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1 Estimators of integrated volatility
Let p; be logarithmic asset price

dp(t) = p(t)dt + o (t)dW (¢),

(1)

where W (t) is a standard Brownian Motion, p(t),o(t) are random time de-
pendent functions. The diffusion is observed at {t;},. In this paper, we

compare the estimators of integrated volatility fOT a?(t)dt.

1.1 Quadratic variation of evenly sampled observations

through linear interpolation

The transaction data which are unevenly spaced, are not directly used. After
creating evenly spaced data {p (iT/m)}", from {p(¢;)}Y, through linear

interpolation, the volatility is measured by the following estimator,

=S 6(E) (S

This estimator is downward biased.
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1.2 Fourier estimator of [MMO02]

To avoid the interpolation bias, [MMO02]| proposed the method without any
data manipulation by using Fourier series.

6% = 2mag(o?) (3)
where
) = Jim 2T 3 SHad) + i) )
ouldp) =+ [ cos(ieyip(t) (5)
be(dp) =+ [ sin(he)dp(t) (©)

and n is Nyquist frequency N/2.

1.3 Quadratic variation of unevenly sampled observa-
tions

Another method using unevenly sampled observations {p (¢;)}},:

5t = Z(p(t» —plti1))? (7)

has a nice property that if sup;»; (t; — ti—1) — 0,

T
lim 6% = / o2(t)dt. (8)
N—o0 0

See e.g. [ABDLO03]. This estimator is simple but as efficient as Fourier
estimator.

1.4 Monte Carlo simulations

We generate proxy for continuous observation by discretizing following equa-
tions with a time step of one second,

dp(t) = p(t)dt + o (£)dW (¢),
dlog oy = —klog odt + vdW,
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Figure 1: 10min vs 5bmin vs 2min vs FE vs QV. The distributions are com-
pared with 10,000 replications.

computational time
Fourier estimator 1116.42"
Quadratic variation 0.25"

Table 1: Computational time (seconds)

where Wy is standard Brownian Motion. The waiting times are drawn from
an exponential distribution with mean 45 seconds according to [BR02]. See
[ER98] for the modeling of waiting time. Figure 1 reports the distributions
of

&2

[ o2(t)dt

1—

Table report the computational time of FE and QV.



2 Cross-volatility

dp;(t) = p; (t)dt + ) ou(t)dWi(t), (9)

k=1
Volatility matrix is defined by
d

Q(]k) (t) = Z O-jio-k:i‘

i=1

Our target is fOT Q(t)dt.

2.1 Linear interpolation

=55 () (52 (o (2) - (£525)).

7

What occurs on linear interpolation bias?

2.2 Fourier estimator

N

Qrpgry = 2maog(Qr))

where
aO(Q(jk)) - nhjgo n 71 1 Z %( S(dpj)as(dpk) + bs(dpj)bs(dpk:))v (1())
ai(dp;) = %/cos(kt)dpi(t), (11)
be(dp) =+ [ sin(ktydp (), (12)

where n = [N/2].

2.3 One-side linear Interpolation

The jth and kth diffusion of (9) are observed at {ti}fv:jo and {t;}1%, respec-
tively. Define the sequence: {tz}f\gk = {t : {ti}fv:jo U {ti}fvjo} .

Njk

Quy(m) = (p; (t:) — pj (ti-1)) (px (£:) — pi (ti1))

=1
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Figure 2: Volatilities and cross-volatility. The distributions are compared
with 1,000 replications.

2.4 Monte Carlo simulations
< dpl(t) ) _ < 011 012 ) ( dWl(t) )
dpz(t) 0921 0922 sz(t)
doj (t) = —kjiojr (1) dt + edWyy (), j, k= 1,2.

where rj;, = 0.99 and «;;, = 0.01 for any j, k.
Figure 2 reports the distributions of

Q)

]. - T—.
fo Q(jlf) (t) dt

3 Conclusion

Let us use (7) in scaler case. However, we expect that Fourier estimator is
good for cross-volatility. There are many remaining works:

e Asymptotic distribution of the estimators.
e Linear interpolation bias correction.

e [Long memory.
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A Fourier estimator of [MMO02]

The method will be the following: first compute the Fourier coefficients of
dp;, the obtain a mathematical expression of the Fourier coefficients of €2y,
using the Fourier coefficients of dp;.
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