1.0

&This is common tdth-order semi-Markov model.
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T osf —-A—- SM1-PST
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1 L 1 1
65 70 75 80

Total Energy E / kcal mol™"

FIG. 3. Comparison of rate coefficients for the model system calculated
with four methods.

wherex is a point in the crossing seamjs the coordinate of
X in configuration spaceAF(q) is the difference in the
forces of the two states, evaluated at the crossing pa(Rr},
is the nuclear velocity, an¥,, is the interaction term that
couples the two states. We assuiig to be a somewhat
greater value, 400 cnt, to highlight nonstatistical behavior;
this trick was presented by Marks and Thomps$on.

We calculated the population decay of the system using
standard trajectory calculations, the nonadiabatic Monte
Carlo transition state theofNMC-TST), and the S\MHPST
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right points indicate the trajectory rate coefficients.

for (a) E=65 kcal mol'®; (b) E=70 kcal mol':; and(c) E=75 kcal moi™.

with two primitive cells. The initial reactant distribution was
settled to be microcanonical for trajectory calculations and
the SM-PST. We explain the computational details for tra-
jectory calculations and the SNPST in the next subsection.
The values of parameters used in the calculations are given
in Table I.

B. Computational details

1. Trajectory calculations

The standard trajectory calculations are carried out as
follows. The initial phase points are selected using the effi-
cient microcanonical samplinEMS) method?® The EMS
method comprises two stages, sampling from configuration
space and momentum space. The configuration sampling
procedure involves a Markov walk. The maximum step size
of the Markov walk was chosen to keep the acceptance/
rejection ratio between 0.3-0.7. The weight function of the
configuration sampling for this system with two degrees of
freedom is

1 Va(Q)<E

wgys(d) = 0 (85

otherwisé

whereE is the total energy of the system.
Each initial point obtained from the EMS was propa-

gated until 5 ps by Candy and Rozmus’ fourth-order sym-

plectic integratof® The energy difference between two po-

tential surfacesAV:=V,— Vg, was monitored. The change

in sign of AV indicates a passage across the seam. When this
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FIG. 6. The Markov-order dependence of the normalized density of states dfIG. 7. The Markov-order dependence of the flux frontoO1 for (a) E
the region0 for (a) E=65 kcal mol'%; (b) E=70 kcal mol'%; and (c) E =65 kcal mor'; (b) E=70 kcal mol'; and (c) E=75 kcal mol'. The
=75 kcal mol'L. The vertical axes are log scaled. vertical axes are log scaled.

occurs, we judge the trajectory reached the crossing pointveight isQ(q) := wgus(a) #(d), wherewgys(q) is the EMS
Then, it is necessary to locate the phase space coordinate efnfiguration sampling weight, angl(q) is the importance
the crossing point and to determine the time at the point. sampling weight, which we defined as

first-order approximation foAV andx; att is used to deter- 1 it [AV(q)|<e
mine the corresponding crossing pokit such thatAV=0 )
and the crossing time. 2 p(q)={ [a(AV(a)|—e)+1]7" if e<[AV(q)|<b,
The population decay evaluated from the trajectories is [a(b—e)+1] 71 if b<|AV(q)|
given by
1 Nr i<t wherea:=1.6 kcal mol'! andb:=40 kcal mol ..
N(t)=— > [1-Pz(i,)], (86) The whole-energy hypersurfaces of the model molecule
Npi=1 j=1 for E=64,65 . ..,80kcal mol! are approximately consid-

where Ny is the number of the trajectoriest(i,j) and ered to be ergodic. This was ascertained by observation of

P_,(i,j) are the crossing time and the transition probabilitythe Poincarenaps.
at thejth crossing point on théth trajectory, respectively.
Equation(86) corresponds to the evaluation of E§2) by

Monte Carlo integration using EMS. C. Results and discussion

The population decay was calculated for the model reac-
tion system using trajectory calculations, NMC-TST, SM1-
PST, and SM5-PST. In Fig. 3 we compare the rate coeffi-

Let (g1,92) be the representation a@f by the compo- cients for population decayk(E). For the trajectory
nents with normal coordinates. We approximately adopt thealculations and the SM1-PST, the rate coefficients were
surfaceq;=0 andq;>0 as=" (see Fig. 2 because it is evaluated by least-square fits for calculated population decay
difficult to find Poincaresurface of sections in general curves. The NMC-TST rates are smaller than the trajectory
Hamiltonian systems. The number of primitive cells are two:rates forE=66 kcal mol !, and the discrepancy is especially
R):={geG|gné=@} and Ry:=G—RY. We settleZ:={x  remarkable atE=70 kcal mol'’l. On the other hand, the
| -e<AV(g)<e,xel}, and 7:={x|AV(q)=—1.5%,xel'}  discrepancy of the SM1-PST rates is small, and the SM5-
(7 is explained in Appendix € The configuration sampling PST rates show excellent agreement with the trajectory rates.

2. Ith-order semi-Markov phase space theory
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TABLE II. The total flux into a regior(ps ?).

) 65 kcal mor
1.05
(01 (10
1.05 1.05
(001) (010 (100
1.05 1.05 1.05
(000 1 (0010 (0100 (1000
1.05 1.05 1.05 1.05
(000 03 (000 10 (001 00 (010 00 (100 00
1.05 1.05 1.05 1.05 1.05
(000 002 (000010 (000 100 (001 000 (010 000 (100 000 (100 002
0.82 1.05 1.05 1.05 1.05 0.82 0.23
70 kcal mor®
1)
3.88
(01 (10
3.88 3.88
(001) (010 (100
3.88 3.88 3.88
(000 1) (0010 (0100 (1000
3.88 3.88 3.88 3.88
(000 03 (000 10 (001 00 (010 00 (100 09 (100 03
3.77 3.88 3.88 3.88 3.77 0.11
(000 002 (000 010 (000 100 (001 000 (010 000 (010 002 (100 000 (100 002 (100 010
3.00 3.77 3.88 3.88 3.77 0.11 3.00 0.77 0.11
1) 75 kcal mol ™t
5.82
(01 (10
5.82 5.82
(001) (010 (100 (101
5.82 5.82 5.50 0.32
(0001 (0010 (0100 (0101 (12000 (1001 (1010
5.09 5.50 5.50 0.32 5.09 0.42 0.32

Next, we investigate the dependenceldior the SM-  to the flux from 6;...s,_1) to (S, ...S,). At E=65 kcal
PST rate coefficients foE=65, 70, and 75 kcal mof. In mol ™%, there is no sequence including two or more “1” for
Fig. 4, the numbers on the abscissa indidatnd the points 1<5; i.e., cellsR]' andR} have no overlap ifm—n|<5 and
on the extreme right indicate the trajectory rate coefficientsm#n. For =6, a overlapping sequen¢&00 001 appears
Although the SM-PST rates roughly approach the trajectory for the first time. Whereas all the fluxes frdi®) to (1), from
rates with an increase of the variations of the rate coeffi- (00) to (01), from (000 to (001), and from(0000 to (0001)
cients atE=65 and 70 kcal mol* are not monotonous; that are 1.05 ps?, the flux from(000 00 to (000 0 decreases to
is, the rate coefficients increase foe4, fall at|=5, and  0.82 ps?, because the total flux int®00 03 must be shared
then retain nearly constant values fer6. between fluxes fron{000 00 and from (100 0Q. De Leon

The behavior is qualitatively explained as follows. Oncecalled this effect “clogging.*® At E=70 kcal mol'%, there
a phase point has entered the region otte point will be  exists(100 0) with |=5; however, the flux, or clogging, is
transported to the crossing seam within a short time. That issmall (0.11 out of 3.77 ps!) and the dominant clogging
the transport process fromt6 1 is expected to be rate lim- arises from(100 002. At E=80 kcal mol '}, the first clog-
iting when the NDOS of (s the greater part df. Figure 5  ging occurs from(101); the flux decreases nearly exponen-
shows the values of thie,;, or rate coefficients of the pro- tially with increasingl. The situations of clogging are con-
cess from_Oto 1. It can be seen from Fig. 5 th&tindeed firmed intuitively in Fig. 8, which shows the shapes of

correlated withko,. The correlation aE=75 kcal mol'tis  R}(n=-3,—2,...,2) on=". The area of each region ex-
slightly poor. This can be explained by the fact that thepresses the corresponding fitfx®
NDOS of Ois smaller atE=75 kcal mol'! than atE=65 The computational efficiency for obtainikgE) was in-

kcal mol L. ko, is determined by Eq(75); that is, the flux vestigated in the trajectory calculations and thel $18T. In
from 0 to 1, shown in Fig. 7, divided by the NDOS of, 0 Fig. 9, the coefficients of variation ik(E) (i.e., the quotient
shown in Fig. 6. Although the NDOSs of @ecay nearly of the standard deviation to the arithmetic meahE =65,
exponentially, the fluxes of @deviate from exponential de- 70, and 75 kcal mol* by the trajectory calculations and the
cays for small region. Thus, the remarkable behaviorkgf =~ SM5-PST are plotted as a function of the total temporal
arises mainly from the behavior of the flux from®1. Table Ilength of calculated trajectories. Each data point was esti-
Il shows the total flux into each ceIK,X(92|C) 096 (X) mated from 20 runs using different random seeds Wth
—q%]qo(x». Note that a total flux intog; . . .s,) is equal =25-2500 for the trajectory calculations and wily,
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R
Ssu 0
~ Although the results of the test calculation are success-
S ful, there are still some problems. First, it is necessary to
develop a procedure to determine practically optimum
without large computational effort. We expect that this will
0.5 . ‘ . . ‘ be possible by successive elongation fowith judgment
-50 0 50 100 150 200 whetherl is sufficiently long by means of inspection of clog-
(b) a4, / ma, ging effects. Second, we must resolve the problem that the
number of cells irCq,;s;increases exponentially with increas-
o5l ing I. This problem arises from the fact that our statistical
model contains cells with constasy,_ andst only. We are
- going to resolve this problem by loosening restriction of cells
E— in the model. Work along these lines is currently in progress.
RS
:Sa 0
~
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FIG. 8. The shapes of regiorﬁé] on=" at(a) E=65; (b) E=70; and(c)
E=75 kcal mol'L. The black-filled areas denot@00.000. The abscissa and

the ordinate express the normal coordinateofind the time derivative of . . .
g,, respectively, wheren,:=electron massay:=Bohr radius, andg;:=1 In this Appendix we derive EQ$34) and (35).

hartree. If 0<7,<7, the following relation holds:

APPENDIX A: DERIVATIONS OF KINETIC EQUATIONS

(F1(x,0) 8L 7(X) — 71])
=100-5000 for the SM5-PST, under the conditions same as  _ m 0
in Table I. The arithmetic means of the 20 runs were used for _<F1(X71772'gx)6[ 0= 7]l 75ed Q) = al), (A
a total length for the SM5-PST since there is a slight differ-wherem is an arbitrary integer, anl,(x,g) are an arbitrary
ence in the total length for each run. From this plot, it isfunction. Whenr,=0, we have
found that the evaluation by the SM5-PST gives more pre-
cisek(E) for the three energies under the same length of the m
trajectory. Although our method includes a Monte Carlo in- (F1(x,95) o[ 7(xX) — 71])
tegration, the computational time for the Monte Carlo inte- — m 0y_
gration is minor whem\,y, is larger than 1000. In the trajec- <F1(X71’gx)5[7()()]0[7%49)() mil)- (A2)
tory calculations extra time is also needed for sampling of A proof of Eq.(Al) runs as follows. We may change the
initial phase points. variablex of the phase space integral on the left-hand side of
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Eq. (A1) to Xr 1 with a Jacobian of unity because of Liou- WhereF,(x) is an arbitrary function. In addition, the follow-

ville’s theorem ing apprOX|mat|on is also adopted transition tmﬁex) is
replaced witht> (x) such thattZ ,(x)<té(x)<t> (x).
This implies that Eq(20) is replaced with

(Fa(x,gy) 8 7(x) — 11])

=(FalXey O )L 70X, ) = 7)) p(Xar t+AD=p(X,DQ(X,AD), (A7)
N where
= EZ <Fl(xrlffzvg)r(n+v)5[_t§ (X)_ 7-2] -
) Qb= I [1=Pyogx)], (A8)
X[ ()< 7 — mp<t>, (0], (A3) te{ty00}

+ +
t (X)St<t§(X’A1>(x)

wherel(€) is the indicator function defined to be unity if Sr [cf. Eqs.(10) and (38)]

event £ holds and zero otherwise, and the second ste

foIIows+ from Eqs.+(24) and (25). +A requirement for 1 it OsAt<tf+(x)

o[-t (x)—72]|[t (X)<m,— 7,<t>,,(x)] to be nonzero o e o

is that —t> (X)—7=0 and t> (X)<r— 1<tZ,,(X). Q(X,AL) = Qsed 9x) if t7 (X)=<At<t; (X).

Since we suppose that0r,< 7, the value oft> (x) must Qsed 09)Qsed 3)  if 13 (X)=<At<td (x)

be nonpositive because of the former condition, and the latter : :

condition forcest>; ,(x) to be positive. This implies that all ' ' (A9)

the terms except for=0 in the summation must vanish. ) o . )

Thus, from Eqs(26) and (27) Consider an age distribution functiontat At with At=0
fo(mt+At)=(8[ 7(X) — 7] x(g3|C) p(x,t+Ab)). (A10)

(F1(%,9%) o[ 7(x) — 711) Substituting Eq (A1) with =7, m=7—At, and

_(Fy(x o™ L 7(X)— 7] F1(x,9M = x(g2C)p(x,t) into Eq.(A10), we obtain
Ty~ TprIX

XI[ 71— 71+ T(X)<75eégg)]>

= <F1(X7177'2!g;(n) 5[7()() - 7-2:“ [Tl< Tsedg)c())]% (A4)

fe(rt+AL)
=(8[ 7() — (7= A Tx(95|C) p(Xar .t + At)
X0 Tsegigx) - 7'|>

with 0<7,<7,. Therefore, we obtain EqAL). = (ST X)) — (7— At 1CY o(x.1)O(x. At
We introduce a statistical approximation thax,t) is (o700 = (7= ADIX(G| (. QXA
regarded as constant within an isoage hypersurface in a cell. X [ rseg(gg)— 7). (Al11)
Let pc(7,t) be the average gi(x,t) on the isopage hyper-
surfacei ¢(7) A requirement foré[r(x) (7— At)]e[rseégx) 7] to be

nonzero is that—t0 (x)—T+At 0 and 7'<t1 (x)
—tO (x) that |st (x)>At. Thus, the factoQ(x,At) in

_ (8 7(x)— 71x(g% CYp(x,1)) the integrand may be eliminated. From E46), we have
pC(T!t = 0
(Sl 7(x) = 71x(9x C)) fo(rt+At)
_ fo(7,t) (A5) =fc(7—Att)
(700 = 7IX(gI©)) | (L700— (7= AD (BRI C) B sed 6 — 7))
We definepe(nt) to be zero wher( 5[ 7(x) — 71x(g%|C)) (8700 = (1= AD]xX(g5C))
vanishedi.e., fc(7,t) also vanishels The approximation al- (A12)
lows us to replacep(x,t) with the correspondingc(r,t);
thus, the following relation holds: Supposer—At=0. Using Eq.(Al) reversely for the nu-
’ merator with r;=17, m,=7—At, and F1(x,9%)=x(g2C),
we have
(F2(x) 8L 7(x) — 71x(gIC)p(x,1)) fo(r,t+Ab)
=(F2(x) 8L () — 7Ix(g§|C)pc(7,t) -
(F2 Fr 57 x(9xC)pc TC> :fC(T_Atit)<5[<(5(;(x() TZ(?XI(C())TC» AL3)
X)— (17—
ity P20~ TIX(GIC)) 6) (%)~ (7= AD]x(0}

(8 7(x)— 7]x(g2|C)) We introduce a function
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(8(7(x)—7)x(g9C))
)i=
Sl S ele))

The use of Eq(A2) provides an alternative expression

(8(7(x)) x(92|C) O Teed 9 — 7
= . A15
Sel) (5(7))x(g%C)) (AL9

From Egs.(A13) and (A14)

(A14)

Sc(7)
Sc(7—At)
for —At=0, At=0.

fc(T,t+At): fc( T_At,t)

(Al6)

Equation(A16) is devoid of treatment for=0. To in-
corporate it, we consider

= ([ 7(x)— 871x(9YC ) p(X,t+AL)),
(A17)

with A7—+0, At— +0, andA 7<At. One can rewrite this
as

for(AT,t+Al)

fo (AT,t+At)
=([AT—7(xa) Ix(9y, [C)p(Xar t+AD)

=3 (ATt (0IM(GICp(x.D)
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fcr(AT,t+At)

=(Qeed 02 It ()~ A7]p(x,1)x(gLC"))

=(Qsed 99) 8l Tsed 99 — A7— 7(X)Ip(X,t) X (gx|C")).
(A19)

Disintegrating the integrals into contributions from all
isoage hypersurfaces in the cell, we obtain

fo (AT t+AD)= f:dr<Qseg;gS>6[rseg;gS>—Ar

— () 8L 7(¥) — 7lp(x, ) x(gC")).
(A20)
Since a phase point satlsfylng)((gx|C )=1 must be con-
tained in a parent o€’, we may disintegrate the right-hand

side of Eq.(A20) further into contributions from all parents
of C’

fcr(AT,t"l‘At)

J'dT<Qseg{go)5[Tsegﬁgg) Ar—17(x)]

CeparC’
_ ) ) X 8 7(X)— Dx(92C)x(gilC)). A21
QR ADIE (<A< 500]) [7(x) = 7]p(X%,t) x(9x| C) x (94 C")) (A21)
. _ From Eq.(A6)
=2, (AA7-1 (0Ix(GICHp(xDQXAD),
(A18)  f.,(Art+Al)
where the last step comes from the fact thﬁt?(x)
—AIE () =At<t®,,(x)] may be reduced to Cgac, dr f(n(aL 70~ Tlglle) !
St (x)—A7] whenAr<At<1. It is evident that ifA 7 is o o«
unequal tot2 (x) then {A7—t2 (x)] vanishes. Thus, all " (Qsed 9l 7o G) ~ A7 7]
terms in the summation correspondlnguél vanish when X 8 7(x)— 7]x (g% C) x(gi/C)). (A22)
A7— +0. Moreover, |ft1 (x) is equal toA 7, Q(x,At) may
be replaced bpseégx) Hence Therefore
fo (0= > | drBS (Dfc(nt), (A23)
Ceparc’ /0
where
4 sel g se S_A - - SC iC,
BS (7= lim (Qsed 9x) Ol Tsed 95) = A7— 7] 5[ 7(x) — 7]x(9,|C) x(9|C"))
A7—+0 (87— 71x(§IC))
i (Qued 90 msed G0 — A7 718 7(X) Ix(g |C>x<gi|C'>l[rseg<gS>—r]>
Art0 (S 700 TX(GRIC) ol Tsed GO — 7
0 Sl 0 S 0 1
<Qseégx) [Tseg{gx) 7] [T(X)]X(gx|C)X(gx|C )> (A24)

([ 7(x)1x(GRIC) O Tsed O — 7
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APPENDIX B: DERIVATIONS FOR COMPUTATIONAL
METHOD

In this Appendix we derive Eq967), (68), (76), and
(77).

Let us consider the following segment average:

m’

1
lim —E F(go I1 x(g 'R, BY

n—’xtn+1( ) t0 ( )I j=m’

whereF(g) is an arbitrary function for a segmegt G, and

{Sm/,sm/+1, Ce
rewrite Eq.(B1) as a phase space average restricted.in

Suppose tha{lm/,/} is not empty. Then

m’

F(go I1 x(g,'IRS)
j=m’

n

1
im s———— >
=0

neth (0 —t5 (%) 1=
nm;§ F(gx(gy MR))
néocthrl(X) +(X)i:0 Ox) x(9x 1
< IT x(g, IR, (B2)
j=m’

wherem is an index contained i{llm,,/}. Since if and only if
geR‘l) then g passes througtE*, the following equation
holds for an arbitrary integer:

#04, (B3)

n

x(99 RS )—l”f "*(1()X)dt X(x|E*)
X

or

E+
x(ngR2>=J[ ft‘;r(lf)dt X(XIE)
X

n

E+

(X =
U dt x(x|E%),

S

(B4)
whereJ(a) is a function defined to be
lla if a#0 5
Y@= o i a-0 (89
Then, we obtain
nIp0y n tsil(x) —
X(GIRD=Ir=(g] | 11t x(x|=*)
n X
- L"ff “dt I r=(09) Ix (x| E*), (B6)

Snr} is a set of symbols, 0 or 1. We shall

Kawano, Takahashi, and Saito

wherer=(g) is a temporal length of N E

T=(9): —ftl (():)dt x| E) (B7)

tox

wherex is an arbitrary point om. From Eqs.(B2) and(B6)

n m//

1
lim —————— 2> F(gy [T x(g,IRY)
n‘>°°tn+l(x) tO (X) i=0 j=m’

n

1
—I|m—+2

F(g))
ot (X)—ty (x) =0
2+
x J magt J[ra<g§’t>]x<xt|a*>}
G m)
m”
x I1 X(glx_]|R2j)
j=m'
1 n
=lim———— 2 J' m+1X) g F(gy)
ngvootn+1( )— tO (x) =0 Jg (%) t

my

X Ar=(g) =) 11 x(ae IR

=<F(QT)J[TE(Q‘X’)]X(XIE*)J,Q x(gQ"'IRSj>>

{ [ / [ o

TE(gx)j:ml

"R

(oy) 2
0 ]._.[ X(gx

F(gd) 2 B
:<X(X|E*)>< go II xtoy JIRS.)> (B8)
7-E(gx)J:ml ! =+

From Egs.(63) and (B8)

Sc(7)
(Ol 7sed O7) = 71 7=(GOI, x(g7'|RE)) =
C o (Une(@)I x(gFRY)) =

(B9)

where G« S-S0
tained in{lms}.
From Eqgs.(66) and (B8)

‘sm_)=C, andm is an integer con-
>

(Qued O3 6 TP moed OV = (G o x(0F*|RE)) =

DE ()=

(Urs(g)I, x(95 ‘IRO)>:*

(B10)
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where (sm<~~sl.so~-sm>)==c, (smq_lmso.s_lmsmb_l)
:=C’, andm,; andm, are integers contained {rixsfl} and
{1$:}, respectively.

The numerator on the right-hand side of E@5) is

X(QS,BIQ)X(QSSH) 8o (x)—0%1406(x)

=lm—=— Z f '*1()()

ngxtnﬂ(x) to (x) t; "

xdt x(gy _, 10x(gy | [Ddlao(x)—a%1d0 (%)

1 n

= lim s+———+— 2> x(g|0D)
n"mthrl(X) t ) i=0

1 n mg+1

=lim———+—2> [l x(g) '|RO
“—’mtn+1(x) t0 (x) 1=0 j=m §

mg+1
=(x(x| 2 *>>< H Xgm IR ), (B1Y)
where the second step comes from
ft'”‘“ 510 ()% 10 (x) = 1. (12

Rearranging this equation, we obtain
(x(g2_|0)x(g5 [Ddlae () —a% 18, ()

=(x(X|E*))

1 mg+1
><<T (go)X( g ™RY I _X(g; ™ IRS >

X j=mp+

it
=
=

my
—<X(XIH*)>< 1 g™ IRY) > . (B13)
The NDOS of a cell $m<]---sl.so---sm>) :=C#0 is ob-
tained from
9ylC))

= lim +—
noate,  (X) =t (X) i=

2 f '“(X)dt x(93/C)

1
= lim E (gx C)7se gx)
n—>octn+1(x) to ( ) 1= X | T 4

my My
Tseg{gg) H m—J|jo)> . (Bl14)

:<X(X|E*)>< ) X(Ox
7=(0x) i=M<

wherem is an integer contained i{ﬂ:j}.
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we regard the arithmetic mean values among availabler

m; andm,) as the estimators of the integrals. Therefore, we
obtain Eqs(67), (68), and(77).

APPENDIX C: PSEUDOCODE

The Monte Carlo integration and trajectory calculations
for SMI-PST can be expressed in pseudocode as follows:

(1) Draw a pointx by Monte Carlo sampling procedure;
(2) If (xe E){

QR Y=y +HQ(X);

(4) c:=c+1.0;

(5 If (c>dgp andnyy <Ny){

(6) C:=C— dgyip;
(7) ny=n;+1;
(8) Evolve x until the passage across a hypersurface

7 in both the forward and the backward time
directions, and lex* and x~ be the two end
pointsx™ =x.+ andx™ =x-(t~<0<t™);

(9) If (xe E*){

(10 Weurrent=W(X);

(11 Weum=Wsumt Weurrent

(12 Ny =Ny +1;

(13 If (ny <No){

(14) If (Wmax< Wcurren)Wmax:Wcurrent;

(15 } else if Weyrrent™ Fuw-Wmax Rand)

(16) Ny:=ny+1;

a7 Evolvex™ during 2+ 1 times passage
across>™ in the forward time direc-
tion;

(18) Evolvex™ during 2+ 1 times passage
across=~* in the backward time di-
rection;

(19 Store the trajectory datav(.en, @ Set

of times at which it passes across
>*, a set of times at which it passes
acrossg, and the corresponding tran-
sition probabilitie$ in a storage;

(20) }

(21) }

(220}

(23 }

(24) y:=y+1/Q(x);

In this code N,y , Ny, F,,, andl are constantsNo must be
much smaller thamN,y,, typically No=N,,/100). Rand is a
uniform random fraction generator within zero to one, and
>*:={xeT|qe(x)=q}. The hypersurface in line 8 is de-
cided empirically so that{xt|t_<t<t§t}r‘|§=@ and
{xt|t+<t<t§i}ﬂ§=@ for all phase poink e =, wheret |
and t_ is defined in the pseudo codcaii::min{t>0|xI
ez, andt> :=maxt<0|x,e =*}. The hypersurface is
used for an efficient decision whether a phase ppmE is
contained inE*: if and only if {x,|t_<t<t,}N # & thenx

Although the values of phase space integrals containeg contained in=*. The variablesy, y;, Ny, Ny, Ny, C,
in Egs. (B9), (B10), and (B14) should not depend on the ,__ ~andwg,,are initialized as zero beforehand. The code

choice ofm [or m; andm, for DC (v)], theoretically, they

is repeatedNyc times. For the repetition, the varialde,, is

are not so for numerical calculatlons owing to errors. Thenpccasionally regulated so that the predicted valua gfat
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the end of the loop exceeds,, by only a small amount.
After completion of the loop, the integraly(x|E*)) and
(W(x)F(x)) are estimated as

(X(X|E*))= |||Y|, 1)
ny

(WOOF(0)= —2" S [F()+F(x)], (D
2Ny Ny xe &y

wherex’ denotes the time reversal xfandF(x) andF(x")
are calculated from the stored data.
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