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The quenched Eguchi-Kawai model is studied by using the Monte Carlo technique. The
data indicate that in the large-N limit the quenched Eguchi-Kawai model is identical to
the Wilson theory throughout the whole range of coupling constants, The first-order
phase transition is observed at 8/N=0.29+0,02 for the gauge group U(20).

PACS numbers: 11,15,Ha, 11.30.Ly

Recently there has been great progress in in-
vestigating the large-N limit of the UW) [or
SU(V)] lattice gauge theories. Eguchi and Kawai!
claimed that in this limit we could replace the
usual Wilson action by the reduced model which
has only one site (one space-time point) with a
periodic boundary condition for gauge fields. Al-
though their model works quite well in the strong-
coupling region, Bhanot, Heller, and Neuberger?
argued that their model cannot reproduce the
Wilson action in the weak-coupling region. In
fact, a precise Monte Carlo simulation was per-
formed by the present author® who showed that
the model undergoes a phase transition before it
reaches the continuum limit. To save the model
the authors of Ref. 2 proposed the quenched ver-
sion of the Eguchi-Kawai model (QEK model)
which is supposed to have good behavior in weak
coupling. A general quenching prescription was
proposed by Parisi.* His method has wide ap-
plicability to general field theories having the
UW) [or SUW)] internal symmetries. A detailed
analysis was made by Gross and Kitazawa.®
Among other things they showed that the QEK
model is equivalent to the usual Wilson theory to
any finite order in perturbation theory. The
same problem is also considered by several au-
thors.® In this paper the QEK model is studied by
using the Monte Carlo method.

The action of the QEK model is obtained from
that of the original model,

4

Sgx = Z;

p#v=1

by substituting the link variable U, by V, TDuV“ ,

trU ,U,U, 0, T, (1)

4
Serx= 2 tr(v,'D,V,)(V,'D,V,)

p#v=1
(V"D V)V, DY), (2)

where D, is the N XN diagonal matrix given by
,exp(i6 V)] (3)

and V, is the unitary matrix. We calculate the

D, =diaglexp(i6,'),. ..

expectation value of the physical quéntity O first
fixing the variable 6,°,
deuO exp[BSQEK(Vu ) gu : )]

nT - (4)
deu exp[BSQEK(Vu ’ eu )T

Then we average O(6,*) over the quenched vari-
able 6, with the weight function F(6,%)

_Jde,'F(9,')0(,")
©0)= IdQH‘F(Gu") ’ (®)

0(6,")=

Equations (2)—-(5) define the QEK model. In the
large-N limit we expect that (O) does not depend
on the weight functionF(Gu"). However, aE_finite
N (of order N=20), as we shall see later, O(Hu")
depends crucially on 6, in the strong and inter-
mediate coupling. Thus to discuss the model
definitely, we have to specify F(6,"). In this
paper the following two cases are considered:

Fi6,)=T1 IT sint (0, - ,)], ®
goi>J
Fo0,")=1. )

F,(6,%) is naturally obtained if we parametrize
U,asU,=V,’'D,V,’ and express the Haar meas-
ure dU in terms of 6,° and V',

AU =F(6,)d6,* av,’ (8)

[note that in Eq. (8) V" has only N2 ~N degrees
of freedom but in Eq. (4) there is no such restric-
tion] . Fz(Bu") is convenient for the strong-coup-
ling expansion. In Ref. 5, the equivalence of the
QEK model and the Wilson theory is proved with
this weight F,(6,*).

The quantity which we measure is the internal
energy E of the QEK model,

E=N"YRetr(V,'D,V,)(V,™D,V,)
(V"D *V)(V,ID VL)L (9)
In the strong-coupling case E behaves like
E =(B/N)+0(p?) (10)

as N becomes large. The weak-coupling expan-
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sion is given by

1-1/N N
The original Eguchi-Kawai model (1) is invariant
under the global U(1) transformation U, ~ exp(i
X8 ,)U,. Equation (11) is also derived from Eq.
(1) provided that this symmetry is not spontane-
ously broken. Actually in the original model this
U(1) symmetry is broken spontaneously and the
weak-coupling expansion reads’

_ _1-1NN
wy=l- =g 5

Egym=1- (11)

E (12)
As N becomes large, only E ym agrees with the
results obtained from the usual Wilson action.
The Monte Carlo simulation is performed in
the following way: We first select the 9,1" vari-
ables randomly from 0 to 27 with the weight F,
or F,. Then the average over V, variables is
performed by using the Monte Carlo method pro-
posed in the previous paper.® After the system
reaches equilibrium the expectation value, Eq.
(4), is measured. We then reselect the 9“1‘ vari-
ables. Typically we change the variables 0,°
five times to calculate E [see Egs. (5) and (9)].
To reduce the computation time we define V,, by
V,,=V,V,'™D,V,V,T. Under the change of the

variable V,~BV,, V,, changes as V,,-BV BT

Then in addition to the link variables V,, we
store V,,, in the memory. In this way the compu-
tation time of the change of the action TrD,V,,
xD,*V,, " grows only linearly in N.

First we consider the model with the weight
function F1(9u"). Figure 1 shows the internal en-

ergy as a function of the coupling /N for N =20.
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FIG. 1. The internal energy of the QEK model with
the weight Fi(eu‘) as a function of g/N for the gauge
group U(20). The internal energy of the original EK
model is also plotted. The strong- and weak-coupling
curves are from Eqgs. (10)—(12).
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Each point is an average over 30-50 iterations.
A given link variable V', is hit 380 [=N(N - 1)]
times before proceeding to the next. The accep-
tance rate is always greater than 50%. Also
plotted is the internal-energy result of the ori-
ginal Eguchi-Kawai model. It is clear that in the
intermediate- and weak-coupling regions the ori-
ginal and the quenched models have completely
different behaviors. In the weak-coupling region
the QEK model fits the curve of Eq. (11) very
well. The model has the same phase structure as
the large-N limit of the standard Wilson action.
It undergoes the first-order phase transition near
B/N=0.29. Figure 2 shows the results of two
long runs at this point with different initial con-
ditions. We observe the latent heat clearly.
From the measurement of the latent heat at other
points, I am led to quote B/N =0.29+0.02 as the
critical coupling. This point is a little bit lower
than the critical point 8,/N =0.33 measured in
the SU(6) Wilson theory.® Perhaps this is the
finite-N effect caused by the weight factor
F.(6,%).°

For comparison the U(10) group was studied.
Although measurements of the latent heat are
difficult in this case, I observed an abrupt change
of the internal energy as a function of 3/N from
strong to weak coupling within the interval g8/N
=0.26+0.02. I also performed the rapid thermal
cycle. The hysteresis loop is clearly seen near
B/N=0.26.

We estimate the N dependence of the critical
coupling B8, (N); we parametrize it as

B,WN)/N=A+B/N), (13)

where the B/N term corresponds to the leading-
order correction of the 1/N expansion (in the QEK
model, generally, the higher-order correction
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FIG. 2. Two Monte Carlo runs at g/N=0.29,
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FIG. 3. The internal energy of the QEK model with
the weight F3(0,%) as a function of g/ for the gauge
group U(20).

starts from order 1/N and not 1/N2). Using val-
ues f,(10)=0.26 and B, (20)=0.29 we obtain

A=0.32, B=-0.6. (14)

Within the experimental error this limiting value
0.32 is consistent with the critical coupling ob-
served in the usual Wilson theory.

Next we consider the model with F(6,°)=1.
Figure 3 shows the internal energy as a function
of the coupling B/N for N=20. In the weak-coup-
ling region it also fits well with the curve of Eq.
(11). We do not find any indication of the phase
transition in this case. The curve is smooth and
approaches E =2(N - 1)/(N2-1) at g=0.

In weak coupling Eq. (4) does not depend crucial-
ly on the 0“" variables and the above two models
lead to the same result. In strong and interme-
diate coupling, however, 5(0u‘) has a large de-
pendence on the variables 6,'. It is important to
choose a suitable weight function to study these
regions [for example, F1(9ui) is capable of de-
tecting the first-order phase transition in the
U(20) group] .

Although in the critical region the approach to
large N is not so fast, this experiment indicates
that as N goes to infinity the QEK model becomes
identical to the standard Wilson theory through-
out the whole range of coupling constants. To
draw a more conclusive result the evaluation of
the Wilson loop is desirable. In the QEK model
this is not so difficult because (U )" -V, (D ,)"V,.
This is an interesting problem which I am pres-
ently investigating.
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*While this work was in progress, the author received
the preprint of G. Bhanot, U. M. Heller, and H, Neu-
berger (to be published) in which the critical region of
the QEK model was also studied by the Monte Carlo
method. Instead of taking the weight factor (6), the
authors fixed the set {6,'} (=1,4) to be {6,'} ={a,,
+27i /N}. For finite N, their model is not the same as
the present one. They found the first-order phase tran-
sition near 28/N=0.63. (The author would thank H. Neu-
berger for discussion on this point.)
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