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The Eguchi-Kawai model is studied by using the Monte Carlo technique with the gauge
groups SU(N), N =2, 3, 4, 5, and 10. Clear evidence of spontaneous breaking of the
Zy symmetry is observed in the weak-coupling region for N = 10.
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Recently Eguchi and Kawai' reported the very
exciting possibility of reducing the dynamical de-
grees of freedom of lattice gauge theory in the
large-N limit. They proposed to study the theory

defined by the partition function
d
Zs = TlaUexpld 3 Tru,U, 0,0, ()
u

H#V =1

instead of the standard Wilson theory?

d
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x p
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where U, is an NXN unitary matrix and 4 denotes
a unit vector in the ¢ direction. d is the space-
time dimensionality. They claimed that in the
large-N limit the Wilson loop amplitudes defined
in the theory (1) obey the same infinite set of
identities, the so-called Schwinger-Dyson equa-
tions, as in the standard model. Since these
identities uniquely specify the theory, the Wilson
gauge theory (2) reduces to its simpler version,
Eq. (1). In this paper I study the Eguchi-Kawai
(EK) model (1) by using the Monte Carlo method.

It is interesting to note that one can always re-
write the Wilson action (2) in the form of Eq. (1).
Indeed, introducing nN XnN matrices U" (z being
the number of sites in the lattice) which have non-
vanishing elements U*, ,., ;=(U",);; only wheny
=x + |4, the partition function in Eq. (2) can be ex-
pressed as®

7 d .
Zy= TldUexplp 3 TrU,U, 0, 0, ()
p = v=1

The prime means that the integration [T, dU,
should not be extended to the whole manifold of

! nN XnN unitary matrices, but only to an appropri-

ate submanifold. Their argument indicates that
it is plausible that the very large number of de-
grees of freedom in an ordinary lattice theory is
replaced by the degrees of freedom in U@N) ma-
trices of the EK model. (The crucial question
remains whether an unrestricted integration over
the whole group manifold can reproduce the as-
ymptotic properties of the original Wilson theo-
ry.)

In Ref. 1 EK considered the theory having the
U(N) symmetry. However, in the large-N limit
SU(V) and U(N) theories are expected to have the
same limit. Thus I consider the SUNV) model
where the Z, center plays the role of the U(1) sub-
group of UWN).

The SU(N) EK model is invariant under the Z
phase transformation U, ~e®"/®iy, (=0,1,...,
N -1). The major assumption in the EK deriva-
tion is that this symmetry is not spontaneously
broken for any value of the coupling constant in
the large-N limit. In particular this means that
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the expectation value of the trace of products of

U matrices in which U, and U,fr appear a differ-
ent number of times must vanish identically.

This point is crucial to obtain the same Schwing-
er-Dyson equations in both theories. Very recent-
ly it has been argued® that this symmetry is bro-
ken spontaneously. The authors of Ref. 4 studied
the EK model by the method of steepest descent
and showed that in the weak-coupling region the
Zy-symmetric saddle point becomes unstable.
They also performed the preliminary Monte Carlo
run for N =5 and found some indication of sym-
metry breaking at large values of 8.

In this paper I study the EK model by develop-
ing a new numerical method which is capable of
effectively handling good statistical data for gauge
groups with large N. This method works quite
well in the EK model so that I easily obtain the
result with high statistics (I have checked the
validity of this method up to N =20). Ifind clear
evidence of spontaneous breakdown of Zy sym-
metry in the weak-coupling region and clarify the
nature of the phase transition.

I prepare a table of 400 SU(2) matrices 4; je
Then, choosing one SU(2) matrix randomly from
the table, Iform the SU(N) matrix B,,, which is
obtained from the N XN unit matrix by the replace-
ments By; =A,,, By =A,,, Bji=Ay, Bjj=As. 1
and j (i #j) take some values from 1 to N. Then a
given link variable U, is multiplied by this ma-
trix B. The change is accepted or rejected ac-
cording to the standard Monte Carlo algorithm.
This procedure is applied N(N - 1) times [i.e.,
for all possible values of the set (i,7)] to a given
link variable before proceeding to the next. A
sequential pass through all variables U, repre-
sents one Monte Carlo iteration. The SU(2) ma-
trices in the table are selected randomly from
the entire group but weighted toward the identity.
This weighting is coupling dependent and selected
so that the probability for accepting a change is
always greater than 50%. After each fifty itera-
tions all link variables are normalized in order
to eliminate any accumulation of roundoff errors.

To reduce the computation time, I use the fol-
lowing trick: I define V,, by V,,=UU,U,". Un-
der the change of variable U,~BU,, V,, changes
as V,,-BV,,B". Then in addition to the variable
Uy, Istore V,,in the memory. Since the matrix
B has only four nontrivial elements, if I store
both V, , and U,, the computation time of the
change of the action TrV,,U, T grows only linear-
ly inN.

Using the above method I have studied the EK
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model for N =2, 3, 4, 5, and 10. The first quan-
tity which I measure is the internal energy

E =N"'(Re TrU,U,U,'U,", @)

where the expectation is with the weight of Eq.
(1). A strong-coupling expansion yields

N*+10N%-6 B

1
E(B)=ﬁ5+—zv—2(7f2——_1)——ﬁ’ (5)

where I set the space-time dimensiond =4. Fig-
ures 1(a) and 1(b) show the internal energy as a
function of coupling B/N for the SU(5) and SU(10)
models. In Fig. 1(a), each point is an average
over 200 iterations in the simulation of a rapid
thermal cycle. For SU(10), the plotted points are
averages over 100 iterations. In the graphs, I
also plot the curves of the weak-coupling expan-
sion*

1-1/NN
8 B

Equation (6) is calculated for the vacuum in which
the Z, symmetry is not spontaneously broken.

As N becomes large it agrees with the results ob-
tained from (2). For small 3/N, the Monte Carlo
results are in good agreement with the strong-
coupling expansion (5). The N =2, 3, and 4 runs
do not show any special structure from strong to
weak coupling. In these cases, the Monte Carlo
data agree with the curve (6) in the weak-coupling

E@)=1-

(6
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FIG. 1. The internal energies per plaquette as func-
tions of B/N for the gauge group (a) SU(5) and (b) SU(10).
The strong- and weak-coupling curves are from Egs.

(5) and (6).
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region 0.4<B/N <1.2. However, as N becomes
large the data deviate from this curve as shown
in Fig. 1. We do not find any indication of the
first-order phase transition which was discovered
in the standard SU() (N = 4) gauge theories® at
B/N ~0.3. I note that B/N=20.3 is in the weak-
coupling region of the EK model.

Next I consider the expectation value (Tr U )
of the trace of the link variable U,. This quantity
plays a role of the order parameter. I the Zy
symmetry is not spontaneously broken, (TrU,)
must be identically zero. Then a measurement of
(TrU,) may be used to detect whether the sym-
metry is broken or not. I parametrize it as

N XTrU,) =P, expif . )]

In Fig. 2(a) I show the average +2 -, P, of the
absolute values of (TrU,) as a function of the
coupling B/N for the SU(10) model. It is clear
that in the weak coupling the Z; symmetry is
spontaneously broken. For N =2, 3, and 4 we do
not see any sign of symmetry breakdown. For
SU(5) I find some indication of the nonvanishing
of (TrU,). But the evidence is not so clear.

Once the symmetry is broken, the phase factor
6, has the N stable points

6,=@r/N),, 1,=0,1, ... )

In the SU(10) model, the fluctuation of the phase
factor 6, is very small and each phase 6, (k
=1,...,4) appears to settle at one of the stable
points. For example in one experiment I observed

1,=9, 1,=8, l;=2, l,=T. ®

In Figs. 2(b) and 2(c), I show the real and imagi-
nary parts of (Tr U,) in this simulation. In the
SU(5) case, however, 6, fluctuates about several

, N-1.

. 4
z=[Tlav, expl8 2 TrU,U,U, U, + INSReTrU ).
N

p#v=1 n

I performed simulations at 8/N =0.1 and 0.5 in the
SU(10) model, varying cyclically the strength of
the external source. In Figs. 3(a) and 3(b) I plot
the result obtained at 3/N =0.5. Figure 3(a)
shows the real part of N™'(Tr U,) whereas Fig.
3(b) shows the imaginary part of it. The other
link variables behave in the same way. I start
from the initial condition U, =1 (p=1,4) at k=2.
Then I decrease the strength of the source down
to # =—2 and increase it to the original value.
Each point represents the average over 100 itera-
tions.

It is interesting to observe that although we ap-
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FIG. 2. The Monte Carlo data of (1/N)(TrU ) as
functions of 3/N for the SU(10) model. (a) The average
324, IN"1(TrU,)| of the absolute values of NKTry,).
(b) and (¢) The real and imaginary parts of N TrU/,).

points (8) and does not appear to have a definite
value.

Finally I coupled an external source % to the
system:

(10)

ply only a real external field 2, (TrU,) eventually
become complex when we pass the point 2 =0:
The external source drives the symmetry break-
down to a stable point with Re(TrU ) positive, but
it is not strong enough to fix Im(TrU ). In any
case, Fig. 3(a) shows the large jump at 2 =0 im-
plying the Zy symmetry breaking. On the other
hand we do not see any special structure in the
hysteresis cycle at 8/N =0.1. This is shown in
Fig. 3(c). In this case the imaginary part of
(TrU, is essentially zero. This is consistent be-
cause now there is no stable point in the phase
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FIG. 3. Hysteresis cycles of N"XT~7/,) as functions
of the external sources k. (a) The rc ! (b) the
imaginary parts of N"XTrU,) at g/N - ) The
result of N"!Re(TrU,) at 8/N = 0.

factor 6.
This experiment clearly «at in weak
coupling the EK model unc.:. i spontaneous

symmetry breakdown. The oruer parameter
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(TrU is continuous at the transition point. The
order of the transition might be determined with
more extended simulations.

Although the original EK model has its own in-
terest since the Z, symmetry is spontaneously
broken, we cannot identify it with the Wilson ac-
tion in the large-N limit. It has been pointed
out*® that a suitably formulated quenched version
of the same model may have good behavior in the
weak-coupling region. This is an interesting pos-
siblity, which I am presently investigating.
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