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We present results of a large-scale simulation for the kBoparameterBx in quenched lattice
QCD with the Kogut-Susskind quark action. CalculatiBg at 1% statistical accuracy for seven
values of lattice spacing in the range~ 0.24—0.04 fm on lattices up to56* X 96, we verify the
theoretically predicted quadratic dependence. Strong indications are found that, with our level of
accuracy,ays(1/a)? terms arising from our one-loop matching procedure have to be included in the
continuum extrapolation. We preseBk (NDR, 2 GeV) = 0.628(42) as our final value, where NDR
indicates naive dimensional regularization. [S0031-9007(98)06280-2]

PACS numbers: 12.38.Gc, 14.40.Aq

The knowledge of the kaoB parameteBg spacinga =~ 0.24-0.04 fm. We set the physical scale
KOsy (1 — va)dsv. (1 — vo)dIK° of lattice spacing byp meson mass in th&T channel.
Bx = { Sls?(’;(_ vs) SW_( 7s) (l) >, (1) The physical lattice size is kept approximately constant
3(KO15y,.v5d|0) 015y . ysd|KO) at La= 2.3-2.5 fm in order to distinguish scaling viola-

is imperative to extract the CP violation parameter of thdion effectg from those of finite lattice. Finite-size e]_‘fects
Cabibbo-Kobayashi-Maskawa matrix from experiment@'€ €xamined separately # = 6.0 and 6.4, varying
Work has been continued for a decade to determine this p2€ lattice size over the range la1.8-3.1 fm. Nu-
rameter with lattice QCD [1] using both Wilson and Kogut- merical simulations have been carried out on the Fujitsu
Susskind quark actions. Calculations with the latter have/PP500'80 supercomputer at KEK. o
the advantage [2] that the correct chiral behavior of the W€ employ both gauge-invariant and noninvariant four-
matrix element is ensured by (U chiral symmetry. duark operators [3], which differ by an insertion of
Nonetheless, previous studies with this action [2—5] havéald¢ link factors connecting the quark fields spread over
not yielded a definitive result for the matrix element. a 2" hypercube. The bare lattice operators are mean-
Amajor difficulty, uncovered in Ref. [2], is the presence field improved through a replacemept— /u x for the
of a large scaling violation ik, which renders a reliable duark field andU, — ug'U,, for the gluon field, where
extrapolation to the continuum limit nontrivial. Whereas o = P'/*[7], P being the average value of the plaquette.
the scaling violation is theoretically expected to ®&:?) The matching ofBx between lattice and continuum
[6] with the Kogut-Susskind action, simulations so faris made in the following way. We first correct lattice
[2,3,5] could not confirm it due to large statistical errors. values ofBx by the one-loop renormalization factor [8,9]
Another problem concerns systematic uncertainties igvaluated with theMS coupling ayis(¢*) at a matching
the renormalization factors needed to match the latticécaleq™ = 1/a [10,11] to obtain the continuum operator
result to that in the continuum. While an earlier studyBx(NDR, ¢*) renormalized in theMS scheme with the
[3] found that one-loop perturbation theory is reasonablynaive dimensional regularization (NDR). The continuum
accurate, the problem of the systematic error associate¢plue at a physical scalg = 2 GeV is then obtained
with renormalization has not been fully explored yet. via a two-loop running of the continuum renormalization
In order to resolve these problems, we have carried oudroup starting fromBx (NDR, ¢*),
a large-scale simulation faBx with the Kogut-Susskind o .
quark action in quenched lattice QCD. In this Letter we g, (NDR, u) = [1 _ aws(w) 7180 70'81}

report on the continuum limit ofBg, expounding the 4 283
crucial points of oursimulation_s and a_nalysig. e axis(@) v1Bo — YoB
The parameters employed in our simulations are sum- 2
marized in Table I. In order to study the continuum e —v0/280
limit, seven values of the inverse gauge coupling con- % [M} Bx(NDR, %),
stant 8 = 6/g> spanning the rangg = 5.7-6.65 are ays(p)
chosen for the simulations, corresponding to the lattice (2
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TABLE I. Run parameters.

B mgya LT No conf. m, a”! (GeV) La (fm)  fmin — fmax mga/2 P
5.7 0.02-0.08 12324 150 0.9120(7) 0.837(6) 2.83 6-16 0.0519(8) 0.54900
5.85 0.01-0.04 16°32 60 0.567(13) 1.36(3) 2.32 10-20 0.0201(9) 0.57506
5.93 0.01-0.04  20°40 50 0.484(10) 1.59(3) 2.48 12-26 0.0160(6) 0.58564
6.0 0.01-0.04 24364 50 0.410(10)  1.88(4) 2.52 15-47 0.0125(5) 0.59374
18364 50 0.413(12)  1.87(6) 1.90 15-47 0.0127(7)
32348 40 0.383(3) 2.01(2) 3.14 15-31 0.0109(2)
6.2 0.005-0.02 32364 40 0.291(10) 2.65(9) 2.39 20-42 0.008 84(57) 0.61365
6.4 0.005-0.02  40°96 40 0.222(5) 3.47(7) 2.28 25-69 0.006 92(29) 0.63065
32%96 40 0.216(7) 3.57(11) 1.77 25-69 0.006 59(41)
48396 20 0.219(4) 3.52(7) 2.69 25-69 0.006 81(26)
6.65 0.004-0.016 56°96 40 0.158(4) 4.87(12) 2.27 36-58 0.00511(25) 0.64912

where By = 11, B1 = 102, vo = 4, andy; = —7 [12] values ofB. The resultingBx changes less than0.3%
are theN, = 0 quenched values for the renormalizationfor all m,a and 8 under a variation of,;, by *2.
group coefficients. This procedure leaves an uncertainty At each value ofg lattice results are interpolated in
of O(aws(¢*)?) in B(NDR, ¢%) arising from the use of mg,a with the formula suggested by chiral perturbation
one-loop renormalization factors [5,13]. theory [16],

The coupling constanéys(¢*) needed in the match- _ _
ing factor is obtained l\é?lce the\ys is specified. Bk = B[l = 3emqaln(mga) + bmgal. 3)
To estimate this, we start fronap [14] defined by The physical value ofBx is obtained at half the
—InP = 47 /3ap(3.40/a) (1 — 1.19ap), and calculate Strange quark masaa/2, estimated from experiment,
Axis = 0.625Ap from ap(3.40/a), where the three-loop mx/m, = 0.498/0.770.
correction term is included. The value afgg estimated ~ We present our results in Table [Il. The errors are
in this way, however, suffers from scaling violation. We estimated by a single elimination jackknife procedure.
therefore extrapolate the results at our seven values &pur statistical error is small, being 0.1% f@t= 5.7 and
B quadratically inm,a to the continuum limit, finding gradually increasing to 1.2% @& = 6.65. At 8 = 6.0
Ajs = 232(4) MeV. We then takeAys = 230 MeV, and 6.4, three spatial sizes are examined for a finite-
and calculate theMS running coupling to three-loop Size study. Some size dependence of order 2% is seen
accuracy, which is used throughout our analyses tdelow the spatial size La- 2.0 fm at 8 = 6.4, but the
minimize additional scaling violation entering into tBg ~ Magnitude decreases to less than 0.5% forLa.2 fm at
calculation. both values of3. We have made our main runs with a

In our simulations gauge configurations are generategpatial size larger than L& 2.3 fm, thus expecting finite-
with the 5-hit heat bath algorithm, anBlx is calculated lattice corrections being smaller than the statistical error.
at every 10008 = 5.7), 2000 (38 = 6.0), or 5000 8 = We presenBg(NDR, 2 GeV) as a function ofn,a in
6.2) sweep intervals. Our main results are based ofrig. 1 for both gauge noninvariant (circles) and invariant
calculations at four values of degenerate strange and down
quark massn,a, equally spaced in the interval given in

Table 1. TABLE Il. Results forBx(NDR, 2 GeV) at eachg calculated
Lattice values of5x are calculated from the three-point with the matching scalg” = 1/a.
Green function of the four-quark operator at timevith B (NDR. 2 GeV)
. . K 3
two kaons created at the temporal edges of the lattice, di-g I2T Noninvariant Invariant ABg
vided by the vacuum saturation of the same operator. Eigh - 1224 0.8464(7) 0.8224(7) 0.0240(3)

wall sources corresponding to the corners of a spatial cubg gs 16332 0.7798(25) 0.7562(25) 0.0236(11)
are employed to construct a quark-antiquark propagatos 93 20340  0.7522(23) 0.7229(22) 0.0292(8)
combination such that only the pseudoscalar meson inthe.o  24%4  0.7154(23) 0.6826(24)  0.0328(5)
Nambu-Goldstone channel propagates [15]. Quark propa- 1864  0.7174(68) 0.6787(68) 0.0388(12)
gators are calculated with the Dirichlet boundary condi- 32348 0.7128(14) 0.6790(16) 0.0339(8)
tion in time and the periodic boundary condition in space8.2 32’64  0.6619(48) 0.6243(45)  0.0376(14)
Gauge configurations are fixed to the Landau gauge. 64 4O§96 0.6428(67)  0.6069(69)  0.0359(10)
The fitting interval to extractBx from the Green 32°96 0.6577(122) 0.6126(112)  0.0451(24)

o K™ : : 48396  0.6415(48) 0.6072(51) 0.0343(11)
function is chosen so that the minimum timg,a is 3
approximately constant atp,a = 1.4-1.5 fm for all 665 5696 0.6350(70) 0.6055(2) 0.0295(10)
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FIG. 1. Gauge noninvariant (circles) and invariant (diamonds)FIG. 2. Difference ofBx(NDR, 2 GeV) between gauge non-
Bx(NDR, 2 GeV) as a function ofm,a, together with a invariant and invariant operators as a functionmfa. The
simultaneous fit for the two operators including term (solid  solid line represents a fit with? and a2 terms, while the dot-
lines) and separate fits quadraticdn(dashed lines) to the five ted (dashed) line is the contribution from the («?) term.

pairs of data points fog = 5.93.

from a strong correlation between the matrix elements

(diamonds) operators. The five points below,a =~  of the two operators. We find that the difference can
0.6(8 = 5.93) are consistent with the(a?) scaling be-  be fitted by the formb, (m,a)* + bays(¢*)*: employing
havior theoretically expected [6]. Toward large latticefive data points form,a < 0.5 we obtainb, = —0.23(2)

spacings, however, we observe a change of curvature froand b, = 1.73(5) for y?/d.o.f =2.2. The solid line

a positive to a negative sign. At an intermediate rangéndicates the fit, and the others show the breakdown into
mpa =~ 0.6-0.3 (B8 = 5.85-6.2) a cancellation among the a? (dotted line) andv? (dashed line) contributions. A
the «*> and higher order terms conspires to yield an apparfit allowing a constanb, yields a value ofp, vanishing
ently linear dependence &f;. This is the linear behavior within 2o: by = —0.032(16), by = —0.44(11), andb, =

we observed at an early stage of our work [17]. The lateB.4(8). These results strongly indicate that the decrease of
result at a smaller lattice spacing,a =~ 0.22(8 = 6.4)  the difference toward small lattice spacings seen in Fig. 2
gave a first indication of am(a?) behavior [18]; this is is actually anays(g*)?* effect.

now confirmed by the calculation at a yet smaller lattice Encouraged by this analysis we attempt to fit the
spacingm,a =~ 0.16(8 = 6.65) given in this paper. five points at 8 = 5.93 simultaneously for both op-

In our preliminary report [18] we took a naive erators including their correlations with the form
approach to estimate the continuuByg, simply by  BY™ = ¢y + c1a®> + crans(q®)? and B =dy +
applying a polynomial fit assumin@(a?) dependence. dia’> + dyays(¢*)>. This yields ¢y = 0.67(6) and
A fit of the five points above8 = 5.93 with the form  dy, = 0.71(7), and hence we impose the constraint= d,

Bx = ¢y + cl(mpa)z, shown by the dashed lines in our final fit. In the continuum limit the fit (solid lines
in Fig. 1, gives a value at the continuuBgx(NDR, in Fig. 1) gives Bx(NDR, 2 GeV) = 0.628(42) with

2 GeV) = 0.616(5) for the gauge noninvariant operator, y2/d.o.f= 1.37. The error is roughly 10 times the
and 0.580(5) for the invariant one, the average of the twone from the naive quadratic fit. This large error re-
being 0.598(5). flects uncertainties of the coefficient of the’ terms:

An obvious problem with this analysis is that the ¢c; = —0.5(2.0) and d, = —2.2(2.0). The difference,
two operators yield different values. We recall tiyg however, is well constrained;, — d, = 1.7 agrees well
for the two operators, and hence also their differencewith b, = 1.73 obtained above.

should receive not only (a?) scaling violation but also We find larger coefficientg, = —1.0(4.2) and d, =
ays(g*)? errors from the matching procedure. Figure 2—4.3(4.2) wheng* = 7 /a is used, orc, = 1.6(1.5) and
plots the difference as a function of,a (numerical d, = —3.2(1.5) if mean-field improvement is not made

values given in Table Il). Errors, as calculated withfor the operators. This supports the tadpole argument of
the jackknife procedure, are only 3%—4%, as a resulRef. [7].
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The final value depends only weakly on our choice ofcalculations represents the final step toward the first-
Ays = 230 MeV: e.g., Bk(NDR, 2 GeV) = 0.627(42)  principle determination of the kadk parameter.

for Ay = 220 MeV and 0.628(41) for 240 MeV. This work is supported by the Supercomputer Project

As our final value ofBg in the continuum limit, we (No. 97-15) of High Energy Accelerator Research Organ-
adopt the fit including thex? term, ization (KEK), and also in part by the Grants-in-Aid of
Bx(NDR, 2 GeV) = 0.628 + 0.042, (4) the Ministry of Education (No. 08640349, No. 08640350,

o _ No. 08640404, No. 09246206, No. 09304029, and
which includes a systematic error from the two-loopng, 09740226).
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