Studies on phospholipases A2 in the gills of the red sea bream

Satoshi Uchiyama

Graduate School of Biosphere Science, Hiroshima University, Higashihiroshima 739-8528, Japan

Phospholipase A₂ (phosphatide 2-acyl hydrolase, EC 3.1.1.4) (PLA₂) hydrolyzes the fatty-acyl ester bond at the sn-2 position of glycerophospholipids. PLA₂ has now become a large superfamily of distinct enzymes that play a central role in diverse cellular processes including phospholipid digestion and metabolism, host defense and signal transduction. Secretory PLA₂s have been comprehensively investigated in land animals and are now found to consist of twelve molecular species. On the other hand, there is little of information about the enzymology of fish PLA₂. Although it is known that PLA₂ exists in the digestive tissues of the fish, only limited information exists on the physiological role of PLA₂ in non-digestive tissues of fish. In the present study, I purified PLA₂ from the non-digestive tissue, the gills, of the red sea bream. I further investigated the localization of protein and the gene expression of gill PLA₂ and an activating enzyme of pro-PLA₂ in the red sea bream.

Purification and cDNA cloning of phospholipases A2 from the gills of the red sea bream

PLA₂ activity was investigated in various tissues of the red sea bream. The specific activity of PLA₂ in the gills was significantly higher than that in other tissues, such as the adipose tissue, intestine and hepatopancreas. Therefore, I tried to purify PLA₂ from the gill filaments of red sea bream to near homogeneity by sequential chromatography. G-1, G-2 and G-3 PLA₂s were purified and all showed a single band. The exact molecular mass values of G-1, G-2 and G-3 PLA₂s were 14,040, 14,040 and 14,005 Da, respectively. G-1, G-2 and G-3 PLA₂s had a Cys 11 and were all identical in N-terminal amino acid sequences from Ala 1 to Asn 56. A full-length cDNA encoding G-3 PLA₂ was cloned by RT-PCR and RACE methods, and G-3 PLA₂ was found to be classified to group IB PLA₂ from the deduced amino acid sequence. G-1, G-2 and G-3 PLA₂s had a pH optimum in an alkaline region at around pH 9-10 and required Ca²⁺ essentially for enzyme activity, using a mixed-micellar phosphatidylcholine substrate with sodium cholate. These results demonstrate that three group I PLA₂s, G-1, G-2 and G-3 PLA₂s, are expressed in the gill filaments of red sea bream.

Localization of phospholipase A₂ in the gills of the red sea bream

It was reconfirmed that the level of PLA₂ activity is extremely high in the gills compared with other tissues, and gill PLA₂ was detected only in the gills by immunoblotting and inhibition test using anti-gill PLA₂ monoclonal antibody. The level of PLA₂ activity and protein expression in the gills are well correlated; Fish can be roughly divided into high and low groups based on the level of PLA₂ activity. Gill PLA₂ was detected in the gills of the high group, but not the low group by immunoblotting. In the gills of the high group, gill PLA₂ was detected in the mucous cells and pavement cells located on the surface of gill epithelia by immunohistochemistry. On the other hand, positive signals were observed only in the mucous cells by *in situ* hybridization. I also isolated inactive pro-PLA₂, having AR propeptide, preceding the mature enzyme from the gill

extract. These results suggest that gill PLA_2 is synthesized as an inactive pro- PLA_2 in the mucous cells and is secreted to the surface of gill epithelia.

Purification of an activating enzyme of gill PLA₂

I investigated the pro-PLA₂ activating enzyme (PAP) in the gills of the red sea bream by measuring the increase of PLA₂ activity, using the gill pro-PLA₂ as a substrate. As PAP activity was found to distribute in the membrane fraction of the gills, I tried to purify PAP from the fraction of the gills. Two membrane-bound trypsin-like serine proteases (approximately 200 kDa) were partially purified from the gills of the red sea bream, and these two enzymes were found to activat the gill pro-PLA₂.

Key words: phospholipase A2, pro-PLA2 activating enzyme, gills, red sea bream