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The method of dual transformation developed by Sugamoto is applied to the SU(2) pure Yang-Mills
theory and the SO(3) Georgi-Glashow model. After the dual transformation, the partition functions are

expressed only in terms of field strengths.

I. INTRODUCTION

In the past several years, many theorists have
attempted to understand the quark-confining
mechanism. On the one hand, Wilson' has shown
that quarks are confined by electric flux in a lat-
tice gauge model. On the other hand, Nambu® has
shown that monopoles are confined by magnetic
flux in the Nielsen-Olesen model,® where the
Higgs field conveys the electric charge. In the
latter model, if the Higgs field were not electri-
cally but magnetically charged and the roles of
electric and magnetic fields were interchanged,
electrically charged quarks would be confined by
electric flux as in the Wilson model. At this time
it is preferable to introduce the magnetically
charged Higgs field as a topological operator
rather than an elementary field. This idea is
called Mandelstam-’t Hooft duality.%5

In order to embody this idea, many authors
have applied the method of dual transformation
to lattice gauge theories.® The method of dual
transformation was invented by Kramers and
Wannier’ in the study of the two-dimensional
Ising model. Though this method is easily ap-
plied to Abelian lattice gauge theories, the exten-
sions to non- Abelian cases are not yet successful.

Recently Sugamoto® has noticed that the dual
transformation in lattice theories is a kind of
Fourier transformation and he has developed a
method of dual transformation in conventional
gauge theories. The Abelian Higgs model with
one magnetic vortex string of Nielsen and Olesen
is dually transformed to the Kalb-Ramond® and
Nambu!® model of relativistic hydrodynamics
with an external vorticity source. His method is
easily extended to non-Abelian Higgs-Kibble mo-
dels, which are dually related to the Freedman
model,* a non-Abelian version of the Kalb-Ra-
mond and Nambu model.*? It may not be appro-
priate to call his method “dual transformation,”
in the light of its original meaning. If it becomes
possible to treat the topological excitations as
dynamical degrees of freedom in his framework,
the program of dual transformation will be com-
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plete. There have been several works'® along this
line; in particular the work of Bardakci and
Samuel is interesting. -

In the present paper we apply the method of
Sugamoto to non-Abelian gauge theories, where a
complete or partial gauge symmetry is still re-
tained. After the transformation we shall obtain
variants of the Freedman model. In Sec. II, we
consider the SU(2) pure Yang-Mills theory in the
temporal gauge. Some properties of the Lagran-
gian obtained by the dual transformation will be
examined. In Sec. III, the Georgi-Glashow model
is considered. This model allows the existence
of monopoles as classical solutions.'* Our con-
cern in the present paper is directed only to the
one-monopole sector. In Sec. IV, the meaning of
our transformation is discussed and our result
is compared to that of Halpern,'® who has form-
ulated gauge theories only in terms of field
strengths.

II. DUAL TRANSFORMATION IN THE PURE
YANG-MILLS THEORY

The Lagrangian density for the SU(2) pure
Yang- Mills theory is

£= _i(FL:‘V)Z , (2.1)
where
F?w: Bu;ég— BVA‘Z-&g{abcA‘b‘Af.

For the sake of simplicity, we take the temporal
gauge (A%2=0). In this gauge the partition function
is simply given by

z=f:DAgexp<if d4x£). @.2)

First, we perform the Fourier transformation
for F%, in the integrand of (2.2) as
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exp{if d“x[—i(ﬁ‘f",,)z]}mfﬁ)W‘jw exp{ifd“x[—%(W‘;,)z"'%W;‘wa“"'“]} , 2.3)
r
where W¢, is an antisymmetric tensor field, and tion can be rewritten as

W<, is its dual tensor, namely
W, =5€,,,,W . @2.4)

Then the functional integration over A} becomes
the following Gaussian form:

f:oAgexp[ifd‘*x(% AP IKIP AT V""A‘,’)],

(2.5)

where K3’ and V§ are defined by
K3} = €anc W5, = €ano€isnl® ® s (2.6)
Vi=ouwe, . ' 2.7)

After the integration, we obtain the final result
ZOCf DWW, [detK??) '”"’exp(ifd‘*x £*) , (2.8)

where £* is given by

1 . '
Lr=mor viepMRyit oz (we,)?. (2.9)
In Eq. (2.9) M¢% is the inverse matrix of Kj;, and

its explicit form and its determinant are given by

M??:-m@e?e‘;—e?eg), (2.10)
detM §%= (detK$)) ™ = [-2(dete)®]", (2.11)
with
e; e} ef
dete=det |e} e €3] . (2.12)
el e &

The formula (2.10) is proved in Appendix A.

The Lagrangian (2.9) was obtained by the same
technique as in Ref. 12, and has a similar form
to the one in Ref. 12, There is, however, an es-
sential difference between them. In the previous
case, the gauge symmetry is spontaneously
broken and the inverse of the matrix K'is well
defined, meanwhile, in the present case, the
gauge symmetry is not broken and the inverse
of K is not well defined for the special field con-
figurations satisfying dete=0. For such a con-
figuration, the matrix K has some zero modes.
In the functional integral (2.5), the integration
for such a mode is not Gaussian, and it simply
gives a § function meaning that the component of
V‘; proportional to the zero mode should vanish.
For such a special configuration, however, the
expression (2.8) is formally valid, since a 6 func-

. i 1/2 i .
6(x)=lim (;E) e"P(— z‘a") ’

where a corresponds to an eigenvalue of K. For
later convenience, we set

Pr=M3V#P, (2.13)

As is shown in the following, this vector field P}
behaves like a gauge field.

In the temporal gauge, the Lagrangian (2.1) is
still invariant under time-independent gauge
transformations. Correspondingly, we consider
the following infinitesimal transformation:

OW ', =€’ WS, , (2.14)

where w*(x) is an infinitesimal, time-independent
function. Noting that

OM §}=-M$0K*" 'M ], (2.15)
we know the variations of the vector P} and the
Lagrangian density

OP%= €4, W Pf — 3,w* (2.16)

1

6£*=§a“(w“V‘;) , (2.17)
where V¢ is a natural extension of V{ and is
given by

ve=9"w;,. (2.18)

Thus the vector field P} transforms like a gauge
field and the action is invariant.

Next we consider the transformation introduced
by Freedman,'!

Wi, =(Vu0,)" = (V,A,)*, (2.19)

where A§ is an arbitrary infinitesimal vector
function, and V;‘}’ is an analog of the covariant
derivative with P} (Pj=0) regarded as a gauge
field, that is,

VP =9,64 + € acrPS, - (2.20)

Under this transformation the first term of the

_Lagrangian (2.9) is invariant except for a total

divergence

1
"'E:g—e abe€ uuwau(P?P?As) .

The second term of £*, however, breaks the sym-
metry explicitly.

Finally, the Euler-Lagrange equation is given
as
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1 -
E(aup:: —0,P% +e 4, PLPY) + WS, =0. (2.21)

This can be regarded as the definition of the field
strength in terms of the gauge field. In addition
we point out that the functional determinant in
Eq. (2.8) is the necessary functional measure for
the nonlinear Lagrangian (2.9).'¢

III. DUAL TRANSFORMATION IN THE
GEORGI-GLASHOW MODEL

The Lagrangian density of the SO(3) Georgi-
Glashow model is given by

L£=-3F5,)" +3(D,9) -V(¢?), (3.1)

where ¢° is an isotriplet Higgs scalar, (D,¢)* is
its covariant derivative, and V(¢?) is a double-
well potential. As is well known, this model has
a classical solution representing an extended
monopole.!* We pick up the one-monopole sector
through a gauge-fixing condition. Any topologi-
cally trivial field configuration can be gauge
transformed into such a configuration that the
direction of the Higgs scalar is constant every-
where. Likewise any field configuration with
unit topological quantum number is gauge equiva-
lent to a configuration such that
a, xa

%) =157 |#] - (3.2)
Then we fix the gauge by imposing the condition
(3.2) on the Higgs scalar field. There still re-
mains a gauge degree of freedom, since the di-
rection of the Higgs scalar is invariant under
gauge rotations around the axis along the Higgs
scalar. In order to get rid of this degree of free-
dom, we further impose the condition

o+ [dS“A‘; -i—r- Tr(ausm*ﬁ)] =0. (3.3)

Here 43“ denotes the unit vector along the Higgs
scalar and Q is a singular gauge transformation
which brings the direction of the Higgs scalar
into the one along the third axis everywhere, that
is,

QT =13, (3.4)
]

The gauge field transformed by Q is given by
Az 7‘1:9,4‘;7“9*-2—’3“99‘. (3.5)

In particular, the third component of the new
gauge field takes the form

A% =gl —é—Tr(aunn*#) ) (3.6)

Thus the gauge condition (3.3) is nothing but the
Lorentz condition for A%,

We realize the gauge conditions (3.2) and (3.3)
by inserting the following &6 functions into the
functional integral:

5(cosO — cos §)6(® — )3 (@*(d* A +C,)), (3.7)

where (0, ®) and (6, ¢) are the polar coordinates of
$° and the spatial position, respectively, and C.,
is the second term of the right-hand side of Eq.
(3.6). It is easily confirmed that the Faddeev-
Popov determinant for (3.7) is constant. This fact
is valid so far as we take, instead of Eq. (3.3),
any gauge condition linearly depending on ¢;"A‘L.

Now the partition function for the one-monopole
sector is given by

z =f ¢ |"D |¢ [D(cos@)DEDALE(cosO — cosb)

x5(® — )5 (2*(¢°A% +C,))

Xexp(ifd"x.ﬁ) . (3.8)

Integrations over ® and & are trivial and we get

Zocf |¢|’D |¢ |DALDB

Xexp{ifd4x[£+a“(d;"A‘;+Cu)B]}. (3.9)

It is convenient to decompose any isovector A®
into components parallel and perpendicular to ¢°
as follows:

Ps

¢ =@PlA+ AT, (3.10)

Again, performing the Fourier transformation
(2.3), we get

Zch |¢|*D|¢ [:DAZDBDWﬁ,exp{ifd“x[%ng“"‘K‘ff’ b LWl = (VS —git)AR e =(V, —3,B)A"

+BauC“+%(au¢“)2—V]}, (3.11)

where V§ and j;, are defined by
Ve =W, ,
ji = l¢ lzeabcd;baud;c .

(3.12)
(3.13)
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The coefficient matrix of the quadratic term in A is given by

1

Kab _Kab - wab
g

by

with

~

Kab l¢l guu(éab ¢°$®) + abc¢’ )

ab 7 C
Wy =€apcW oy -

If we direct ¢° along the third axis, K%, takes the form

1 - 1 ~,5
l¢ (Zguv EW?.W —EWEW
a 1~ 1 -
Ku’:l gW |¢ izguv EWLV .
1 - 1 ~
g_W?Lv _g_W}w 0

(3.14)

(3.15)

(3.16)

(3.17)

With the help of the relations in Appendix B, we can explicitly obtain the inverse of the submatrix K%, as

follows:

K ?LI;M YMP —= 5‘}:(5“ = ¢3a$c) s

e a 1 1
Muz=m[(aab ¢<P)(fxgw+§2_7fzw W)w>+€abc¢

with
fi=1 b (W,
1= W wv/ s
f2=g1=—1; (3.19)
— 1 w v“'/uu)
82==rgit W ,

T MV)2 .

1
=1+ 2
h 1 9 il (Wuv) lﬁgz | ¢ | 8 (WuuW

g
Further if we know the inverse G,, of the matrix
G-l =¢’)‘av'vab MM,chcd(i)’a (3.20)

the inverse M%, of the whole matrix K%, is known
from

M =M% —[(MWH)G(HWM)]Z, +g[M WHG $]2
+e[$GE WML, - %¢°G,,d°. (3.21)

Though we have not yet obtained the explicit form
of G,,, it is characteristic of theories with an un-
broken gauge symmetry that M has no well-de-
fined limit when all of the W¢,’s approach zero.

Formally integrating over A¢ in (3.11), we ar-
rive at the following expression for the partition
function:

za [ [6]'0 |9 [DBOWS,(detk )/

Xexp(i f d4x£*) , (3.22)

(3.18)
(gIWuv +g2 )]

—
where £* is given by

. “ uL=-v
£¥=- —lﬂ(‘v“'“—gj“'“)+¢"(v“ —a“B)]M‘L’L( )
2g a->b

~5(We,)2+Bo,C* +4(3,0°) - V(¢?).  (3.23)

This Lagrangian involves time derivatives of
ugi, W¢, and B; derivatives of W,; and W¢; ap-
pear linearly in V; and V{, respectively. Since
M is a function of fields, (3.23) is a typical non-
linear Lagrangian. For such a nonlinear La-
grangian the squareroot of the determinant of the
coefficient matrix of the kinetic part is needed as
a path-integral measure.!® As before, if we di-
rect ¢° along the third axis, the coefficient ma-
trix takes the form

R
M MB MB|. (3.24)
M ?}1 M izj M,

The determinant of this matrix is related to that

of the whole matrix M% through Jacobi’s formula,
that is,

Kl K3
K§ Kip
=|¢|*detm, . (3.25)

det of the matrix (3.24) =detM%, det
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Thus, the functional measure in Eq. (3.22) coin-
cides with the square root of (3.25), which is
necessary for the nonlinear Lagrangian (3.23).

IV. DISCUSSION

Using the technique developed by Sugamoto, we
have rewritten the partition functions described
by gauge fields and have expressed them in terms
of antisymmetric tensor fields. In Ref. 8, Suga-
moto has suggested that this transformation is

analogous to the one in quantum mechanics from
i

the coordinate representation to the momentum
representation. What we have done is in fact the
integration over the coordinate ¢ instead of the
momentum p in the canonical form of the partition
function

ze [ Dgvp exp{ifdt[pq‘ —H(p,q)]}a (4.1)
Let us examine the Fourier transformation (2.3)

more closely. If we introduce only Wﬁi at first,
the partition function (2.2) takes the form

2o f satoivs exols [ atel oo - s 1 = [ DAt expls fatsl iyt - k).

Thus W‘;i is nothing but the electric field canoni-
cally conjugate to A?. Meanwhile, W¢, is intro-
duced as an auxiliary field Fourier conjugate to
the magnetic field Fj;; expectation values of them
coincide with each other.®!? Therefore the new
expression (2.8) for the partition function can be
considered as the description of a gauge theory
in terms of field strengths only. It is, however,
interesting to notice that the Lagrangian thus ob-
tained at least in the broken-symmetry case takes
the usual form consisting of kinetic energy and
potential energy, and that it has been considered
by Kalb, Ramond, Nambu, and Freedman in the
study of interstring interactions.

Recently Halpern'® has proposed a field-strength
formulation of gauge theories. By fixing the gauge
completely, gauge fields are uniquely solved in
terms of field strengths. Changing the variables
from gauge fields to field strengths, he has ob-
tained the partition function described by field
strengths. In his formulation the integration over
field strengths is restricted to the configurations
satisfying the Bianchi identities. In our formula-
tion, W1, is introduced only through a Fourier
transformation and is independent of A;. There-
fore, W¢,’s as integration variables do not satisfy
the Bianchi identities, but the equation of motion
for the W{,’s is the usual definition of field
strength in terms of gauge fields. Thus the
Bianchi identities for the W¢,’s are valid only in
the sense of expectation values.

In the previous and present works, we have con-
sidered models involving topological excitations.
Our consideration, however, has been restricted
to the sector with one fixed topological excitation.
In Ref. 13, Bardakci and Samuel have attempted
to extract the motion of topological excitations as
that of singular points of a gauge function, which

(4.2)

I

yields a singular gauge transformation from a
topologically nontrivial configuration to a trivial
one. Further, they have tried to rewrite the
Feynman path integral of these point particles
into the usual field-theoretic functional integral.
For this aim our transformation will offer a use-~
ful aid. In fact the Lagrangian (4.20b) of Ref. 13
is ‘nothing but the Lagrangian (2.15) of Ref. 8 pre-
sented by Sugamoto, except that the latter involves
ne soliton fields and its spatial dimension is not
two but three.

Note added. After completing this work we
learned that a similar formulation was developed
in the earlier works of Halpern.!" In the case of
the pure Yang-Mills theory, we have chosen the
temporal gauge, so that the inverse matrix M is
explicitly obtained. This result is new, and the
relevance of the transformation (2.19) to the La-~
grangian (2.9) is first pointed out in the present
paper. We thank Professor M. B. Halpern for
calling our attention to his works.
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APPENDIX A: THE INVERSE OF K’g’
Equation (2.8) can be solved for e}:

e =3¢ 1 acK 35 - (A1)

The determinant (2.12) is transformed as
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1
dete =—

a,b,c
31 Ciik€abc€i€ i€

= 31_!61'1 Kavci€it nateK 17235
= ?;-K‘;,”e;’e’,’ , (A2)
where use has been made of the formula
€avcfaes = 0aa(0pe0cs = Opf0ce)
+cyclic permutations of (d,e,f). (A3)
Using formula (A3) repeatedly, we can prove
eiK et =26, dete . (A4)
Further use of (A3) yields the relation
KfieSer=~0,5K 5] ~Kiteleh +K{%elel.  (A5)
Using (A4), we get
K$®(2e5eh —elel) = —25,.6,; dete . (AS6)

Thus Eq. (2.10) has been proved. As for Eq. (2.11)

we have no formal proof. We have calculated the
determinant explicitly in a special frame of the
isospace, where ej is along the third axis and e§
lies in the 1-3 plane of the isospace.!8

APPENDIX B: SEVERAL FORMULAS ABOUT W,

With the help of the formula
Eunn” T = "[63(625: = 6;6;)

+ cyclic permutations of (o7¢ )],

(B1)

we can prove the following relations:
W W= = 504 Wo 7", (B2)
detW,, = & (W,,W*)?, (B3)
W, W =W, W = LA W, ;W o8 (B4)

The relation (B4) together with (B2) allows only
three independent tensors of rank 2 constructed
from W,,, namely W,,, W,,W*, (or W,,#%,), and
itself,
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