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Basis set superposition error free self-consistent field method
for molecular interaction in multi-component systems: Projection
operator formalism

Takeshi Nagata, Osamu Takahashi, Ko Saito, and Suehiro Iwataa)

Department of Chemistry, Graduate School of Science, Hiroshima University,
Higashi-hiroshima 739-8526, Japan

~Received 26 January 2001; accepted 5 June 2001!

The self-consistent field method for molecular interaction~SCF MI! by Gianinetti, Raimondi, and
Tornaghi is extended to multi-component systems. A set of equations are written with projection
operators, and the accurate approximate equations are derived. The method is applied to water
clusters and to a fluoride anion complex with a water dimer. The calculated interaction energies are
compared with those estimated with the counterpoise method, and they converge to smaller values
for extensive basis sets. The underestimation of the binding energy results from the omission of the
most part of charge transfer contribution in the wave function. ©2001 American Institute of
Physics. @DOI: 10.1063/1.1388039#
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I. INTRODUCTION

Recently, extensive experimental and theoretical stud
on the weak molecular interactions have been reported.
molecular recognition in a biomolecular system is acted
these weak interactions.1 The molecular clusters bonded b
van der Waals interaction and hydrogen bonds have b
known as the intermediates of microscopic to mesosco
systems. In these fields, it is important to estimate the ac
rate interaction energies. In the molecular orbital theory,
energy is evaluated by the supermolecular approach
which the interaction energy is calculated as a differe
between the energy of the cluster and a sum of the ener
of constituent molecules. It has, however, been known
the basis set superposition error~BSSE! due to the basis se
incompleteness makes it difficult to accurately estimate
interaction energy. The counterpoise~CP! scheme introduced
by Boys and Bernardi2–4 has extensively been applied in th
studies of molecular interactions to eliminate the BSS
However, it requiresn11 computations for a cluster consis
ing of n molecules. Furthermore, in large or strong intera
tion systems Xantheas emphasized the importance of B
in the structural optimization.5 There are a few other method
proposed to eliminate the BSSE; one of them is the chem
Hamiltonian approach~CHA! by Mayer,6,7 and another is the
self-consistent field for molecular interaction~SCF MI! for a
two-component system by Gianinettiet al.8 Later they ex-
tended the SCF MI to a multi-component system.9 Local
correlation methods developed Pulay and co-workers10,11

were extensively examined by Schu¨tz, Rauhut and Werner12

to estimate the incremental BSSE at the correlated level
In this work, using the projection operators, we r

formulate the SCF MI for a two-component system by G
ninetti et al.8 The meaning of the equations to be solv
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becomes more transparent than the original equations,
besides, by generalizing the projection operators, the eq
tions are extended to multi-component systems straight
wardly. It is proved that the equations can be simplified t
form which requires less computational costs. The set
equations indicates that the locally projected SCF met
~LP SCF MI! is a more appropriate name than the SCF M

To demonstrate the applicability of the present metho
we calculate the interaction energies of the clusters of w
molecules~dimer to pentamer! and of fluoride anion (F2)
complexes with a water dimer. Water clusters are the sub
of intense research because of their importance in un
standing hydrogen bonds and in interpreting various uni
features of the structure, dynamics and energetics of c
densed phase of water, and because the hydrogen bon
water molecules are ubiquitous in biological, chemical, a
physical systems.13

II. FORMULATION WITH PROJECTION OPERATORS

The set of equations for SCF MI derived by Gianine
et al.8 is simple, but the meaning of the equations is n
clear. The equations can be written more transparently
using the projection operators. The projection operatorP̂Aoc

on to the occupied orbitals of unitA $uaj&, j 51, MA% is
defined as

P̂Aoc[ (
i , j 51

MA

uaj&@~SAA!21# j ,i^ai u, ~1!

where the matrixSAA is the overlap matrix in terms of the
occupied molecular orbitals$uaj&%. Since $uaj&% are ex-
panded within the basis sets centered on the atoms of
A as

uaj&5 (
p51

NA

uxp
A&tp j , ~2!

the overlap matrixSAA is

ess:
-

3 © 2001 American Institute of Physics
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SAA[T̃AocS
AATAoc , ~3!

where SAA is the overlap matrix in terms of the bas
set $uxp

A&,p51,NA%. Hereafter, the subscripts imply tha
the matrix is in terms of molecular orbitals~MO!, and the
superscripts are in terms of basis sets. The rectangular m
TAoc is defined by the molecular orbital vectort j as (t1 ,t2 ,
•••,tMA

). Similarly, the projection operatorP̂Boc on to the
occupied orbitals of unitB is defined

P̂Boc[ (
i , j 5MA11

MA1MB

ubj&@~SBB!21# j ,i^bi u, ~4!

with

ubj&5 (
p5NA11

NA1NB

uxp
B&tp j , ~5!

SBB[T̃BocS
BBTBoc . ~6!

Our basis sets are$uxp
A&% % $uxp

B&%, and the number of basi
sets isNA1NB. Because of the definition Eqs.~2! and ~5!,
the MO coefficient matricesTAoc and TBoc are rectangular
matrices ofNA3MA andNB3MB , respectively.

Now, equipped with the projection operators thus d
fined, the equation for the molecular orbitals of unitA under
a restriction of Eq.~2!, derived by Gianinettiet al., becomes

~12 P̂Boc!F̂~12 P̂Boc!uaj&5~12 P̂Boc!uaj&« j , ~7!

which can be written in terms of the basis sets$uxp
A&,p

51,NA% and the molecular orbital vector as

„1A, 2SABTBoc~ T̃BocS
BBTBoc!

21T̃Boc…S FAA, FAB

FBA, FBBD
3S 1A

2TBoc~ T̃BocS
BBTBoc!

21T̃BocS
BAD TA

5~SA2SABTBoc~ T̃BocS
BBTBoc!

21T̃BocS
BA!TALA , ~8!

where1A is a unit matrix ofNA, LA is a diagonal matrix of
orbital energy« j , andSAB is the overlap matrix between th
basis sets$uxp

A&% and$uxp
B&%. Now it becomes clear that Eq

~8! is equivalent to Eqs.~26! and ~27! of Gianinetti et al.8

with the definition ofTBoc(T̃BocS
BBTBoc)

21T̃Boc[DBB.
The meaning of Eq.~7! is obvious; the occupied orbital

$uaj&% of unit A are determined outside the space spanned
the occupied orbitals$ubj&% of unit B. The set of equations
for unitsA andB has to be solved iteratively. By multiplying
^bl u from the left in Eq.~7!, we obtain the relation

^bl u~12 P̂Boc!F̂~12 P̂Boc!uaj&5^bl u~12 P̂Boc!uaj&« j50.
~9!

With the formulation of Eq.~7!, generalization to the
spin unrestricted Hartree–Fock~HF! method as well as the
open shell restricted HF method becomes trivial. Simila
the equation can easily be extended to a multi-compon
system. We introduce the projection operatorP̂*Aoc which
projects the space spanned by the occupied molecular o
als except on unitA as
rix

-

y

,
nt

it-

P̂*Aoc5 (
B,CÞA

(
j ,B

(
k,C

ubj&@~S*A!21# j ,k^cku, ~10!

where S*A is the overlap matrix in terms of the occupie
orbitals$ubj&%,$ucj&%, . . . ,$u f j&% except on unitA $uaj&%. For
multi-component systems, Eq.~7! is simply replaced with

~12 P̂*Aoc!F̂~12 P̂*Aoc!uaj&5~12 P̂*Aoc!uaj&« j ,
~11!

and the corresponding matrix representation can easily
derived. The size of MO overlap matrixS*A is a sum of the
numbers of occupied orbitals

(
BÞA

MB , ~12!

and the matrixS*A is symbolically written as

S*A5~ T̃Boc ,T̃Coc , . . . ,T̃Foc!

3 (
DÞA

(
EÞA

SDE~TBoc ,TCoc , . . . ,TFoc!, ~13!

and it is blocked as SBB[T̃BocS
BBTBoc , SBC

[T̃BocS
BCTCoc , . . . ,SFF[T̃FocS

FFTFoc . The diagonal
blocks such asSBB are close to a unit matrix, and, on th
other hand, the matrix elements of the off-diagonal bloc
are expected to be much smaller than 1. Therefore, the
responding blocks of the inverse matrix (S*A)21 can be ex-
panded in terms of the block matrices$SBC%. To make it
clear, we introduce a matrixR*A ,

R*A[~S*A!21, ~14!

and its block matrices$RBC%. Each block is expanded in
terms of the inverse of the diagonal blocks$(SBB)21% and of
the off-diagonal blocks$SBC%. The diagonal block is

RBB5~SBB!212 (
DÞA,B

~SBB!21SBD~SDD!21SDB~SBB!21

1 (
DÞA,B

(
EÞA,B,DÞE

~SBB!21SBD~SDD!21

3SDE~SEE!21SEB~SBB!212¯, ~15!

and the off-diagonal block is

RBC51~SBB!21SBC~SCC!21

2 (
DÞA,B

~SBB!21SBD~SDD!21SDC~SCC!211¯.

~16!

Note that the second term in Eq.~15! is the third order of the
inverse matrix of the MO overlap matrix (SBB)21 and the
first term of Eq.~16! is the second order. Inserting the e
pansion Eqs.~15! and~16! into Eq.~10!, and taking only the
first order of (SBB)21, we can approximate the set of Eq
~11! to be solved as
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S 12 (
BÞA

P̂BocD F̂S 12 (
BÞA

P̂BocD uaj&

5S 12 (
BÞA

P̂BocD uaj&« j . ~17!

The advantage of using the approximate equations is tha
dimension of the inverse matrix to be evaluated isMB , the
number of occupied orbitals of each unit, but if we use
exact Eq.~11!, we have to invert the full(BÞAMB size of
matrix every iteration in solving the equation for each un
So in the present study, we have mostly used the appr
mate Eqs.~17!. In practice, this approximation is accurat
because the ratios such as (SBB)21SBD are small, and be-
cause only higher than the third order in the diagonal blo
and the second order in the off-diagonal blocks are d
carded. Alternatively, we can use Eq.~17! until the conver-
gency is nearly reached, and then for the last few iteratio
the exact Eq.~7! is solved to ensure the equality similar
Eq. ~9!.

Recently Gianinettiet al. extended the SCF MI to a
multi-component system.9 Their equations are more compl
cated than our Eq.~11!. We have not proved the equivalenc
of our equations for the multi-component system with tho
of Gianinettiet al. We have numerically confirmed that ou
calculated binding energy of a water trimer is equal to the

As Gianinettiet al. have proved, the energy is variation
ally optimized, and the first derivative of the energy can
evaluated, using the ordinal equations by properly replac
the density matrix with that of the nonorthogonal molecu
orbitals. To evaluate the second derivative, the derivative
the MO coefficients have to be calculated by solving
coupled perturbed Hartree–Fock~CPHF! equation. A little
more algebra is required to obtain the equations for the n
orthogonal molecular orbitals under the projection operat

III. COMPUTATIONAL DETAILS

The computer program is coded as a part of theMOLYX

package14,15 which usesGAMESS-US’s integral routines.16 In
the present test calculations, we use a series of Dunni
correlation-consistent polarized valence basis sets.17 The se-
ries forms a hierarchy of increasing basis set quality~cc-
pVXZ, X5D, T, Q, and 5 for double, triple, quadruple, an
quintuple zeta!. Recently, using this series of basis se
Rappéand Bernstein systematically examined the basis
dependence on the nonbonding interaction and BSSE.18 In
addition, we examine the contribution of diffuse functio
with aug-cc-pVXZ.19 The BSSE is evaluated by followin
the equation given by Xantheas.5

IV. RESULTS AND DISCUSSION

To examine the present locally projected~LP! SCF
method for molecular interaction~MI !, the size dependenc
of the binding energies of water clusters is calculated. T
structures of the most stable water clusters are known to
cyclic up to a pentamer.13,20,21 The structures are re
optimized with the SCF/cc-pVDZ and /aug-cc-pVTZ leve
of approximation, and are shown in Fig. 1. For the pentam
he
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we intentionally calculated a less stable isomer which ha
central water molecule with four hydrogen bonds and c
tains two strained rings. It is expected to have a larger BS
than the cyclic pentamer.

First we examine the accuracy of the approximate E
~17! for trimer to pentamer of water clusters and f
F2~H2O!2 . Table I shows the difference of the interactio
energies evaluated by Eqs.~11! and~17!. When the basis se
does not contain any diffuse functions, the errors are l
than 0.002 kcal/mol. Even for the basis sets augmented
diffuse functions, the maximum error is 0.012 kcal/mol. Th
accuracy is much better than we expected. As shown in
1, the hydrogen bonds determined with the cc-VDZ basis
are shorter than those with the aug-cc-VTZ basis set. Th
fore, the approximation Eq.~17! for the same basis set i
slightly worse for geometries~a! than for geometries~b!. As
expected, the pentamer has the largest error for both ge
etries. The interaction between F2 and water molecules is
very strong, and therefore, the error is large particularly
geometry~a!. Table 1 clearly demonstrates that the appro
mate Eq.~17! can be used even for these strong interact
cases in place of the exact Eqs.~11!. Thus, hereafter, all
results shown are the energies based on Eq.~17!.

The calculated binding energies for water clusters
given in Tables II and III. In Figs. 2 and 3 the size and ba
set dependencies of the total binding energies are shown.
energies of Table II and Figs. 2 and 3 are calculated at
geometries optimized with the SCF/cc-pVDZ level of a

FIG. 1. The geometries of water clusters used in the calculations in Tabl
II, and III. They are optimized with the SCF/aug-cc-pVTZ~SCF/cc-pVDZ!
level of approximation.

TABLE I. Energy difference~kcal/mol! between the exact Eq.~11! and
approximate Eq.~17! LP SCF MI equations.~a! Geometry optimized with
the cc-pVDZ,~b! with the aug-cc-pVTZ.

Clusters Geometry cc-pVDZ cc-pVTZ aug-cc-pVDZ aug-cc-pVT

(H2O)3 ~a! 0.0000 20.0013 20.0063
~b! 20.0019 20.0094

(H2O)4 ~a! 0.0000 0.0000 20.0044
~b! 20.0031

(H2O)5 ~a! 0.0000 20.0119
~b! 20.0050

F2(H2O)2 ~a! 0.0000 20.0082 20.0094
~b! 20.0006 20.0019
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proximation. As is now well known,18 Table II and the fig-
ures demonstrate that the large BSSE in the SCF/cc-pV
calculations is substantially reduced by adding the diffu
functions as in aug-cc-pVXZ; the counterpoise~CP! correc-
tion becomes less than 1 kcal mol21 in the augmented basi
sets. The differenceD~LP2SCF! between the SCF and lo
cally projected SCF~LP SCF MI, or SCF MI! is large, which
was noticed by Gianinettiet al. in their test calculations for
the dimer.8 The larger basis sets in the series of cc-pVXZ a
of aug-cc-pVXZ sets yield smallerD~LP2SCF! with one

TABLE II. The binding energies~in kcal/mol! of water clusters, optimized
with the SCF/cc-pVDZ level of approximation.

Basis set Dimer Trimer Tetramer Pentame

cc-pVDZ SCF 25.71 217.32 229.33 234.77
CP BSSE corr. 24.05 211.35 220.74
LP SCF MI 23.42 28.96 216.23 217.80
D~LP-CP!a 0.63 2.39 4.51
D~LP2SCF!b 2.29 8.36 13.10 16.97

cc-pVTZ SCF 24.35 212.88 222.69
CP BSSE corr. 23.61 210.74 219.49
LP SCF MI 23.28 28.91 215.54
D~LP-CP!a 0.33 1.83 3.95
D~LP2SCF!b 1.07 3.97 7.15

cc-pVQZ SCF 23.89
CP BSSE corr. 23.61
LP SCF 23.05
D~LP-CP!a 0.56
D~LP2SCF!b 0.84

aug-cc-pVDZ SCF 23.80 211.09 220.03 222.50
CP BSSE corr. 23.63 210.49 219.11
LP SCF 22.91 27.80 213.89 215.36
D~LP-CP!a 0.72 2.69 5.22
D~LP2SCF!b 0.89 3.29 6.14 7.14

aug-cc-pVTZ SCF 23.66 210.61 219.40
CP BSSE corr. 23.60 210.48 219.17
LP SCF MI 22.96 28.07 214.28
D~LP-CP!b 0.64 2.41 4.89
D~LP2SCF!c 0.70 2.54 5.12

aug-cc-pVQZ SCF 23.66
CP BSSE corr. 23.62
LP SCF MI 23.00
D~LP-CP!b 0.62
D~LP2SCF!c 0.66

aThe difference between the LP SCF MI and CP corrected energies.
bThe difference between the LP SCF MI and SCF energy. In other word
is the BSSE estimated with the LP SCF MI.

TABLE III. The binding energies~in kcal/mol! of water clusters, evaluated
with the SCF/ aug-cc-pVTZ level of approximation at the geometries o
mized at the SCF/aug-cc-pVTZ~SCF/cc-pVDZ! level.

Dimer Trimer Tetramer

SCF 23.74~23.66! 211.13~210.61! 219.80~219.40!
BSSE CP corr. 23.67~23.60! 210.91~210.48! 219.48~219.17!
LP SCF MI 23.19~22.96! 29.27~28.07! 215.65~214.28!
D~LP-CP!a 0.48~0.64! 1.64~2.41! 3.83~4.89!
D~LP2SCF!b 0.55~0.70! 1.86~2.54! 4.15~5.12!

aThe difference between the LP SCF and CP corrected energies.
bThe energy difference of the LP SCF MI and SCF.
Z
e

d

exception. AlsoD~LP2SCF! in aug-cc-pVXZ is slightly
smaller than in the corresponding cc-pVXZ. Figures 2 an
show that the binding energy evaluated with LP SCF
converges to a higher value than the CP corrected ene
The underestimation for the binding energy in LP SCF MI
inherent to the method, because of the small variatio
space for the occupied molecular orbitals of each molec
unit. The electron delocalization over the molecular units
almost prohibited by the restricted basis set expansion s
as Eqs.~2! and ~5!. So it is expected that the charge tran
fer ~CT! interaction is substantially underestimated in L
SCF MI. In strong hydrogen bonds such as in the wa
clusters, the contribution from the CT interaction is larg
Very recently Hamzaet al.22 systematically examined th
difference among their chemical Hamiltonian approa
~CHA!, CP correction and SCF MI. They noted that the S
MI underestimated the binding energy, while their CH
agreed with the CP correction for large basis sets. They
tributed this difference to the lack of the charge transfer
fects in the SCF MI. We will analyze the electron deloca
ization in the LP SCF MI in details at the last part of th
section and in the Appendix. As Fig. 2 and Table II show, t

FIG. 2. The size dependence of the total binding energy of water clus
(H2O)n for the SCF, CP BSSE corrected SCF, and LP SCF MI methods.
geometries are determined with the SCF/cc-pVDZ level of approximat
~a! The basis set: cc-pVDZ.~b! The basis set: aug-cc-pVDZ.
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differenceD~LP2SCF! per the hydrogen bonds for each b
sis set increases with the size of cyclic clusters, which
expected because of the stronger hydrogen bonds in
larger cyclic clusters and thus of the larger CT contributio

Table III compares the binding energies evaluated w
the aug-cc-pVTZ basis set. Two geometries for each clus
optimized with SCF/aug-cc-pVTZ~cc-pVDZ!, are exam-
ined; they differ in the hydrogen bond lengths. As mention
above, if the hydrogen bonds are optimized with the a
mented basis set, the bonds become longer. Therefore
difference D~LP2SCF! is smaller for the structures opt

FIG. 3. The basis set dependence of the binding energy of water clu
(H2O)n for the SCF, CP BSSE corrected SCF, and LP SCF MI metho
The basis sets pointed by an arrow are those of aug-cc-pVXZ. The ge

etries are determined with the SCF/cc-pVDZ level of approximation.~a!
Dimer, ~b! trimer, ~c! tetramer.
is
he
.
h
r,

d
-

the

mized with the augmented basis set than for those withou
The CP correction for both basis sets is small and ne
equal to each other.

Figure 3 examines the basis set dependence of the b
ing energy for water dimer, trimer, and tetramer. Because
addition of the diffuse functions reduces the BSSE, each
behaves in a zigzag manner. The CP plots are smooth i
cases. The amplitude of the zigzag of the LP SCF MI pl
are much smaller than that of the SCF plots. The LP SCF
with aug-cc-pVDZ always yields a nearly converged valu
Figure 3 clearly demonstrates that LP SCF MI undere
mates the binding energy and gives us a good estimatio
the lower bound of the binding energy.

The second example we examined is a fluoride an
(F2) complex with two water molecules. Recently the com
plexes of the anion with water clusters were studied b
experimentally and theoretically by Lisy and co-workers23

and theoretically by Baiket al.24 The optimized geometries
with the SCF/cc-pVDZ and SCF/aug-cc-pVTZ levels a
shown in Fig. 4, and they differ substantially from ea
other. Without augmented diffuse functions, the hydrog
bond between water molecules is formed. On the other ha
when the diffuse functions are augmented, the anion-w
interaction becomes stronger, and the hydrogen bond is
ken. Experimentally the vibrational spectra indicate the ex
tence of the stronger F2

•••HO interaction.23 As Table IV
shows, structure~b! optimized with the SCF/aug-cc-pVTZ

rs
s.
m-

FIG. 4. The geometries of F2(H2O)2 : ~a! optimized with the SCF/cc-pVDZ
level; ~b! optimized with the SCF/aug-cc-pVTZ level.

TABLE IV. The binding energies~kcal/mol! of halogen anion (F2) com-
plexes with a water dimer.

Method/Basis set cc-pVDZ aug-cc-pVDZ aug-cc-pVTZ

SCF/cc-pVDZa 263.94 241.29 241.08
LP SCF MI/cc-pVDZa 241.03 231.68 232.76
D~LP2SCF!b 22.91 9.61 8.32
SCF/aug-cc-pVTZc 242.83 242.82
LP SCF MI/aug-cc-pVTZc 233.87 234.90
D~LP2SCF!b 8.96 7.98

aThe geometry is optimized with the SCF/cc-pVDZ level.
bThe energy difference of the LP SCF MI and SCF.
cThe geometry is optimized with the SCF/aug-cc-pVTZ level.
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TABLE V. Comparison of the Mulliken~MA ! and Löwdin ~LA ! gross population analysis.

Clusters
F2(H2O)2

Gross population

Basis sets/geometry Methods H2O H2O F2

cc-pVDZ SCF~MA ! 20.109 20.113 0.222
/cc-pVDZ ~LA ! 20.136 20.136 0.272

LP SCF MI ~LA ! 20.068 20.065 0.132

cc-pVTZ SCF~MA ! 20.094 20.096 0.189
/cc-pVDZ ~LA ! 20.192 20.190 0.381

LP SCF MI ~LA ! 20.144 20.140 0.285

aug-VDZ SCF~MA ! 20.014 20.011 0.025
/cc-pVDZ ~LA ! 20.174 20.175 0.350

LP SCF MI ~LA ! 20.152 20.150 0.303

(H2O)2 H2Oa H2O

VDZ SCF ~MA ! 0.035 20035
/aug-VDZ ~LA ! 0.036 20.036

LP SCF MI ~LA ! 0.017 20.017

VTZ SCF ~MA ! 0.023 20.023
/aug-VTZ ~LA ! 0.047 20.047

LP SCF MI ~LA ! 0.037 20.037

aug-VDZ SCF~MA ! 20.024 0.024
/aug-VTZ ~LA ! 0.054 20.054

LP SCF MI ~LA ! 0.051 20.051

aThe proton acceptor water molecule.
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level has a larger binding energy than structure~a! having a
hydrogen bond. As the geometries suggest, the differe
D~LP2SCF! for structure~a! is larger than for structure~b!.
A large D~LP2SCF! even for structure~b! may indicate the
importance of the electron delocalization in the binding.

As repeatedly mentioned, the binding energy in LP S
MI is always smaller than the CP corrected SCF bind
energy. Hamzaet al.22 argued that the SCF MI excludes an
delocalization between the molecular units. Because the
lecular orbitals in the SCF MI are not orthogonal, ca
should be taken in analyzing the electron distribution. A f
ways of the population analysis in theab initio molecular
orbital theories have been used. The most popular one is
of Mulliken,25 and Löwdin’s analysis26 is also widely used. It
is known that the gross population is dependent on the an
sis used. In the Appendix, we prove that the Mulliken gro
population results in no electron delocalization in the S
MI as were intuitively argued by Hamzaet al.23 But, with the
Löwdin gross population, because of the nonorthogonality
the occupied orbitals, the electron transfer between the
lecular units is possible. Table V demonstrates the exam
for water dimer and F2(H2O)2 . With the SCF wave func-
tion, the charge transfer in the Lo¨wdin gross population is
always larger than in the Mulliken gross population, and
difference of the two methods is larger for larger basis s
in particular with the augmented functions. It should
noted that the direction of the charge transfer in the Mullik
gross population for water dimer becomes unphysical for
aug-cc-pVDZ basis set. It has been known that the Mullik
population analysis with diffuse basis functions often giv
us a chemically unacceptable picture of the electron des
tion. As analytically shown in the Appendix, the Lo¨wdin
ce
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gross population with LP SCF MI yields substantial amou
of the charge transfer, which are close to those of the S
wave function, in particular, for the augmented basis sets.
should recall, as Mayer pointed out correctly,7 that we cannot
make the counterpoise correction to the population analy
We would like to emphasize that the population analysis
one of the measures of the electron destitution in the m
ecule and molecular cluster, and that it is not the observa

V. CONCLUSIONS

We have reformulated the SCF for molecular interact
~MI ! by Gianinetti et al.8 and extended it for a multi-
component system. The set of equations implies that
locally projected SCF method is a more appropriate na
than SCF MI. The test calculations for water clusters sh
that the binding energy is substantially underestimated
that it converges to the lower energy at the basis set lim20

The perturbation correction is essential to evaluate the a
rate binding energy. Recently Specchioet al.have succeeded
in including the correlation contribution in terms of valen
bond theory using the nonorthogonal molecular orbitals.27 In
their expansion they intentionally excluded the charge tra
fer interaction. Currently we are developing a perturbat
expansion theory, starting from the LP SCF MI. Because
the localized nature of the orbitals, the terms in the pertur
tion expansion can be restricted and classified, although
orbitals are not orthogonalized.
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APPENDIX: GROSS POPULATION

One particle density is written as

r~r !5(
p,q

uxp&Ppq^xqu[x̃Px, ~A1!

wherex is a column vector of the basis functionsuxp&, and
the matrixP is the density matrix in terms of the basis fun
tions. For the nonorthogonal occupied molecular orbitals,
matrix P is given as

P52 (
i , j 51

Nocc

t i~S 21! i j t̃ j , ~A2!

S 21[~ T̃ST…21,

for the closed shell system, whereT is a rectangular MO
matrix of the occupied orbitalst i andS is the overlap matrix
over the basis set. By integrating the density,

E r~r !dr5E x̃Px dr52 (
i , j 51

Nocc

~S 21! i j t̃ jSti52Nocc,

~A3!

we recover the number of electron. If the basis setx̃ is di-
vided to$xÃ,xB̃%, and thus the MOt̃ i5$ t̃ iA , t̃ iB%, the density
matrix in terms of MO is split to

t̃ jSti5 t̃ jASAAt iA1 t̃ jBSBAt iA1 t̃ jASABt iB1 t̃ jBSBBt iB

5~SAA! j i 1~SBA! j i 1~SAB! j i 1~SBB! j i , ~A4!

and thus

2Nocc52 (
i , j 51

Nocc

@~S 21! i j $~SAA! j i 1~SBA! j i %#

12 (
i , j 51

Nocc

@~S 21! i j $~SAB! j i 1~SBB! j i %#,

[NA
Mull-elec1NB

Mull-elec, ~A5!

whereNA
Mull-elec(NB

Mull-elec) is the Mulliken gross population
of molecular unit A~B!.

Up to here, the equations are general. Now, in LP S
MI for a two-component system,T is a block matrix,

T[S TA 0

0 TBD ,
d

rt
f

-
gy
t
a-

e

F

and thus, the gross population is

NA
Mull-elec52(

i 51

Nocc
A F (

j 51

Nocc
A

~S 21! i j ~SAA! j i

1 (
j 5Nocc

A
11

Nocc
A

1Nocc
B

~S 21! i j ~SBA! j i G
52 Tr~RAASAA1RABSBA!, ~A6!

where the blocks of the inverse matrix are defined as

1Nocc
5S 21S5S RAA RAB

RBA RBB
D S SAA SAB

SBA SBB
D . ~A7!

Now,

NA
Mull-elec52 Tr~1N

occ
A !52Nocc

A , ~A8!

so that no electron transfer is possible between A and B
the Mulliken population analysis even when the MOs are
orthogonal.

In the Löwdin population analysis, the density matrix
projected on the Lo¨wdin orthogonalized orbitals,

xL5S21/2x, ~A9!

and thus,

Nelec5E r~r !dr

5E x̃LS1/2PS1/2xL dr

5Tr~MAAPAAMAA1MAAPABMBA1MABPBAMAA

1MABPBBMBA!1Tr~MBBPBBMBB

1MBBPBAMAB1MBAPABMBB1MBAPABMAB!

[NA
Löwd-elec1NB

Löwd-elec, ~A10!

where the root square matrix of the overlap matrix in ter
of the basis set is defined as

M[S SAA SAB

SBA SBBD 1/2

[S MAA MAB

MBA MBBD . ~A11!

After a few manipulation, we obtain the Lo¨wdin gross
population,

NA
Löwd-elec5Tr$SAAPAA2MABMBAPAA1~MBAMAB!PBB%

1Tr$SABPBA2MABMBBPBA1~MBAMAA!PAB%.

~A12!

Up to here, the equations are general. Now, in LP SCF
for a two-component system, the sub-blocks of the den
matrix in terms of the basis set are
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PAA52(
i 51

Nocc
A

(
j 51

Nocc
A

~S 21! i j t iA t̃ jA ,

~A13!

PBA52 (
j 5Nocc

A
11

Nocc
A

1Nocc
B

(
i 51

Nocc
A

~S 21! i j t iA t̃ jB .

Therefore,

Tr~SAAPAA!52(
i 51

Nocc
A

(
j 51

Nocc
A

~S 21! i j ( tp, jA~SAA!prt r ,iA

52(
i 51

Nocc
A

(
j 51

Nocc
A

~S 21! i j ~SAA! j i

52 Tr~RAASAA!

52 Tr~12RABSBA!

52Nocc
A 22 Tr~RABSBA!. ~A14!

Thus,

NA
Löwd-elec52Nocc

A 1Tr$2MABMBAPAA1MBAMABPBB

2MABMBBPBA1MBAMAAPAB%. ~A5!

BecauseMABMBA is a product of blocks of the root squa
overlap matrix, the terms in the second line cannot be s
plified further. For instance,

Tr~MBAMABPBB!

5 (
p5MA11

MA1MB

(
q51

MA

(
r 5MA11

MA1MB

~MBA!pq~MAB!qr~PBB!rp

52 (
p5MA11

MA1MB

(
q51

MA

(
r 5MA11

MA1MB

~MBA!pq~MAB!qr

3 (
i 5Nocc

A
11

Nocc
A

1Nocc
B

(
j 5Nocc

A
11

Nocc
A

1Nocc
B

~S 21! i j t iB t̃ jB

5 (
i 5Nocc

A
11

Nocc
A

1Nocc
B

(
j 5Nocc

A
11

Nocc
A

1Nocc
B

~RBB! i j t̃ jBMBAMABt iB . ~A16!
-

It is these terms that contribute to the electron delocaliza
over the molecular units in the Lo¨wdin gross population.
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13M. Schütz, T. Bürgi, S. Leutwyler, and H. B. Bu¨rgi, J. Chem. Phys.99,

5228 ~1993!.
14S. Iwata~unpublished!.
15K. Okada and S. Iwata, J. Electron Spectrosc. Relat. Phenom.108, 225

~2000!.
16M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordo

J. H. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, S. Su, T. L. Wind
M. Dupuis, and J. A. Montgomery, Jr., J. Comput. Chem.14, 1347~1993!.

17T. H. Dunning, Jr., J. Chem. Phys.90, 1007~1989!.
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21M. Schütz, W. Klopper, H. P. Lu¨thi, and S. Leutwyler, J. Chem. Phys.103,

6114 ~1995!.
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26P.-O. Löwdin, Adv. Quantum Chem.5, 185 ~1970!.
27R. Specchio, A. Famulari, M. Sironi, and M. Raimondi, J. Chem. Ph

111, 6204~1999!.


