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Kaon B Parameter from Quenched Lattice QCD
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We present results of a large-scale simulation for the kaonB parameterBK in quenched lattice
QCD with the Kogut-Susskind quark action. CalculatingBK at 1% statistical accuracy for seven
values of lattice spacing in the rangea ø 0.24 0.04 fm on lattices up to563 3 96, we verify the
theoretically predicted quadratica dependence. Strong indications are found that, with our level of
accuracy,aMSs1yad2 terms arising from our one-loop matching procedure have to be included in the
continuum extrapolation. We presentBK sNDR, 2 GeVd ­ 0.628s42d as our final value, where NDR
indicates naive dimensional regularization. [S0031-9007(98)06280-2]

PACS numbers: 12.38.Gc, 14.40.Aq
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The knowledge of the kaonB parameterBK

BK ­
kK̄0js̄gms1 2 g5dds̄gms1 2 g5ddjK0l

8
3 kK̄0js̄gmg5dj0l k0js̄gmg5djK0l

, (1)

is imperative to extract the CP violation parameter of t
Cabibbo-Kobayashi-Maskawa matrix from experimen
Work has been continued for a decade to determine this
rameter with lattice QCD [1] using both Wilson and Kogu
Susskind quark actions. Calculations with the latter ha
the advantage [2] that the correct chiral behavior of t
matrix element is ensured by Us1d chiral symmetry.
Nonetheless, previous studies with this action [2–5] ha
not yielded a definitive result for the matrix element.

A major difficulty, uncovered in Ref. [2], is the presenc
of a large scaling violation inBK , which renders a reliable
extrapolation to the continuum limit nontrivial. Wherea
the scaling violation is theoretically expected to beOsa2d
[6] with the Kogut-Susskind action, simulations so fa
[2,3,5] could not confirm it due to large statistical errors

Another problem concerns systematic uncertainties
the renormalization factors needed to match the latt
result to that in the continuum. While an earlier stud
[3] found that one-loop perturbation theory is reasonab
accurate, the problem of the systematic error associa
with renormalization has not been fully explored yet.

In order to resolve these problems, we have carried
a large-scale simulation forBK with the Kogut-Susskind
quark action in quenched lattice QCD. In this Letter w
report on the continuum limit ofBK , expounding the
crucial points of our simulations and analysis.

The parameters employed in our simulations are su
marized in Table I. In order to study the continuum
limit, seven values of the inverse gauge coupling co
stant b ­ 6yg2 spanning the rangeb ­ 5.7 6.65 are
chosen for the simulations, corresponding to the latti
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spacinga ø 0.24 0.04 fm. We set the physical scale
of lattice spacing byr meson mass in theVT channel.
The physical lattice size is kept approximately constan
at La ø 2.3 2.5 fm in order to distinguish scaling viola-
tion effects from those of finite lattice. Finite-size effects
are examined separately atb ­ 6.0 and 6.4, varying
the lattice size over the range Laø 1.8 3.1 fm. Nu-
merical simulations have been carried out on the Fujits
VPP500y80 supercomputer at KEK.

We employ both gauge-invariant and noninvariant four
quark operators [3], which differ by an insertion of
gauge link factors connecting the quark fields spread ov
a 24 hypercube. The bare lattice operators are mea
field improved through a replacementx !

p
u0 x for the

quark field andUm ! u21
0 Um for the gluon field, where

u0 ­ P1y4 [7], P being the average value of the plaquette
The matching ofBK between lattice and continuum

is made in the following way. We first correct lattice
values ofBK by the one-loop renormalization factor [8,9]
evaluated with theMS coupling aMSsqpd at a matching
scaleqp ­ 1ya [10,11] to obtain the continuum operator
BK sNDR, qpd renormalized in theMS scheme with the
naive dimensional regularization (NDR). The continuum
value at a physical scalem ­ 2 GeV is then obtained
via a two-loop running of the continuum renormalization
group starting fromBK sNDR, qpd,

BK sNDR, md ­

∑
1 2

aMSsmd
4p

g1b0 2 g0b1

2b
2
0

∏21

3

∑
1 2

aMSsqpd
4p

g1b0 2 g0b1

2b
2
0

∏
3

∑
aMSsqpd
aMSsmd

∏2g0y2b0

BK sNDR, qpd ,

(2)
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TABLE I. Run parameters.

b mqa L3T No conf. mr a21 sGeVd La (fm) tmin 2 tmax msay2 P

5.7 0.02–0.08 12324 150 0.9120(7) 0.837(6) 2.83 6–16 0.0519(8) 0.549 00
5.85 0.01–0.04 16332 60 0.567(13) 1.36(3) 2.32 10–20 0.0201(9) 0.575 06
5.93 0.01–0.04 20340 50 0.484(10) 1.59(3) 2.48 12–26 0.0160(6) 0.585 64
6.0 0.01–0.04 24364 50 0.410(10) 1.88(4) 2.52 15–47 0.0125(5) 0.593 74

18364 50 0.413(12) 1.87(6) 1.90 15–47 0.0127(7)
32348 40 0.383(3) 2.01(2) 3.14 15–31 0.0109(2)

6.2 0.005–0.02 32364 40 0.291(10) 2.65(9) 2.39 20–42 0.008 84(57) 0.613 6
6.4 0.005–0.02 40396 40 0.222(5) 3.47(7) 2.28 25–69 0.006 92(29) 0.630 65

32396 40 0.216(7) 3.57(11) 1.77 25–69 0.006 59(41)
48396 20 0.219(4) 3.52(7) 2.69 25–69 0.006 81(26)

6.65 0.004–0.016 56396 40 0.158(4) 4.87(12) 2.27 36–58 0.005 11(25) 0.649 1
e
.

e-
en

.

t

where b0 ­ 11, b1 ­ 102, g0 ­ 4, and g1 ­ 27 [12]
are theNf ­ 0 quenched values for the renormalizatio
group coefficients. This procedure leaves an uncertai
of OsssaMSsqpd2ddd in BsNDR, qpd arising from the use of
one-loop renormalization factors [5,13].

The coupling constantaMSsqpd needed in the match-
ing factor is obtained once theLMS is specified.
To estimate this, we start fromaP [14] defined by
2ln P ­ 4py3aPs3.40yad s1 2 1.19aPd, and calculate
LMS ­ 0.625LP from aPs3.40yad, where the three-loop
correction term is included. The value ofLMS estimated
in this way, however, suffers from scaling violation. W
therefore extrapolate the results at our seven values
b quadratically inmra to the continuum limit, finding
LMS ­ 232s4d MeV. We then takeLMS ­ 230 MeV,
and calculate theMS running coupling to three-loop
accuracy, which is used throughout our analyses
minimize additional scaling violation entering into theBK

calculation.
In our simulations gauge configurations are generat

with the 5-hit heat bath algorithm, andBK is calculated
at every 1000 (b ­ 5.7), 2000 (b # 6.0), or 5000 (b $

6.2) sweep intervals. Our main results are based
calculations at four values of degenerate strange and do
quark massmqa, equally spaced in the interval given in
Table I.

Lattice values ofBK are calculated from the three-poin
Green function of the four-quark operator at timet with
two kaons created at the temporal edges of the lattice,
vided by the vacuum saturation of the same operator. Ei
wall sources corresponding to the corners of a spatial cu
are employed to construct a quark-antiquark propaga
combination such that only the pseudoscalar meson in
Nambu-Goldstone channel propagates [15]. Quark pro
gators are calculated with the Dirichlet boundary cond
tion in time and the periodic boundary condition in spac
Gauge configurations are fixed to the Landau gauge.

The fitting interval to extractBK from the Green
function is chosen so that the minimum timetmina is
approximately constant attmina ø 1.4 1.5 fm for all
5272
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values ofb. The resultingBK changes less than60.3%
for all mqa andb under a variation oftmin by 62.

At each value ofb lattice results are interpolated in
mqa with the formula suggested by chiral perturbation
theory [16],

BK ­ Bf1 2 3cmqa lnsmqad 1 bmqag . (3)

The physical value ofBK is obtained at half the
strange quark massmsay2, estimated from experiment,
mKymr ­ 0.498y0.770.

We present our results in Table II. The errors ar
estimated by a single elimination jackknife procedure
Our statistical error is small, being 0.1% atb ­ 5.7 and
gradually increasing to 1.2% atb ­ 6.65. At b ­ 6.0
and 6.4, three spatial sizes are examined for a finit
size study. Some size dependence of order 2% is se
below the spatial size Laø 2.0 fm at b ­ 6.4, but the
magnitude decreases to less than 0.5% for La* 2.2 fm at
both values ofb. We have made our main runs with a
spatial size larger than Laø 2.3 fm, thus expecting finite-
lattice corrections being smaller than the statistical error

We presentBK sNDR, 2 GeVd as a function ofmra in
Fig. 1 for both gauge noninvariant (circles) and invarian

TABLE II. Results forBK sNDR, 2 GeVd at eachb calculated
with the matching scaleqp ­ 1ya.

BK sNDR, 2 GeVd
b L2T Noninvariant Invariant DBK

5.7 12324 0.8464(7) 0.8224(7) 0.0240(3)
5.85 16332 0.7798(25) 0.7562(25) 0.0236(11)
5.93 20340 0.7522(23) 0.7229(22) 0.0292(8)
6.0 24364 0.7154(23) 0.6826(24) 0.0328(5)

18364 0.7174(68) 0.6787(68) 0.0388(12)
32348 0.7128(14) 0.6790(16) 0.0339(8)

6.2 32364 0.6619(48) 0.6243(45) 0.0376(14)
6.4 40396 0.6428(67) 0.6069(69) 0.0359(10)

32396 0.6577(122) 0.6126(112) 0.0451(24)
48396 0.6415(48) 0.6072(51) 0.0343(11)

6.65 56396 0.6350(70) 0.6055(72) 0.0295(10)
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q*=1/a, 3-loop coupling, 5 points
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FIG. 1. Gauge noninvariant (circles) and invariant (diamon
BK sNDR, 2 GeVd as a function of mra, together with a
simultaneous fit for the two operators includinga2 term (solid
lines) and separate fits quadratic ina (dashed lines) to the five
pairs of data points forb $ 5.93.

(diamonds) operators. The five points belowmra ø
0.6sb $ 5.93d are consistent with theOsa2d scaling be-
havior theoretically expected [6]. Toward large latti
spacings, however, we observe a change of curvature f
a positive to a negative sign. At an intermediate ran
mra ø 0.6 0.3 (b ­ 5.85 6.2) a cancellation among
thea2 and higher order terms conspires to yield an app
ently linear dependence ofBK . This is the linear behavio
we observed at an early stage of our work [17]. The la
result at a smaller lattice spacingmra ø 0.22sb ­ 6.4d
gave a first indication of anOsa2d behavior [18]; this is
now confirmed by the calculation at a yet smaller latt
spacingmra ø 0.16sb ­ 6.65d given in this paper.

In our preliminary report [18] we took a naiv
approach to estimate the continuumBK , simply by
applying a polynomial fit assumingOsa2d dependence
A fit of the five points aboveb ­ 5.93 with the form
BK ­ c0 1 c1smrad2, shown by the dashed line
in Fig. 1, gives a value at the continuumBK sNDR,
2 GeVd ­ 0.616s5d for the gauge noninvariant operato
and 0.580(5) for the invariant one, the average of the
being 0.598(5).

An obvious problem with this analysis is that th
two operators yield different values. We recall thatBK

for the two operators, and hence also their differen
should receive not onlyOsa2d scaling violation but also
aMSsqpd2 errors from the matching procedure. Figure
plots the difference as a function ofmra (numerical
values given in Table II). Errors, as calculated w
the jackknife procedure, are only 3%–4%, as a res
ds)
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FIG. 2. Difference ofBK sNDR, 2 GeVd between gauge non-
invariant and invariant operators as a function ofmra. The
solid line represents a fit witha2 anda2 terms, while the dot-
ted (dashed) line is the contribution from thea2 (a2) term.

from a strong correlation between the matrix element
of the two operators. We find that the difference can
be fitted by the formb1smrad2 1 b2aMSsqpd2: employing
five data points formra & 0.5 we obtainb1 ­ 20.23s2d
and b2 ­ 1.73s5d for x2yd.o.f ­ 2.2. The solid line
indicates the fit, and the others show the breakdown int
thea2 (dotted line) anda2 (dashed line) contributions. A
fit allowing a constantb0 yields a value ofb0 vanishing
within 2s: b0 ­ 20.032s16d, b1 ­ 20.44s11d, andb2 ­
3.4s8d. These results strongly indicate that the decrease o
the difference toward small lattice spacings seen in Fig.
is actually anaMSsqpd2 effect.

Encouraged by this analysis we attempt to fit the
five points at b $ 5.93 simultaneously for both op-
erators including their correlations with the form
Bnoninv

K ­ c0 1 c1a2 1 c2aMSsqpd2 and Binv
K ­ d0 1

d1a2 1 d2aMSsqpd2. This yields c0 ­ 0.67s6d and
d0 ­ 0.71s7d, and hence we impose the constraintc0 ­ d0
in our final fit. In the continuum limit the fit (solid lines
in Fig. 1) gives BK sNDR, 2 GeVd ­ 0.628s42d with
x2yd.o.f ­ 1.37. The error is roughly 10 times the
one from the naive quadratic fit. This large error re-
flects uncertainties of the coefficient of thea2 terms:
c2 ­ 20.5s2.0d and d2 ­ 22.2s2.0d. The difference,
however, is well constrained;c2 2 d2 ­ 1.7 agrees well
with b2 ­ 1.73 obtained above.

We find larger coefficientsc2 ­ 21.0s4.2d and d2 ­
24.3s4.2d whenqp ­ pya is used, orc2 ­ 1.6s1.5d and
d2 ­ 23.2s1.5d if mean-field improvement is not made
for the operators. This supports the tadpole argument o
Ref. [7].
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The final value depends only weakly on our choice o
LMS ­ 230 MeV: e.g., BKsNDR, 2 GeVd ­ 0.627s42d
for LMS ­ 220 MeV and 0.628(41) for 240 MeV.

As our final value ofBK in the continuum limit, we
adopt the fit including thea2 term,

BK sNDR, 2 GeVd ­ 0.628 6 0.042 , (4)

which includes a systematic error from the two-loo
uncertainty. The size of the quoted error is 6.6%
which roughly equals3 3 aMSsqp ­ 1yad2 at our small-
est lattice spacing1ya ­ 4.87 GeV at b ­ 6.65 where
aMSs4.87 GeVd ­ 0.147. This magnitude of error is un-
avoidable, even with 1% statistical accuracy at eachb

achieved in our simulation, unless a two-loop calculatio
is carried out for the lattice renormalization.

Let us compare our final result with the JLQCD valu
obtained using the Wilson quark action,

BK sNDR, 2 GeVd ­ 0.62 6 0.10 , (5)

in which the operator mixing problem is solved nonpertu
batively with the aid of chiral Ward identities [19]. The
error, which is either statistical or systematic dependin
on the method of the continuum extrapolation, is substa
tially larger than that of the present work with the Kogut
Susskind action. Thus, while the two results are consiste
reducing the uncertainty of the Wilson result is needed
verify an agreement of the value ofBK at the level of pre-
cision achieved for our Kogut-Susskind result (4).

One of the systematic errors not taken into accou
in our final result (4) is the effect of nondegenerat
strange and down quark massesms fi md . Analyzing
this problem is difficult within quenched QCD since the
chiral limit md ! 0 with ms fi 0 is expected to diverge
due to a quenched chiral logarithm [20]. Our attemp
at a verification of the logarithmic divergence is als
inconclusive: our results for nondegenerate quarks can
fitted quite well either with or without the singular term
At this stage we are not able to quote the magnitude
error due to the use of degenerate quark masses.

Finally, our quoted error does not include effects of se
quarks. Preliminary attempts suggest that the quench
error may not exceed 5% or so [3,4,21]. More extensiv
efforts, however, are clearly needed to estimate dynami
quark contributions to theBK parameter. Full QCD
simulations should also enable us to answer the issu
with nondegenerate quark masses. Carrying out su
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calculations represents the final step toward the firs
principle determination of the kaonB parameter.
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