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Nonadiabatic unimolecular reaction kinetic theory based
on l th-order semi-Markov model

Akio Kawano, Osamu Takahashi, and Ko Saitoa)

Department of Chemistry, Graduate School of Science, Hiroshima University,
1-3-1, Kagamiyama, Higashi-Hiroshima 739-8526, Japan

~Received 15 June 2001; accepted 19 December 2001!

We present a microcanonical kinetic theory, which we refer to as thelth-order semi-Markov phase
space theory~SMl-PST!, for nonadiabatic unimolecular dissociations dominated by standard surface
hopping dynamics. In this theory, reaction dynamics is considered as a stochastic transport, which
is described as anlth-order Markov chain, among cells produced from partition of the available
phase space. Kinetic equations are derived by importing residence time of stay cells as a random
variable into the Markov chain. An efficient method to determine the parameters of the kinetic
equations is developed, which is made up of Monte Carlo phase space integration and short-time
trajectory calculations. As a test calculation, the SMl-PST has been applied to a model system for
the predissociation of collinear N2O. We show that the SMl-PST works well, giving rate coefficients
of much better accuracy than conventional statistical theory and of comparable accuracy to standard
trajectory calculations with a lower computational effort. ©2002 American Institute of Physics.
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I. INTRODUCTION

The conventional statistical reaction theories such as
transition state theory1 and Rice–Ramsperger–Kasse
Marcus~RRKM! theory2–5 are widely utilized to predict the
rates of elementary chemical reactions. In this theory
estimation of reaction rates is performed without dynami
scrutiny by adopting a statistical approximation called ‘‘tra
sition state’’ assumption.6–8 ‘‘ A priori equal probability’’ is
the central component of this. Ina priori equal probability
assumption, the following conditions are supposed for a
action system: phase space distribution in a molecular re
is supposed to be maintained in the equilibrium distribut
throughout the reaction, and all states in the phase sp
arrive at a transition state in equal probability. In oth
words, the intramolecular energy redistribution is rapid
comparison with the reaction rate and a phase point wan
the available phase space ergodically until it locates the t
sition state. The progress of experimental and computatio
works has revealed that there exist reaction systems
which the theories fail to estimate the rates because of
breakdown of the assumption. Especially, such unusual r
tions have been investigated vigorously for unimolecular
actions, and are called ‘‘non-RRKM’’ behavior.

Some advanced statistical theories which predict or
count for the nonstatistical behavior have been proposed9–18

Almost all such theories deal with reactions on adiabatic
tentials. In this paper we propose an advanced microcan
cal statistical theory, called thelth-order semi-Markov phas
space theory~SMl-PST!, for nonadiabatic unimolecular reac
tions. Our theory is closely related to theories which deco
pose reaction dynamics into a hierarchy of recross
motion.14–18In our theory, reaction dynamics is decompos

a!Electronic mail: saito@chem.sci.hiroshima-u.ac.jp
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according to recrossing motion of a crossing seam.
The present theory can be divided into three parts.~i!

Phase space partition into cells. Transport of phase po
among cells is treated as anlth-order Markov chain. A man-
ner of symbolic dynamics provides a refined description
the process.~ii ! Conversion of discrete time into real time fo
the transport process, i.e., replacing the Markov chain i
the corresponding semi-Markov process. This is achieved
introducing a sort of local equilibrium assumption that d
tribution in each n21 dimensional small hypersurfac
~wheren is the dimensionality of the available phase spac!,
called ‘‘isoage hypersurface,’’ is regarded as microcanoni
but one dimension that runs along trajectories is in noneq
librium. Kinetic equations describing the population dec
are obtained in this part.~iii ! Computational method to de
termine the parameters contained in the kinetic equations
to solve the kinetic equations. An efficient computation
procedure for the special condition when only two primiti
cells ~defined below! are available is also proposed. This
made up of Monte Carlo phase space integration and sh
time trajectory calculations.

As a test calculation, we apply the SMl-PST with two
primitive cells to a model system of spin-forbidden pred
sociation of collinear N2O

N2O~1(1!→N2~
1(g

1!1O~3P!. ~1!

This reaction involves two diabatic potential energy surfac
an attractive singlet state potentialVA that traps the reactan
molecule, and a repulsive triplet state potentialVB that leads
the reactant into the product. The model of dynamics for
test case is identical with that in Ref. 19. At timet50, only
an initial ensemble distributed on the stateVA is prepared. A
0 © 2002 American Institute of Physics
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phase point in the ensemble moves onVA followed by a
classical equation of motion. The standard ‘‘surface h
ping’’ assumption is supposed; that is, transition between
states must occur only locally on the crossing seamj, de-
fined as

jª$quDV~q!50%, ~2!

where q is a coordinate in the configuration space, a
DV(q) is the energy difference between the two poten
surfaces. When a trajectory passes acrossj, a transitionVA

→VB may occur with a probability depending on the pha
space coordinate of the crossing point. The flux fromVR to
VA is supposed to be negligible. Phase points pass
through the seamj from the inner side of the potential we
without a transitionVA→VR will soon return toj from the
outer side. Marks and Thompson developed the nonadiab
Monte Carlo transition state theory~NMC-TST! based on the
conventional statistical reaction theory by treating a ‘‘retu
flux’’ statistically.19

In Sec. II we present the SMl-PST. In Sec. III the theory
is applied to the reaction of collinear N2O. The results are
compared with the results of trajectory calculations and
NMC-TST.

II. THEORY

A. Symbolic dynamics

In this subsection we describe a phase space part
and prepare a notation.

For completeness, we shall review set-theoretic term
‘‘partition’’ and a ‘‘cell.’’ A family of sets A, whose cardi-
nality is not necessarily countable, is called a partition o
setX, and each element ofA is a ‘‘cell’’ when the following
conditions hold:

AÔB, ~3!

ø
APA

A5X, ~4!

AùB5B if AÞB for all APA,BPA. ~5!

For example, $$1,5%,$2,4%,$3%,$6%% is a partition of
$1,2, . . . ,6%, and the subsets$1,5%, $2,4%, $3%, and$6% are the
cells of the partition.

A partition of a partition of a setX provides a partition of
the setX as follows. LetAª$AsusPS% be a partition ofX,
andA8ª$As8usPS8% be a partition ofA ~eachAs8 is a subset
of A!. It is clear that the family of sets$øAPA

s8
AusPS8% is a

partition of X. For example,$$1,5%,$3%%, $$2,4%,$6%%% is a par-
tition of $$1,5%,$2,4%,$3%,$6%%!, and$$1,3,5%, $2,4,6%% is a parti-
tion of $1,2, . . . ,6%.

We define a combination of two partitions: ifA1

ª$As
1usPS1% andA2ª$As

2usPS2% are partitions of an iden
tical setX, then

A1∨A2ª$As1

1 ùAs2

2 ÞBus1PS1 ,s2PS2% ~6!

provides a finer partition ofX. For example,

$$1,2,3,4%,$5,6,7,8%%∨$1,3,5%,$2,4,6,8%,$7%%

5$$1,3%,$2,4%,$5%,$6,8%,$7%%%.
-
o
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Since the associative law (A1∨A2)∨A35A1∨(A2∨A3)
holds, we can denote (A1∨A2)∨A3 asA1∨A2∨A3 without
ambiguity. Further, ∨ i 51

n A1ªA1∨A2∨,•••,∨An is also
well-defined.

In this paper we deal with dynamics on an indecomp
able subset of phase space of the stateVA , denoted byG; that
is, G is an ergodic subset of an energy hypersurface.20 If one
is interested in dynamics of a decomposable manifold,
dynamics can be constructed from the set of elementary
decomposable dynamics.

Suppose a Poincare´ surface of section traversed by tra
jectories inG

(1
ª$xPGuqL~x!5qL

0 ,q̇L~x!.0%, ~7!

wherex denotes a phase point,qL(x) is a particular elemen
of the configuration coordinate ofx, andqL

0 is some fixed
value of the coordinate element. The section(1 divides each
trajectory $xtutPR% in G into (1-to-(1 segments

$xtutn
(1

(x)<t,tn11
(1

(x)%nPZ , wherext is the classical time

evolution of x after time t, $tn
(1

(x)%(¯,t21
(1

(x),t0
(1

(x)

<0,t1
(1

(x),t2
(1

(x),¯) is a set of times at which the
trajectory passes across(1 ~see Fig. 1!, andR andZ is the
set of all real numbers and all integers, respectively. Here
ter, (1-to-(1 segments are called ‘‘segments’’ for sho
The temporal length of each segment is supposed to be
nificantly short in comparison with the reaction time scale
is important to note that the set of all segments in the syst
denoted byG, is a partition ofG,21 and that a partition$As%
of G provides a partition$As8% of G; i.e., As8 is a phase space
region occupied by all segments contained inAs . In this
sense, we shall regard a partition ofG also as a partition
of G.

Let gx
n be a segment defined to be

gx
n
ª$xtutn

(1

~x!<t,tn11
(1

~x!%. ~8!

A segmentgx
0 is a set of phase points containingxPG.

Generally

FIG. 1. Schematic drawing of segments in available phase spaceG. A tra-
jectory $xt% is divided by an oriented surface of section(1 into segments
$gx

n%. A point in (1 is included not in the end point of the earlier segme
in time but the beginning point of the later segment. Integern corresponds to
the discrete time andgx

0 denotes the segment containingx.
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xtPgx
n~x,t ! , ~9!

wheren(x,t) is a function giving an integern such that

tn
(1

~x!<t,tn11
(1

~x!. ~10!

Let u be a mapping operator that maps a segment to
consecutive one

ugx
n
ªgx

n11, ~11!

that is

umgx
n5gx

n1m . ~12!

Suppose a partition ofG into nstate cells, P0ª$Rs
0us

Ps%, wheresª$0,1, . . . ,nstate21%. We refer to these cells
as ‘‘primitive cells.’’ Let Rs

m be a set of segments defined
be

Rs
m
ªumRs

0. ~13!

Since the mappingu:G→G is bijective, a family of sets
Pmª$Rs

musPs% is also a partition ofG for an arbitrary in-
tegerm.

Consider a partition∨m52`
` Pm . We represent a cel

¯ùRs2

2 ùRs1

1 ùRs0

0 ùRs21

21 ùRs22

22 ù¯ as a bi-infinite sym-

bol sequence (̄ s2s1.s0s21s22¯), where a ‘‘.’’ is placed
between two symbols corresponding toP1 andP0 ~we omit
a ‘‘.’’ when it is not needed!. This sequence denotes not on
a cell of a partitionG andG but also an itinerary of a phas
point; if a phase point x is contained in (̄ s2s1

.s0s21s22¯), a pointxt must be contained in a primitive
cell Rsn(x,t)

0 at time t.

From the definition

umRs
n5Rs

n1m . ~14!

Thus, we have

um~¯ùRs1

1 ùRs0

0 ùRs21

21 ù¯

ùRs2m11

2m11ùRs2m

2m ùRs2m21

2m21ù¯)

5~¯ùRs1

m11ùRs0

mùRs21

m21ù¯

ùRs2m11

1 ùRs2m

0 ùRs2m21

21 ù¯). ~15!

This equation shows thatu acts for bi-infinite sequences a
the ‘‘shift map’’

um~¯s1.s0s21¯ !5~¯s2m11.s2ms2m21¯ !. ~16!

The shift map dynamics of bi-infinite sequences rep
duces a feature of the original dynamics onG if the partition
$Rs

0% is defined properly. Since we are interested in the p
cess where phase points pass across the seamj, it is an
acceptable choice thatR0

0ø¯øRa
0 is the set of all segment

passing acrossj, and the complementRa11
0 ø¯øRnstate21

0 is

the set of all segments do not.
From a practical point of view, we approximately tru

cate bi-infinite sequences into ‘‘coarse-grained’’ counterpa
(smv

¯s1.s0¯smx
), wheremv and mx are integers such

that mv>0>mx . A positive integer
e

-

-

ts

lªmv2mx11, ~17!

signifies a length of the finite sequence. LetC be the set of all
finite sequences with a fixedmv and mx . The number of
elements inC is equal tonstateto thelth power. However, not
all sequences inC exist as cells in the system. We denote
subset ofC containing only actual cells byCexist.

Although a dynamical system of finite sequences asym
totically approaches a system of bi-infinite sequences w
increasingl, there are intrinsic differences between the tw
systems. First, whereas bi-infinite sequences divide the a
able phase space into the infinite number of cells, finite
quences divide the space into finite cells. Second, more
markably, whereas the dynamics of a bi-infinite sequenc
deterministic, finite sequence dynamics is indeterministic
stochastic. A finite sequence generally evolves into one
of nstate different sequences by indeterministic or stochas
dynamics, providedmv and mx are fixed. For instance
when nstate54, then ~012.302! may be evolved into
~123.020!, ~123.021!, ~123.022!, or ~123.023!. We approxi-
mately regard the transport dynamics amongCexist as a Mar-
kov chain, i.e., the dynamics amongP0 as anlth order Mar-
kov chain.

We introduce a notation and terminology as follows: f
a cell CPCexist

par~smv
¯s1.s0¯smx

!

ªCexistù$~ssmv
¯s2.s1¯smx11!usPs%, ~18!

chi~smv
¯s1.s0¯smx

!

ªCexistù$~smv21¯s0.s21¯smx
s!usPs%. ~19!

We call parC the ‘‘parents,’’ chiC the ‘‘children’’ for C. If
gx

n is contained in a cellC, gx
n21 andgx

n11 must be contained
in cells which are one of the parents and one of the child
of the cellC, respectively.

B. Kinetic formulation

We start on kinetic formulation based on the usual d
namics. From Liouville’s theorem, the time evolution of r
actant phase space distributionr(x,t) is given by

r~xDt ,t1Dt !5r~x,t !Q~x,Dt !, ~20!

for an intervalDt>0, whereQ(x,Dt) is the probability that
the phase pointx will not lead to a transitionVA→VR within
Dt

Q~x,Dt !ª )
tP$tn

j
~x!%,

0<t,Dt

@12Phop~xt!#, ~21!

where$tn
j(x)%(¯,t21

j (x),t0
j(x)<0,t1

j(x),t2
j(x),¯) is

a set of timers at which the trajectory$xtutPR% passes acros
the crossing seamj, andPhop(x) is the probability of a tran-
sition VA→VR at xPj. The reactant populationN(t) is ob-
tained from the distribution by

N~ t !ª^r~x,t !&, ~22!

where^¯& denotes a phase space average
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^F~x!&ª
*GdxF~x!

*Gdx
, ~23!

whereF(x) is an arbitrary function.
Next, we derive kinetic equations for the SMl-PST on

the basis of the above consideration. From Eq.~9!, xtPgxt

0

and xtPgx
n(x,t) . This implies thatgxt

0 5gx
n(x,t) ; hence,umgxt

0

5umgx
n(x,t) with an arbitrary integerm. Therefore, we obtain

gxt

m5gx
m1n~x,t ! . ~24!

Consider two phase pointsx andx8ªxt . The pointx8 is
contained ingx

n(x,t) . In addition, consider another phas
point x9 which is the beginning point of a segme
gx

m1n(x,t)5gxt

m , where m is an arbitrary integer. From th

standpoints ofx and x8, we have x95xt
m1n(x,t)
(1

(x) and

x
t
m
(1

(x8)
8 5xt1t

m
(1

(xt)
, respectively. Therefore, the followin

relation holds:

tm1n~x,t !
(1

~x!5t1tm
(1

~xt!. ~25!

We introducet andtseg as

t~x!ª2t0
(1

~x!, ~26!

tseg~g!ªt1
(1

~x!2t0
(1

~x!5t1
(1

~x!1t~x!, ~27!

wherex in Eq. ~27! is an arbitrary phase point contained ing.
t(x) is referred to as the ‘‘age,’’ which signifies the elaps
time for the pointx from the last entrance into the curre
segment, andtseg(g) represents the temporal length of th

segmentg. Since t1
(1

(x).0 and t0
(1

(x)<0, the relation 0
<t(x),tseg(gx

0) holds for an arbitrary pointxPG. From
Eqs.~25! and ~26!, we obtain

t~xt!5t2tn~x,t !
(1

~x!. ~28!

Let x(auA) be a characteristic function defined to equ
unity if aPA ~or a,A) and zero otherwise~in this paper,a
is a phase point or a segment, andA is a phase space re
gions!. Note that

x~xuC!5x~gx
0uC!, ~29!

with CPCexist, sincex is contained ingx
0 ~where we use the

idea thatC is not only a set of segments but also a set
phase points!. We shall usually employx(gx

0uC) rather than
x(xuC) in expressions since one discerns more easily
this value remains unchanged as long asx is placed on an
identical segment. Generally,

x~xtuC!5x~gxt

0 uC!5x~gx
n~x,t !uC!. ~30!

Let f C(t,t) be the distribution of aget in a cell C
PCexist, andNC(t) be the population inC

f C~t,t !ª^d@t~x!2t#x~gx
0uC!r~x,t !&, ~31!

NC~ t !ª^x~gx
0uC!r~x,t !&5E

0

`

dt f C~t,t !. ~32!

The total population is given byN(t)5(CPCexist
NC(t).
l

f

at

On constructing the kinetic theory we suppose the f
lowing two approximations.~i! The phase space distributio
within an isoage hypersurface in a cellCPCexist, defined by

i C~t!ª$xPCut~x!5t%, ~33!

is regarded as microcanonical. In other words, we direc
consider nonstatistical distribution with only one dimensi
along segments.~ii ! An occurrence of a transitionVA→VR of
a phase pointx is delayed until the next passage ofx across

(1; that is, we replace transition timetn
j(x) with tm

(1
(x)

such that tm21
(1

(x),tn
j(x)<tm

(1
(x) without change of the

transition probability. A typical tseg ~or a typical tm
(1

2tm21
(1

) is so short compared to the time scale of react
that the error caused by this approximation is negligible
the kinetic model.

Under these conditions, the time evolution of an a
distribution function is provided by~see Appendix A!

f C~t,t1Dt !5 f C~t2Dt,t !
SC~t!

SC~t2Dt !

for 0<Dt<t, ~34!

f C8~0,t !5 (
CPparC8

E
0

`

dt BC
C8~t! f C~t,t !, ~35!

with

SC~t!ª
^d@t~x!#x~gx

0uC!u@tseg~gx
0!2t#&

^d@t~x!#x~gx
0uC!&

, ~36!

BC
C8~t!

ª

^Qseg~gx
0!d@tseg~gx

0!2t#d@t~x!#x~gx
1uC8!x~gx

0uC!&

^d@t~x!#x~gx
0uC!u@tseg~gx

0!2t#&
,

~37!

Qseg~g!ª )
tP$tn

j
~x!%

t0
(1

~x!<t,t1
(1

~x!

@12Phop~xt!#, ~38!

wherex in Eq. ~38! is an arbitrary point ing, andu(x) is the
unit step function

u~x!ªH 1 if x.0, ~39!

0 if x<0. ~40!

It is evident from the definition that

SC~0!51, ~41!

SC~ta!>SC~tb! when ta,tb , ~42!

and thatf C(t,t) must be zero for allt such thatSC(t)50.

BC
C8(t) is defined for a pair ofC and C8 such thatC8 is a

child of C. Qseg(g) is a probability that a phase point passin
through the segmentg will not result in a transitionVA

→VR within g. All fractional expressions in Eqs.~34!, ~36!,
and Eq.~37! satisfy the condition that when a denominat
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vanishes, the corresponding numerator also vanishes. W
fine 0/0 to be 0 for the fractions. Equations~34! and ~35!
describe the kinetics of our statistical model.

The physical meaning ofSC(t) is shown by the follow-
ing consideration. Assume the simple situation where
transitionVA→VR occurs; thenQseg(g) is settled unity for
all gPG. Let f C

eq(t) denote the stationary distribution o
f C(t,t) with the normalization condition

(
CPCexist

E
0

`

dt f C
eq~t!51. ~43!

Namely, f C
eq(t) is the age distribution inC when a microca-

nonical distribution is achieved inG. From Eqs.~34! and
~35!, we have

f C
eq~t!5aCSC~t!, ~44!

FC8
eq

~0!5 (
CPparC8

E
0

`

dt B̄C
C8~t! f C

eq~t!, ~45!

where

aCª f C
eq~0!, ~46!

B̄C
C8~t!ª

^d@tseg~gx
0!2t#d@t~x!#x~gx

1uC8!x~gx
0uC!&

^d@t~x!#x~gx
0uC!u@tseg~gx

0!2t#&
.

~47!

Equation~44! shows thatSC(t) is equal to the equilibrium
age distribution function, except for a constant factor. T
factor aC , is found from the simultaneous equations~43!,
~44!, ~45!, ~46!, and~47!.

C. Computational method

Hereafter, we stipulate that a range of an integral c
tains the lower limit but does not contain the upper lim
This is essential for integrals with the Dirac delta functio
for arbitrarya andb such thata,b and an arbitrary function
F(x)

E
a

b

dx F~x!d~x2c!5ua
b~c!F~c!, ~48!

where

ua
b~c!ªH 1 if a<c,b

0 otherwise
. ~49!

The following relation will be used several times:

E
t i
(1

~x!

t i 11
(1

~x!
dt F~gxt

j !d@t~xt!#

5u
t
i
(1

~x!

t i 11
(1

~x!
@ t i

(1

~x!#F@gx
j 1n~x,t i

(1
~x!!

#5F@gx
i 1 j #. ~50!

It is more convenient to numerically solve the kine
equations~34! and ~35! for the following WC(t,t) than
f C(t,t):

f C~t,t !5SC~t!WC~t,t !. ~51!
de-

o

e

-
.
;

The value ofWC(t) is meaningless fort such thatSC(t) is
zero, sincef C(t,t) vanishes wheneverSC(t) is zero. Substi-
tuting Eq.~51! into Eqs.~34! and ~35!, we obtain

WC~t1Dt,t1Dt !5WC~t,t ! for t.0, Dt.0, ~52!

WC8~0,t !5 (
CPparC8

E
0

`

dt BC
C8~t!SC~t!WC~t,t !. ~53!

To apply numerical integration in Eq.~53!, we shall dis-
cretize botht and t with a constant stepDt.0. WC is ap-
proximated with respect tot by rectangular strips with the
same widthDt

W̃C~ ĩ,t !:'WC~t,t !, ~54!

where ĩ is an integer such that

~ ĩ21/2!Dt<t,~ ĩ11/2!Dt. ~55!

From Eqs.~52!, ~53!, and~54!,

W̃C~ ĩ11,t1Dt !5W̃C~ ĩ,t !, ~56!

W̃C8~0,t !5 (
CPparC8

(
ĩ50

nmax

DC
C8~ ĩ !W̃C~ ĩ,t !, ~57!

where nmax is an integer such thatDC
C8( ĩ)50 for all ĩ

.nmax, andDC
C8( ĩ) is

DC
C8~ ĩ !ªE

~ ĩ21/2!Dt

~ ĩ11/2!Dt
dt BC

C8~t!SC~t!. ~58!

The functionsSC(t) and DC
C8( ĩ) should be found to

solve the kinetic equations. Since we have assumed thatG is
ergodic, a phase space average may be rewritten into a
average for almost everywherexPG.20

^F~x!&5 lim
t8→`

1

t8
E

0

t8
dt F~xt!, ~59!

whereF(x) is an arbitrary function. This may be rewritten a
a segment average~which is more useful for us!

^F~x!&5 lim
n→`

1

tn11
(1

~x!2t0
(1

~x!
(
i 50

n E
tn
(1~x!

tn11
(1~x!

dt F~xt!.

~60!

Substituting Eq.~60! into Eq. ~36!, we obtain

SC~t!

5 lim
n→`

( i 50
n *

t
i
(1

~x!

t i 11
(1

~x!
d@t~xt!#x~gxt

0 uC!u@tseg~gxt

0 !2t#dt

( i 50
n *

t
i
(1

~x!

t i 11
(1

~x!
d@t~xt!#x~gxt

0 uC!dt

5 lim
n→`

( i 50
n u@tseg~gx

i !2t#x~gx
i uC!

( i 50
n x~gx

i uC!
, ~61!

where the last step comes from Eqs.~10!, ~30!, and~50!. Let
C be (smv

¯s1.s0¯smx
). If and only if a segmentg is

contained in a cellA, thenumg is contained inumA. Thus



s
rid

8665J. Chem. Phys., Vol. 116, No. 20, 22 May 2002 Nonadiabatic unimolecular reaction kinetic theory
x~gx
i uC!5 )

j 5mx

mv

x~gx
i uRsj

j !

5 )
j 5mx

mv

x~u2 jgx
i uu2 jRsj

j ! ~62!

5 )
j 5mx

mv

x~gx
i 2 j uRsj

0 !.

Substituting Eq.~62! into Eq. ~61!, we obtain

SC~t!5 lim
n→`

( i 50
n u@tseg~gx

i !2t#) j 5mx

mv x~gx
i 2 j uRsj

0 !

( i 50
n ) j 5mx

mv x~gx
i 2 j uRsj

0 !
. ~63!

From Eqs.~58! and ~60!

DC
C8~ ĩ !5

*~ ĩ21/2!Dt
~ ĩ11/2!Dtdt^Qseg~gx

0!d@tseg~gx
0!2t#d@t~x!#x~gx

0uC!x~gx
1uC8!&

^d@t~x!#x~gx
0uC!&

5 lim
n→`

*~ ĩ21/2!Dt
~ ĩ11/2!Dtdt( i 50

n *
t
i
(1

~x!

t i 11
(1

~x!
dt Qseg~gxt

0 !d@tseg~gxt

0 !2t#d@t~xt!#x~gxt

0 uC!x~gxt

1 uC8!

( i 50
n *

t
i
(1

~x!

t i 11
(1

~x!
dt d@t~xt!#x~gxt

0 uC!

5 lim
n→`

*~ ĩ21/2!Dt
~ ĩ11/2!Dtdt( i 50

n Qseg~gx
i !d@tseg~gx

i !2t#x~gx
i uC!x~gx

i 11uC8!

( i 50
n x~gx

i uC!

5 lim
n→`

( i 50
n Qseg~gx

i !x~gx
i uC!x~gx

i 11uC8!u~ ĩ21/2!Dt
~ ĩ11/2!Dt@tseg~gx

i !#

( i 50
n x~gx

i uC!
. ~64!

Let C be (smv
¯s1.s0¯smx

) andC8 be (smv21¯s0.s21¯smx21) ~remember thatC must be a parent ofC8). Then, we have

x~gx
i uC!x~gx

i 11uC8!5x@gx
i u~smv

¯s1.s0¯smx
smx21!#5 )

j 5mx21

mv

x~gx
i 2 j uRsj

0 !. ~65!

From Eqs.~62!, ~64!, and~65!

DC
C8~ ĩ !5 lim

n→`

( i 50
n Qseg~gx

i !u~ ĩ21/2!Dt
~ ĩ11/2!Dt@tseg~gx

i !#) j 5mx21
mv x~gx

i 2 j uRsj

0 !

( i 50
n ) j 5mx

mv x~gx
i 2 j uRsj

0 !
. ~66!

Taking n as a large integer, one can determineSC and DC
C8 from Eqs.~63! and ~66! using trajectory calculations. Thi

method would be inefficient when a passage process ofx acrossj is rare. We now propose a dynamical and statistical hyb

method to efficiently determineSC andDC
C8.

In this method, we suppose two primitive cells:R1
0 is theset of all segments that pass across the crossing seamj, andR0

0

is the complement. Consider a narrow volumeJ,G such thatj,J, and letJ* beJùR1
0. It is evident from the definitions

thatall segments inR1
0 andfewsegments inR0

0 must pass throughJ, and thatall segments inR1
0 andno segments inR0

0 must
pass throughJ* . We have~see Appendix B!
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SC~t!5

(mP$1
mx

mv%^w~x!u@tseg~gx
m!2t#) j 5mx

mv x~gx
m2 j uRsj

0 !&J*

(mP$1
mx

mv%^w~x!) j 5mx

mv x~gx
m2 j uRsj

0 !&J*
, ~67!

DC
C8~ ĩ !5

#$1mx

mv%(mP$1
mx21

mv %^w~x!Qseg~gx
m!u~ ĩ21/2!Dt

~ ĩ11/2!Dt@tseg~gx
m!#) j 5mx21

mv x~gx
m2 j uRsj

0 !&J*

#$1mx21
mv %(mP$1

mx

mv%^w~x!) j 5mx

mv x~gx
m2 j uRsj

0 !&J*
, ~68!
a

on
0

s
e

l

m

e
olv-
nte

m

ol-
wherew(x) is the reciprocal of a temporal length ofgx
0ùJ

w~x!ªF E
t0
(1

~x!

t1
(1

~x!
dt x~xtuJ!G21

, ~69!

^¯&J* is the phase space average restricted inJ*

^F~x!&J*ª
*J* dxF~x!

*J* dx
, ~70!

#S denotes the number of elements of the setS, and$1i
j% is

a set of indices depending on$si ,si 11 , . . . ,sj% defined to be

$1i
j%ª$musm51,mP$ i ,i 11, . . . ,j %%, ~71!

e.g., if C5(¯011.001 001̄ ), $125
3 %5$2,1,22,25%.

Here, we employ the following abbreviation:

~72!

~73!

~74!

where a ‘‘̄ ’’ denotes sequence of 0’s.01 is a subset of 1I
into which a flux from 0I flows directly. The remainder 1I
2015(10̄ 0.0̄ 1) is occupied by a region into which
flux from ~1¯0.0̄ 0! flows directly.

Since Eqs.~67! and ~68! are inapplicable forC50I , this
cell must be specially dealt with. Cell 0I has two children, 0I
itself and 1I . We treat the transport process from 0I to 0I im-
plicitly, and approximately consider that the process fromI
to 1I obeys the first-order rate law; that is, the distributi
function of time required in which phase points go throughI
to 1I is described by 1/k01 exp(2k01t)k01 is the rate coeffi-
cient for the process. The rate coefficientk01 is determined
by a similar manner as the conventional RRKM theory,2–4

i.e.,

k01ª

^x~gx2«

0 u0I !x~gx«

0 u1I !d@qL~x!2qL
0 #q̇L~x!&

^x~gx
0u0I !&

, ~75!
0

where« is a sufficiently short time. The numerator signifie
the flux from 0I to 1I across(1, and the denominator is th
normalized density of states~NDOS!, of 0I , i.e., the ratio of
density of states of 0I to density of states ofG. A factor of 1/2
and an absolute value signu¯u appearing in the origina
RRKM expression is unnecessary for Eq.~75! since the re-
verse flux from 1I to 0I has already been excluded.

The numerator of Eq.~75! is reduced to

^x~gx2«

0 u0I !x~gx«

0 u1I !d@qL~x!2qL
0 #q̇L~x!&

5^x~xuJ* !&K w~x! )
j 5mx

mv

x~gx
mx212 j uR0

0!L
J*

. ~76!

The denominator of Eq.~75! can be obtained indirectly by
subtracting the sum of the NDOSs of the other cells fro
unity. The NDOS of a cellCÞ0I is obtained from

^x~gx
0uC!&5

^x~xuJ* !&

#$1mx

mv%

3 (
mP$1

mx

mv%

K w~x!tseg~gx
m! )

j 5mx

mv

x~gx
m2 j uRsj

0 !L
J*

,

~77!

where (smv
¯s1.s0¯smx

)ªC. See Appendix B for the
derivation of Eqs.~76! and ~77!.

All phase space integrals in Eqs.~67! and ~68! take the
form of ^w(x)F(x)&J* , and Eqs.~76! and ~77! have inte-
grals^w(x)F(x)&J* and^x(xuJ* )&. These integrals can b
evaluated using Monte Carlo phase space integration inv
ing short-time trajectory calculations. On the standard Mo
Carlo integration, these are evaluated by

^x~xuJ* !&.
1

#X (
xPX

x~xuJ* !5
#X*

#X , ~78!

^w~x!F~x!&J* .
1

#X*
(

xPX*
w~x!F~x!, ~79!

whereX is a finite set of phase points drawn uniformly fro
G, andX* is the intersection ofX and J* . To reduce the
required trajectory calculations effectively, we use the f
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lowing algorithm for the evaluation: The following four se
are assembled fromX: ~i! XIªXùJ, ~ii ! XII , assembled by
thinning outXI randomly;~iii ! XIIIªXIIùJ* ; ~iv! XIV , as-
sembled by drawing fromXIII with a probability proportional
to w(x). Note thatX.XI.XII.XIII .XIV . Then, the inte-
grals are evaluated by

^x~xuJ* !&.
#XIII #XI

#XII#X , ~80!

^w~x!F~x!&J* .
^w~x!&J*

#XIV
(

xPXIV

F~x!, ~81!

where Eq. ~81! is based on an importance samplin
technique.22 The averagêw(x)&J* on the right-hand side o
Eq. ~81! can be obtained by

^w~x!&J* .
1

#XIII
(

xPXIII

w~x!. ~82!

Another trajectory-economizing technique which we e
ployed in use of time reversal trajectories based on the t
reversal symmetry of classical dynamics and adiabatic t
sition probability of our model.

In addition, we consider the improvement of the Mon
Carlo integration of̂ x(xuJ* )& obtained from Eq.~80!. The
convergence of #XI /#X is slow because of the small NDO
ratio of J to G. To bring about a rapid convergence, we c
use an importance sampling technique:22 an ensemble en
hancing the distribution inJ is employed for the Monte
Carlo sampling ofX. Equation~80! is changed into the fol-
lowing equations:

^x~xuJ* !&.
#XIII (xPXI

V21~x!

#XII(xPXV21~x!
, ~83!

whereV(x) is a weight function of the Monte Carlo sam
pling and we imposeV(x) that the distribution is microca
-
e

n-

nonical withinxPJ. Note that Eq.~81! is kept intact so long
as the relative distribution withinxPJ is unchanged.

The concrete algorithm of the Monte Carlo integrati
and short-time trajectory calculations for the SMl-PST are
described in Appendix C.

III. APPLICATION

A. Model system

As a test calculation, the statistical model is applied t
model system of collinear N2O with a potential energy sur
face defined by Zahr et al.23 at total energies E
564,65, . . . ,80kcal mol21. A contour plot of the potential
energy surface is shown in Fig. 2.

The Landau–Zener formula24 is utilized as the transition
probability

PLZ~x!ª12expF 22pV12
2

\uDF~q!.v~x!u
G , ~84!

FIG. 2. The contour plot of potential energy surfaces used in this study,
crossing seamsj ~dashed line!, and the surface of section(1 ~dot-dashed
line! of the collinear N2O. The dot-dashed line corresponds to the norm
mode of the symmetric stretching. The abscissa and the ordinate expre
lengths of N~center!–O and N–N, respectively, wherea0ªBohr radius.
TABLE I. Values of parameters used in the calculations.

Method Parameter Value

EMS ~common! Number of incubation steps 53104

Number of atoms moved in each step 3

Trajectory calculations Number of trajectories,NT 53103

EMS steps between successive two trajectories 13104

Step size/fsa 0.50

NMC-TST Number of sampled states,N 43108

Critical surface width in potential energy difference,
2«/kcal mol21

0.20

Number of momenta set generated at critical surface,
Nmon

10

SMl-PST Number of sampled states,NMC 23107

Number of trajectories,NIV 53103

Width of J in potential energy difference, 2«/kcal mol21 1.0
Factor for importance sampling,Fw 4.0

Step size for integration of kinetic equations,Dt/fs 1.0

aThis is common tolth-order semi-Markov model.
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wherex is a point in the crossing seam,q is the coordinate of
x in configuration space,DF(q) is the difference in the
forces of the two states, evaluated at the crossing point,v(x)
is the nuclear velocity, andV12 is the interaction term tha
couples the two states. We assumeV12 to be a somewha
greater value, 400 cm21, to highlight nonstatistical behavior
this trick was presented by Marks and Thompson.19

We calculated the population decay of the system us
standard trajectory calculations, the nonadiabatic Mo
Carlo transition state theory~NMC-TST!, and the SMl-PST

FIG. 3. Comparison of rate coefficients for the model system calcula
with four methods.

FIG. 4. The Markov-order dependence of rate coefficients for~a! E565
kcal mol21; ~b! E570 kcal mol21; and~c! E575 kcal mol21. The extreme
right points indicate the trajectory rate coefficients.
g
te

with two primitive cells. The initial reactant distribution wa
settled to be microcanonical for trajectory calculations a
the SMl-PST. We explain the computational details for tr
jectory calculations and the SMl-PST in the next subsection
The values of parameters used in the calculations are g
in Table I.

B. Computational details

1. Trajectory calculations

The standard trajectory calculations are carried out
follows. The initial phase points are selected using the e
cient microcanonical sampling~EMS! method.25 The EMS
method comprises two stages, sampling from configura
space and momentum space. The configuration samp
procedure involves a Markov walk. The maximum step s
of the Markov walk was chosen to keep the acceptan
rejection ratio between 0.3–0.7. The weight function of t
configuration sampling for this system with two degrees
freedom is

vEMS~q!ªH 1 VA~q!,E

0 otherwise
, ~85!

whereE is the total energy of the system.
Each initial point obtained from the EMS was prop

gated until 5 ps by Candy and Rozmus’ fourth-order sy
plectic integrator.26 The energy difference between two p
tential surfaces,DVªVA2VR , was monitored. The chang
in sign ofDV indicates a passage across the seam. When

d

FIG. 5. The Markov-order dependence ofk01 , rate coefficients from 0I to 1I ,
for ~a! E565 kcal mol21; ~b! E570 kcal mol21; and~c! E575 kcal mol21.
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occurs, we judge the trajectory reached the crossing po
Then, it is necessary to locate the phase space coordina
the crossing point and to determine the time at the poin
first-order approximation forDV andxt at t is used to deter-
mine the corresponding crossing pointxj such thatDV50
and the crossing timetj.27

The population decay evaluated from the trajectories
given by

N~ t !5
1

NT
(
i 51

NT

)
j 51

tj~ i , j !,t

@12PLZ~ i , j !#, ~86!

where NT is the number of the trajectories,tj( i , j ) and
PLZ( i , j ) are the crossing time and the transition probabi
at the jth crossing point on theith trajectory, respectively
Equation~86! corresponds to the evaluation of Eq.~22! by
Monte Carlo integration using EMS.

2. lth-order semi-Markov phase space theory

Let (q1 ,q2) be the representation ofq by the compo-
nents with normal coordinates. We approximately adopt
surfaceq150 and q̇1.0 as (1 ~see Fig. 2! because it is
difficult to find Poincare´ surface of sections in genera
Hamiltonian systems. The number of primitive cells are tw
R0

0
ª$gPGugùj5B% and R0

1
ªG2R0

0. We settleJª$x
u2«,DV(q),«,xPG%, andhª$xuDV(q)521.5«,xPG%
~h is explained in Appendix C!. The configuration sampling

FIG. 6. The Markov-order dependence of the normalized density of state
the region0 for ~a! E565 kcal mol21; ~b! E570 kcal mol21; and ~c! E
575 kcal mol21. The vertical axes are log scaled.
t.
of

A

is

e

:

weight isV(q)ªvEMS(q)f(q), wherevEMS(q) is the EMS
configuration sampling weight, andf(q) is the importance
sampling weight, which we defined as

f~q!ªH 1 if uDV~q!u<«

@a~ uDV~q!u2«!11#21 if «,uDV~q!u,b,

@a~b2«!11#21 if b<uDV~q!u
~87!

whereaª1.6 kcal mol21 andbª40 kcal mol21.
The whole-energy hypersurfaces of the model molec

for E564,65, . . . ,80kcal mol21 are approximately consid
ered to be ergodic. This was ascertained by observatio
the Poincare´ maps.

C. Results and discussion

The population decay was calculated for the model re
tion system using trajectory calculations, NMC-TST, SM
PST, and SM5-PST. In Fig. 3 we compare the rate coe
cients for population decay,k(E). For the trajectory
calculations and the SM1-PST, the rate coefficients w
evaluated by least-square fits for calculated population de
curves. The NMC-TST rates are smaller than the traject
rates forE>66 kcal mol21, and the discrepancy is especial
remarkable atE*70 kcal mol21. On the other hand, the
discrepancy of the SM1-PST rates is small, and the SM
PST rates show excellent agreement with the trajectory ra

ofFIG. 7. The Markov-order dependence of the flux from 0I to 1I for ~a! E
565 kcal mol21; ~b! E570 kcal mol21; and ~c! E575 kcal mol21. The
vertical axes are log scaled.
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TABLE II. The total flux into a region~ps21!.

~1! 65 kcal mol21

1.05
~01! ~10!
1.05 1.05
~001! ~010! ~100!
1.05 1.05 1.05

~000 1! ~001 0! ~010 0! ~100 0!
1.05 1.05 1.05 1.05

~000 01! ~000 10! ~001 00! ~010 00! ~100 00!
1.05 1.05 1.05 1.05 1.05

~000 001! ~000 010! ~000 100! ~001 000! ~010 000! ~100 000! ~100 001!
0.82 1.05 1.05 1.05 1.05 0.82 0.23

~1!
70 kcal mol21

3.88
~01! ~10!
3.88 3.88
~001! ~010! ~100!
3.88 3.88 3.88

~000 1! ~001 0! ~010 0! ~100 0!
3.88 3.88 3.88 3.88

~000 01! ~000 10! ~001 00! ~010 00! ~100 00! ~100 01!
3.77 3.88 3.88 3.88 3.77 0.11

~000 001! ~000 010! ~000 100! ~001 000! ~010 000! ~010 001! ~100 000! ~100 001! ~100 010!
3.00 3.77 3.88 3.88 3.77 0.11 3.00 0.77 0.11

~1! 75 kcal mol21

5.82
~01! ~10!
5.82 5.82
~001! ~010! ~100! ~101!
5.82 5.82 5.50 0.32

~000 1! ~001 0! ~010 0! ~010 1! ~100 0! ~100 1! ~101 0!
5.09 5.50 5.50 0.32 5.09 0.42 0.32
t
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Next, we investigate the dependence onl for the SMl-
PST rate coefficients forE565, 70, and 75 kcal mol21. In
Fig. 4, the numbers on the abscissa indicatel, and the points
on the extreme right indicate the trajectory rate coefficien
Although the SMl-PST rates roughly approach the trajecto
rates with an increase ofl, the variations of the rate coeffi
cients atE565 and 70 kcal mol21 are not monotonous; tha
is, the rate coefficients increase forl<4, fall at l 55, and
then retain nearly constant values forl>6.

The behavior is qualitatively explained as follows. On
a phase point has entered the region of 1I , the point will be
transported to the crossing seam within a short time. Tha
the transport process from 0I to 1I is expected to be rate lim
iting when the NDOS of 0I is the greater part ofG. Figure 5
shows the values of thek01, or rate coefficients of the pro
cess from 0I to 1I . It can be seen from Fig. 5 thatk indeed
correlated withk01. The correlation atE575 kcal mol21 is
slightly poor. This can be explained by the fact that t
NDOS of 0I is smaller atE575 kcal mol21 than atE565
kcal mol21. k01 is determined by Eq.~75!; that is, the flux
from 0I to 1I , shown in Fig. 7, divided by the NDOS of 0I ,
shown in Fig. 6. Although the NDOSs of 0I decay nearly
exponentially, the fluxes of 0I deviate from exponential de
cays for smalll region. Thus, the remarkable behavior ofk01

arises mainly from the behavior of the flux from 0I to 1I . Table
II shows the total flux into each cell,̂x(gx

0uC)d@gL(x)
2qL

0 #q̇L(x)&. Note that a total flux into (s1 . . . sn) is equal
s.

s,

to the flux from (s1 . . . sn21) to (s2 . . . sn). At E565 kcal
mol21, there is no sequence including two or more ‘‘1’’ fo
l<5; i.e., cellsR1

m andR1
n have no overlap ifum2nu,5 and

mÞn. For l 56, a overlapping sequence~100 001! appears
for the first time. Whereas all the fluxes from~0! to ~1!, from
~00! to ~01!, from ~000! to ~001!, and from~0000! to ~0001!
are 1.05 ps21, the flux from~000 00! to ~000 01! decreases to
0.82 ps21, because the total flux into~000 01! must be shared
between fluxes from~000 00! and from ~100 00!. De Leon
called this effect ‘‘clogging.’’18 At E570 kcal mol21, there
exists~100 01! with l 55; however, the flux, or clogging, is
small ~0.11 out of 3.77 ps21! and the dominant clogging
arises from~100 001!. At E580 kcal mol21, the first clog-
ging occurs from~101!; the flux decreases nearly expone
tially with increasingl. The situations of clogging are con
firmed intuitively in Fig. 8, which shows the shapes
R1

n(n523,22, . . . ,2) on(1. The area of each region ex
presses the corresponding flux.17,18

The computational efficiency for obtainingk(E) was in-
vestigated in the trajectory calculations and the SMl-PST. In
Fig. 9, the coefficients of variation ink(E) ~i.e., the quotient
of the standard deviation to the arithmetic mean! at E565,
70, and 75 kcal mol21 by the trajectory calculations and th
SM5-PST are plotted as a function of the total tempo
length of calculated trajectories. Each data point was e
mated from 20 runs using different random seeds withNT

525– 2500 for the trajectory calculations and withNIV
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5100– 5000 for the SM5-PST, under the conditions same
in Table I. The arithmetic means of the 20 runs were used
a total length for the SM5-PST since there is a slight diff
ence in the total length for each run. From this plot, it
found that the evaluation by the SM5-PST gives more p
cisek(E) for the three energies under the same length of
trajectory. Although our method includes a Monte Carlo
tegration, the computational time for the Monte Carlo in
gration is minor whenNIV is larger than 1000. In the trajec
tory calculations extra time is also needed for sampling
initial phase points.

FIG. 8. The shapes of regionsRn
1 on (1 at ~a! E565; ~b! E570; and~c!

E575 kcal mol21. The black-filled areas denote~000.000!. The abscissa and
the ordinate express the normal coordinate ofq2 and the time derivative of
q2 , respectively, wheremeªelectron mass,a0ªBohr radius, andEhª1
hartree.
as
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Although the results of the test calculation are succe
ful, there are still some problems. First, it is necessary
develop a procedure to determine practically optimuml
without large computational effort. We expect that this w
be possible by successive elongation forl with judgment
whetherl is sufficiently long by means of inspection of clog
ging effects. Second, we must resolve the problem that
number of cells inCexist increases exponentially with increa
ing l. This problem arises from the fact that our statistic
model contains cells with constantsmv

andsmx
only. We are

going to resolve this problem by loosening restriction of ce
in the model. Work along these lines is currently in progre
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APPENDIX A: DERIVATIONS OF KINETIC EQUATIONS

In this Appendix we derive Eqs.~34! and ~35!.
If 0<t2<t1 , the following relation holds:

^F1~x,gx
m!d@t~x!2t1#&

5^F1~xt12t2
,gx

m!d@t~x!2t2#u@tseg~gx
0!2t1#&, ~A1!

wherem is an arbitrary integer, andF1(x,g) are an arbitrary
function. Whent250, we have

^F1~x,gx
m!d@t~x!2t1#&

5^F1~xt1
,gx

m!d@t~x!#u@tseg~gx
0!2t1#&. ~A2!

A proof of Eq.~A1! runs as follows. We may change th
variablex of the phase space integral on the left-hand side

FIG. 9. The coefficients of variation ink(E) at E565 ~solid line!, 70
~short-dashed line!, and 75 kcal mol21 ~long-dashed line! by trajectory cal-
culations~square! and SM5-PST~triangle! vs the total temporal length of
calculated trajectories.
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Eq. ~A1! to xt12t2
with a Jacobian of unity because of Liou

ville’s theorem

^F1~x,gx
m!d@t~x!2t1#&

5^F1~xt12t2
,gxt12t2

m !d@t~xt12t2
!2t1#&

5 (
nPZ

^F1~xt12t2
,gx

m1n!d@2tn
(1

~x!2t2#

3I @ tn
(1

~x!<t12t2,tn11
(1

~x!#&, ~A3!

where I (E) is the indicator function defined to be unity
event E holds and zero otherwise, and the second s
follows from Eqs. ~24! and ~25!. A requirement for

d@2tn
(1

(x)2t2#I @ tn
(1

(x)<t12t2,tn11
(1

(x)# to be nonzero

is that 2tn
(1

(x)2t250 and tn
(1

(x)<t12t2,tn11
(1

(x).

Since we suppose that 0<t2<t1 , the value oftn
(1

(x) must
be nonpositive because of the former condition, and the la

condition forcestn11
(1

(x) to be positive. This implies that al
the terms except forn50 in the summation must vanish
Thus, from Eqs.~26! and ~27!

^F1~x,gx
m!d@t~x!2t1#&

5^F1~xt12t2
,gx

m!d@t~x!2t2#

3I @t12t21t~x!,tseg~gx
0!#&

5^F1~xt12t2
,gx

m!d@t~x!2t2#I @t1,tseg~gx
0!#&, ~A4!

with 0<t2<t1 . Therefore, we obtain Eq.~A1!.
We introduce a statistical approximation thatr(x,t) is

regarded as constant within an isoage hypersurface in a
Let r̄C(t,t) be the average ofr(x,t) on the isopage hyper
surfacei C(t)

r̄C~t,t !ª
^d@t~x!2t#x~gx

0uC&r~x,t !&

^d@t~x!2t#x~gx
0uC!&

5
f C~t,t !

^d@t~x!2t#x~gx
0uC!&

. ~A5!

We definer̄C(t,t) to be zero when̂ d@t(x)2t#x(gx
0uC)&

vanishes@i.e., f C(t,t) also vanishes#. The approximation al-
lows us to replacer(x,t) with the correspondingr̄C(t,t);
thus, the following relation holds:

^F2~x!d@t~x!2t#x~gx
0uC!r~x,t !&

5^F2~x!d@t~x!2t#x~gx
0uC!r̄C~t,t !&

5 f C~t,t !
^F2~x!d@t~x!2t#x~gx

0uC!&

^d@t~x!2t#x~gx
0uC!&

, ~A6!
p

er

ll.

whereF2(x) is an arbitrary function. In addition, the follow
ing approximation is also adopted: transition timetn

j(x) is

replaced with tm
(1

(x) such that tm21
(1

(x)<tn
j(x),tm

(1
(x).

This implies that Eq.~20! is replaced with

r~xDt ,t1Dt !5r~x,t !Q̄~x,Dt !, ~A7!

where

Q̄~x,Dt !ª )
tP$tn

j
~x!%

t0
(1

~x!<t,tn~x,Dt !
(1

~x!

@12Phop~xt!#, ~A8!

or @cf. Eqs.~10! and ~38!#

Q̄~x,Dt !ª5
1 if 0<Dt,t1

(1

~x!

Qseg~gx
0! if t1

(1

~x!<Dt,t2
(1

~x!

Qseg~gx
0!Qseg~gx

1! if t2
(1

~x!<Dt,t3
(1

~x!

] ]

.

~A9!

Consider an age distribution function att1Dt with Dt>0

f C~t,t1Dt !5^d@t~x!2t#x~gx
0uC!r~x,t1Dt !&. ~A10!

Substituting Eq. ~A1! with t15t, t25t2Dt, and
F1(x,gx

m)5x(gx
0uC)r(x,t) into Eq. ~A10!, we obtain

f C~t,t1Dt !

5^d@t~x!2~t2Dt !#x~gx
0uC!r~xDt ,t1Dt !

3u@tseg~gx
0!2tu&

5^d@t~x!2~t2Dt !#x~gx
0uC&r~x,t !Q̄~x,Dt !

3u@tseg~gx
0!2t#&. ~A11!

A requirement ford@t(x)2(t2Dt)#u@tseg(gx
0)2t# to be

nonzero is that 2t0
(1

(x)2t1Dt50 and t,t1
(1

(x)

2t0
(1

(x); that is, t1
(1

(x).Dt. Thus, the factorQ̄(x,Dt) in
the integrand may be eliminated. From Eq.~A6!, we have

f C~t,t1Dt !

5 f C~t2Dt,t !

3
^d@t~x!2~t2Dt !#x~gx

0uC!u@tseg~gx
0!2t#&

^d@t~x!2~t2Dt !#x~gx
0uC!&

.

~A12!

Supposet2Dt>0. Using Eq. ~A1! reversely for the nu-
merator with t15t, t25t2Dt, and F1(x,gx

0)5x(gx
0uC),

we have

f C~t,t1Dt !

5 f C~t2Dt,t !
^d~t~x!2t!x~gx

0uC!&

^d@t~x!2~t2Dt !#x~gx
0uC!&

. ~A13!

We introduce a function
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SC~t!ª
^d~t~x!2t!x~gx

0uC!&

^d~t~x!!x~gx
0uC!&

. ~A14!

The use of Eq.~A2! provides an alternative expression

SC~t!ª
^d~t~x!!x~gx

0uC!u@tseg~gx
0!2t#&

^d~t~x!!x~gx
0uC!&

. ~A15!

From Eqs.~A13! and ~A14!

f C~t,t1Dt !5 f C~t2Dt,t !
SC~t!

SC~t2Dt !

for t2Dt>0, Dt>0. ~A16!

Equation~A16! is devoid of treatment fort50. To in-
corporate it, we consider

f C8~Dt,t1Dt !5^d@t~x!2dt#x~gx
0uC8!r~x,t1Dt !&,

~A17!

with Dt→10, Dt→10, andDt,Dt. One can rewrite this
as

f C8~Dt,t1Dt !

5^d@Dt2t~xDt!#x~gxDt

0 uC8!r~xDt ,t1Dt !&

5 (
nPZ

^d@Dt2tn
(1

~x!#x~gx
nuC8!r~x,t !

3Q̄~x,Dt !I @ tn
(1

~x!<Dt,tn11
(1

~x!#&

5 (
nPZ

^d@Dt2tn
(1

~x!#x~gx
nuC8!r~x,t !Q̄~x,Dt !&,

~A18!

where the last step comes from the fact thatd@ tn
(1

(x)

2Dt#I @ tn
(1

(x)<Dt,tn11
(1

(x)# may be reduced to

d@ tn
(1

(x)2Dt# whenDt<Dt!1. It is evident that ifDt is

unequal totn
(1

(x) then d@Dt2tn
(1

(x)# vanishes. Thus, al
terms in the summation corresponding tonÞ1 vanish when

Dt→10. Moreover, ift1
(1

(x) is equal toDt, Q̄(x,Dt) may
be replaced byQseg(gx

0). Hence
f C8~Dt,t1Dt !

5^Qseg~gx
0!d@ t1

(1

~x!2Dt#r~x,t !x~gx
1uC8!&

5^Qseg~gx
0!d@tseg~gx

0!2Dt2t~x!#r~x,t !x~gx
1uC8!&.

~A19!

Disintegrating the integrals into contributions from a
isoage hypersurfaces in the cell, we obtain

f C8~Dt,t1Dt !5E
0

`

dt^Qseg~gx
0!d@tseg~gx

0!2Dt

2t~x!d@t~x!2t#r~x,t !x~gx
1uC8!&.

~A20!

Since a phase pointx satisfyingx(gx
1uC8)51 must be con-

tained in a parent ofC8, we may disintegrate the right-han
side of Eq.~A20! further into contributions from all parent
of C8

f C8~Dt,t1Dt !

5 (
CPparC8

E
0

`

dt^Qseg~gx
0!d@tseg~gx

0!2Dt2t~x!#

3d@t~x!2t#r~x,t !x~gx
0uC!x~gx

1uC8!&. ~A21!

From Eq.~A6!

f C8~Dt,t1Dt !

5 (
CPparC8

E
0

`

dt f C~t,t !^d@t~x!2t#x~gx
0uC!&21

3^Qseg~gx
0!d@tseg~gx

0!2Dt2t#

3d@t~x!2t#x~gx
0uC!x~gx

1uC8!&. ~A22!

Therefore
f C8~0,t !5 (
CPpar C8

E
0

`

dt BC
C8~t! f C~t,t !, ~A23!

where

BC
C8~t!ª lim

Dt→10

^Qseg~gx
0!d@tseg~gx

0!2Dt2t#d@t~x!2t#x~gx
0uC!x~gx

1uC8!&

^d@t~x!2t#x~gx
0uC!&

5 lim
Dt→10

^Qseg~gx
0!d@tseg~gx

0!2Dt2t#d@t~x!#x~gx
0uC!x~gx

1uC8!I @tseg~gx
0!2t#&

^d@t~x!#x~gx
0uC&u@tseg~gx

0!2t#&

5
^Qseg~gx

0!d@tseg~gx
0!2t#d@t~x!#x~gx

0uC!x~gx
1uC8!&

^d@t~x!#x~gx
0uC&u@tseg~gx

0~2t#&
. ~A24!
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APPENDIX B: DERIVATIONS FOR COMPUTATIONAL
METHOD

In this Appendix we derive Eqs.~67!, ~68!, ~76!, and
~77!.

Let us consider the following segment average:

lim
n→`

1

tn11
(1

~x!2t0
(1

~x!
(
i 50

n

F~gx
i ! )

j 5m8

m9

x~gx
i 2 j uRsj

0 !, ~B1!

whereF(g) is an arbitrary function for a segmentgPG, and
$sm8,sm811 , . . . ,sm9% is a set of symbols, 0 or 1. We sha
rewrite Eq.~B1! as a phase space average restricted inJ.

Suppose that$1m8
m9% is not empty. Then

lim
n→`

1

tn11
(1

~x!2t0
(1

~x!
(
i 50

n

F~gx
i ! )

j 5m8

m9

x~gx
i 2 j uRsj

0 !

5 lim
n→`

1

tn11
(1

~x!2t0
(1

~x!
(
i 50

n

F~gx
i !x~gx

i 2muR1
0!

3 )
j 5m8

m9

x~gx
i 2 j uRsj

0 !, ~B2!

wherem is an index contained in$1m8
m9%. Since if and only if

gPR1
0 then g passes throughJ* , the following equation

holds for an arbitrary integern:

x~gx
0uR1

0!5I H F E
tn
(1

~x!

tn11
(1

~x!
dt x~xtuJ* !GÞ0J , ~B3!

or

x~gx
nuR1

0!5JF E
tn
(1

~x!

tn11
(1

~x!
dt x~xtuJ!G E

tn
(1

~x!

tn11
(1

~x!
dt x~xtuJ* !,

~B4!

whereJ(a) is a function defined to be

J~a!ªH 1/a if aÞ0

0 if a50
. ~B5!

Then, we obtain

x~gx
nuR1

0!5J@tJ~gx
n!#E

tn
(1

~x!

tn11
(1

~x!
dt x~xtuJ* !

5E
tn
(1

~x!

tn11
(1

~x!
dt J@tJ~gxt

0 !#x~xtuJ* !, ~B6!
wheretJ(g) is a temporal length ofgùJ

tJ~g!ªE
t0
(1

~x!

t1
(1

~x!
dt x~xtuJ!, ~B7!

wherex is an arbitrary point ong. From Eqs.~B2! and~B6!

lim
n→`

1

tn11
(1

~x!2t0
(1

~x!
(
i 50

n

F~gx
i ! )

j 5m8

m9

x~gx
i 2 j uRsj

0 !

5 lim
n→`

1

tn11
(1

~x!2t0
(1

~x!
(
i 50

n

F~gx
i !

3F E
t i 2m
(1

~x!

t i 2m11
(1

~x!
dt J@tJ~gxt

0 !#x~xtuJ* !G
3 )

j 5m8

m9

x~gx
i 2 j uRsj

0 !

5 lim
n→`

1

tn11
(1

~x!2t0
(1

~x!
(
i 50

n E
t i 2m
(1

~x!

t i 2m11
(1

~x!
dt F~gxt

m!

3J@tJ~gxt

0 !#x~xtuJ* ! )
j 5m1

m2

x~gxt

m2 j !uRsj

0 )

5K F~gx
m!J@tJ~gx

0!#x~xuJ* ! )
j 5m1

m2

x~gx
m2 j uRsj

0 !L
5F E

J*
dx

f ~gx
m!

tJ~gx
0!

)
j 5m1

m2

x~gx
m2 j uRsj

0 !G Y F E
G
dxG

5^x~xuJ* !&K F~gx
m!

tJ~gx
0!

)
j 5m1

m2

x~gx
m2 j uRsj

0 !L
J*

. ~B8!

From Eqs.~63! and ~B8!

SC~t!

5
^u@tseg~gx

m!2t#/tJ~gx
0!) j 5mx

mv x~gx
m2 j uRsj

0 !&J*

^1/tJ~gx
0!) j 5mx

mv x~gx
m2 j uRsj

0 !&J*
,

~B9!

where (smv¯s1.s0¯smx
)ªC, and m is an integer con-

tained in$1mx

mv%.

From Eqs.~66! and ~B8!
DC
C8~ ĩ !5

^Qseg~gx
m1!u~ ĩ21/2!Dt

~ ĩ11/2!Dt@tseg~gx
m1!#/tJ~gx

0!) j 5mx21
mv x~gx

m12 j uRsj

0 !&J*

^1/tJ~gx
0!) j 5mx

mv x~gx
m22 j uRsj

0 !&J*
, ~B10!



ne
e

en

we

ns
:

ce
e

s
s
-

nd

de

8675J. Chem. Phys., Vol. 116, No. 20, 22 May 2002 Nonadiabatic unimolecular reaction kinetic theory
where (smv
¯s1.s0¯smx

)ªC, (smv21¯s0.s21¯smx21)

ªC8, andm1 andm2 are integers contained in$1mx21
mv % and

$1mx

mv%, respectively.

The numerator on the right-hand side of Eq.~75! is

^x~gx2«

0 u0I !x~gx«

0 u1I !d@qL~x!2qL
0 #q̇L~x!&

5 lim
n→`

1

tn11
(1

~x!2t0
(1

~x!
(
i 50

n E
t i
(1

~x!

t i 11
(1

~x!

3dt x~gx2«11

0 u0I !x~gx«11

0 u1I !d@qL~xt!2qL
0 #q̇L~xt!

5 lim
n→`

1

tn11
(1

~x!2t0
(1

~x!
(
i 50

n

x~gx
i u01!

5 lim
n→`

1

tn11
(1

~x!2t0
(1

~x!
(
i 50

n

)
j 5mx

mv11

x~gx
i 2 j uRsj

0 !

5^x~xuJ* !&K 1

tJ~gx
0!

)
j 5mx

mv11

x~gx
mx2 j uRsj

0 !L
J*

, ~B11!

where the second step comes from

E
t i
(1

t i 11
(1

dt d@qL~xt!2qL
0 #q̇L~xt!51. ~B12!

Rearranging this equation, we obtain

^x~gx2«

0 u0I !x~gx«

0 u1I !d@qL~x!2qL
0 #q̇L~x!&

5^x~xuJ* !&

3K 1

tJ~gx
0!

x~gx
mx2mxuR1

0! )
j 5mx11

mv11

x~gx
mx2 j uR0

0!L
J*

5^x~xuJ* !&K 1

tJ~gx
0!

)
j 5mx

mv

x~gx
mx212 j uR0

0!L
J*

. ~B13!

The NDOS of a cell (smv
¯s1.s0¯smx

)ªCÞ0I is ob-
tained from

^x~gx
0uC!&

5 lim
n→`

1

tn11
(1

~x!2t0
(1

~x!
(
i 50

n E
t i
(1

~x!

t i 11
(1

~x!
dt x~gxt

0 uC!

5 lim
n→`

1

tn11
(1

~x!2t0
(1

~x!
(
i 50

n

x~gx
i uC!tseg~gx

i !

5^x~xuJ* !&K tseg~gx
m!

tJ~gx
0!

)
j 5mv

mx

x~gx
m2 j uRsj

0 !L
J*

, ~B14!

wherem is an integer contained in$1mx

mv%.

Although the values of phase space integrals contai
in Eqs. ~B9!, ~B10!, and ~B14! should not depend on th

choice ofm @or m1 and m2 for DC
C8( ĩ)], theoretically, they

are not so for numerical calculations owing to errors. Th
d

,

we regard the arithmetic mean values among availablem ~or
m1 andm2) as the estimators of the integrals. Therefore,
obtain Eqs.~67!, ~68!, and~77!.

APPENDIX C: PSEUDOCODE

The Monte Carlo integration and trajectory calculatio
for SMl-PST can be expressed in pseudocode as follows

~1! Draw a pointx by Monte Carlo sampling procedure;
~2! If ( xPJ)$
~3! yIªyI11/V(x);
~4! cªc11.0;
~5! If ( c.dskip andnIV,NIV)$
~6! cªc2dskip;
~7! nIIªnII11;
~8! Evolve x until the passage across a hypersurfa

h in both the forward and the backward tim
directions, and letx1 and x2 be the two end
pointsx15xt1 andx25xt2(t2,0,t1);

~9! If ( xPJ* )$
~10! wcurrentªw(x);
~11! wsumªwsum1wcurrent

~12! nIIIªnIII 11;
~13! If ( nIII ,N0)$
~14! If ( wmax,wcurrent)wmaxªwcurrent;
~15! % else if (wcurrent.Fw.wmax.Rand)$
~16! nIVªnIV11;
~17! Evolvex1 during 2l 11 times passage

across(6 in the forward time direc-
tion;

~18! Evolvex2 during 2l 11 times passage
across(6 in the backward time di-
rection;

~19! Store the trajectory data (wcurrent, a set
of times at which it passes acros
(6, a set of times at which it passe
acrossj, and the corresponding tran
sition probabilities! in a storage;

~20! %
~21! %
~22! %
~23! %
~24! yªy11/V(x);

In this code,NIV , N0 , Fw , andI are constants (N0 must be
much smaller thanNIV , typically N05NIV/100). Rand is a
uniform random fraction generator within zero to one, a
(6

ª$xPGuq0(x)5q0
0%. The hypersurfaceh in line 8 is de-

cided empirically so that $xtut2,t,t2
(6

%ùj5B and

$xtut1,t,t1
(6

%ùj5B for all phase pointxPJ, wheret1

and t2 is defined in the pseudo code,t1
(‡
ªmin$t.0uxt

P(‡%, andt2
(6

ªmax$t,0uxtP(6%. The hypersurfaceh is
used for an efficient decision whether a phase pointxPJ is
contained inJ* : if and only if $xtut2,t,t1%ùÞB thenx
is contained inJ* . The variablesy, y1 , nII , nIII , nIV , c,
wmax, andwsum are initialized as zero beforehand. The co
is repeatedNMC times. For the repetition, the variabledskip is
occasionally regulated so that the predicted value ofnIV at
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the end of the loop exceedsNIV by only a small amount.
After completion of the loop, the integralŝx(xuJ* )& and
^w(x)F(x)& are estimated as

^x~xuJ* !&.
nIII yI

nIIy
, ~C1!

^w~x!F~x!&.
wsum

2nIVnIII
(

xPXIV

@F~x!1F~x8!#, ~C2!

wherex8 denotes the time reversal ofx, andF(x) andF(x8)
are calculated from the stored data.
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