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Equation of state for pure SU„3… gauge theory with renormalization group improved action
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A lattice study of the equation of state for pure SU~3! gauge theory using a renormalization-group~RG!
improved action is presented. The energy density and pressure are calculated on a 16334 and a 32338 lattice
employing the integral method. Extrapolating the results to the continuum limit, we find the energy density and
pressure to be in good agreement with those obtained with the standard plaquette action within the error of
3–4 %.@S0556-2821~99!07819-4#
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I. INTRODUCTION

At sufficiently high temperatures, the quark-confineme
property of QCD is expected to be lost so that hadrons
solve into a plasma of quarks and gluons. This quark-glu
plasma state must have existed in the early universe, an
experimental detection is being actively pursued throu
relativistic heavy-ion collisions. Basic information that is r
quired to explore physical phenomena in the quark-glu
plasma is its equation of state, namely the energy density
pressure as a function of temperature. For this reason a n
ber of lattice QCD studies of equation of state have b
made@1#. An important progress in this effort is the rece
work of the Bielefeld group@2# in which a systematic con
tinuum extrapolation was carried out for the equation of st
for pure SU~3! gauge theory. Using the standard plaque
action, they calculated bulk thermodynamic quantities on
tices with the temporal extentNt54, 6, and 8, and extrapo
lated the results to the continuum limitNt→`, assuming that
the data atNt56 and 8 follow the leading extrapolation fo
mula.

To understand the quark-gluon plasma in the real wo
this work has to be extended to full QCD with dynamic
quarks. This is a difficult task due to a significant increase
the amount of computations needed for full QCD simu
tions. One approach to lessen the computational cost i
employ improved actions designed to have reduced lat
cut-off effects, and hence should allow reliable continuu
extrapolation from coarser lattice spacings compared to
case for the standard unimproved actions. Thermal prope
of several improved pure gauge actions have already b
studied@3–6#. At present, however, no extrapolation of the
modynamic quantities to the continuum limit has been m
with improved actions.

*On leave from Institute of Particle and Nuclear Studies, H
Energy Accelerator Research Organization~KEK!, Tsukuba,
Ibaraki 305-0801, Japan.
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In this article we report on our study of the continuu
limit of the equation of state for pure SU~3! gauge theory
with an improved action determined from an approxima
renormalization-group argument@7#. Simulations are carried
out on 16334 and 32338 lattices, and the energy densi
and pressure are calculated by the integral method@8#. We
find that the results extrapolated to the continuum limit ag
well with those obtained from the standard action in Ref.@2#.
This provides us with a crosscheck of the final results in
continuum limit, and also provide support for the validity
assumptions behind the extrapolation procedures.

This paper is organized as follows. In Sec. II, we summ
rize the basic formulation and our notations. Some details
our simulations are given in Sec. III. We define our choice
the temperature scale in terms of the string tension in S
IV, and examine scaling of the critical temperature in Sec.
In Sec. VI we present our results for equation of state
tained atNt54 and 8, and their continuum extrapolation.
comparison of our results with those obtained from the st
dard action is also made. In Sec. VII we briefly discuss
sults obtained with the operator method@9#. We end with a
brief conclusion in Sec. VIII.

II. METHOD

The partition function of a finite temperature SU~3! lattice
gauge theory is defined by

Z5E @dU#ebSg, ~1!

whereb56/g2 is the bare gauge coupling, andSg the lattice
gauge action. Denoting thek3 l Wilson loop in the (m,n)
plane at a sitex as Wmn

k3 l(x)5 1
3 Re Tr@)k3 l loopU#, the

renormalization group~RG! improved gauge action we use
given by @7#

Sg5c0 (
x,m,n

Wmn
131~x!1c1 (

x,m,n
Wmn

132~x! ~2!
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with c05128c1 and c1520.331. On a lattice with a size
Ns

33Nt and the lattice spacinga, the temperatureT and
physical volumeV of the system are given, respectively, b

T51/~Nta!, V5~Nsa!3. ~3!

We calculate the energy densitye and pressurep using
the integral method@8#. For a large homogeneous system, t
pressure is related to the free energy densityf through

p52 f 5
T

V
ln Z. ~4!

Using an identity (]/]b)ln Z5^Sg&, we then have

p

T4 U
b0

b

5E
b0

b

db8DS, ~5!

where

DS[Nt
4~^S&T2^S&0!, ~6!

with ^S&T the expectation value of the action densityS
5Sg /Ns

3Nt at temperatureT. The zero-temperature expect
tion value^S&0 is introduced to subtract the vacuum cont
bution, which is conventionally computed on a symmet
lattice with the same spatial volumeNs

33Ns . Once the pres-
sure is known, the energy density can be computed usin

e23p

T4 5T
db

dT
DS, ~7!

where

T
db

dT
52a

db

da
[b~g! ~8!

is the QCD beta function.

III. SIMULATIONS

The fundamental quantity used in the integral method
the action differenceDS defined by~6!. In order to calculate
^S&T and ^S&0, we need to simulate both asymmetric (Ns

3

3Nt) and symmetric (Ns
33Ns) lattices. The spatial lattice

size Ns should be sufficiently large to suppress finite s
effects. Past finite-size studies@10,11,3# suggest that the con
dition Ns /Nt*3 is the minimum requirement. As with th
work of the Bielefeld group for the plaquette action@2#, we
chooseNs /Nt54 and perform simulations on 16334 and
32338 lattices as well as on 164 and 324 lattices for a set of
values ofb around and above the critical point.

Gauge fields are updated by the pseudo-heat-bath a
rithm with five hits, followed by four over-relaxation
sweeps; the combination of these updates is called an i
tion. We always start from the completely ordered config
ration, and perform 20 000 to 36 000 iterations after therm
ization on asymmetric lattices, and about 10 000 iterati
on symmetric lattices. We find these number of iterations
be sufficient for a statistical accuracy of 2–3 % or better
09451
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the value ofDS. The statistics of our runs are compiled
Table I.

We measure Wilson loops and Polyakov loop at ev
iteration. Errors are determined by the jack-knife meth
The typical bin size dependence of the jack-knife error
the action density is shown in Fig. 1. The errors are alm
constant over a wide range of bin sizes, and we adopt the
size of 1000 iterations for asymmetric lattices and 500
symmetric lattices.

In Table II we list the expectation value of the actio
density ^S&T calculated on asymmetric lattices of size 13

34 and 32338 and that for̂ S&0 on symmetric lattices of
size 164 and 324.

IV. TEMPERATURE SCALE

In order to determine the temperatureT51/@Nta(b)#, we
need to compute the lattice spacinga as a function of the
gauge couplingb. We use the string tension of static qua
potential to fix the scale of this relation. In Table III w
compile results for the dimensionless string tensionaAs ob-
tained with the renormalization-group-~RG! improved action
@3,12#. We fit these results by an ansatz proposed by All
@13#,

~aAs!~b!5 f ~b!@11c2â~b!21c4â~b!41•••#/c0 , ~9!

â~b![
f ~b!

f ~b1!
,

TABLE I. Statistics of our runs.

Lattice b No. of iterations

16334 2.20 – 2.30 26 000
2.32 – 3.20 20 000

164 2.20 – 3.20 10 000
32338 2.60 – 3.80 36 000
324 2.60 – 3.80 12 000

FIG. 1. Bin size dependence of the jack-knife error of the act
density.
0-2



EQUATION OF STATE FOR PURE SU~3! GAUGE . . . PHYSICAL REVIEW D60 094510
TABLE II. Expectation value of action densitŷS& for our runs.

b 16334 164 32338 324

2.200 11.652966~141! 11.652657~87!

2.250 11.856453~192! 11.855865~135!
2.270 11.933127~336! 11.931453~117!
2.300 12.053019~249! 12.039327~87!

2.320 12.123597~183! 12.108015~141!
2.350 12.221928~144! 12.206421~93!

2.400 12.373140~177! 12.360168~129!
2.500 12.645009~144! 12.636627~102!
2.600 12.885558~111! 12.880320~93! 12.8802888~225! 12.8802498~198!
2.650 12.9923472~240! 12.9923202~252!
2.700 13.0990662~657! 13.0987350~177!
2.750 13.2009177~255! 13.2000711~171!
2.775 13.2497922~213! 13.2489255~162!
2.800 13.299015~138! 13.296786~99!

2.850 13.3897845~186! 13.3890450~186!
2.900 13.4780103~183! 13.4773656~201!
3.000 13.644306~141! 13.643502~63! 13.6438083~141! 13.6433112~162!
3.200 13.938774~87! 13.938480~69! 13.9385442~174! 13.9383060~150!
3.400 14.1934539~120! 14.1933099~150!
3.600 14.4165000~162! 14.4164202~114!
3.800 14.6135793~141! 14.6135304~117!
-

n

he

d

-

ine
where f (b) is the two-loop scaling function of SU~3! gauge
theory,

f ~b56/g2![~b0g2!2b1/2b0
2
expS 2

1

2b0g2D ,

b05
11

~4p!2 , b15
102

~4p!4 , ~10!

and cn (n52,4, . . . ) parametrize deviations from the two
loop scaling. Truncating the power corrections atn54 and
choosingb152.40, we obtain from this fit,

c050.524~15!, c250.274~76!, c450.105~36!
~11!

with x2/DOF50.356 for four degrees of freedom. As show
in Fig. 2 the fit curve reproduces the data very well.

TABLE III. Results for string tension obtained with the RG
improved action.

b aAs Lattice No. of conf. Ref.

2.1508 0.5054~93! 93318 400 @3#

2.2827 0.3864~32! 123324 200 @3#

2.40 0.3096~54! 163332 50 @12#

2.5157 0.2559~23! 183336 100 @3#

2.60 0.2313~58! 163332 50 @12#

2.70 0.1963~34! 163332 100 @12#

3.20 0.1029~19! 324 50 @12#
09451
With this parametrization, the temperature in units of t
critical temperatureTc is given by

T

Tc
5

~aAs!~bc!

~aAs!~b!
~12!

with bc the critical coupling. The beta function is obtaine
by differentiating the left-hand side of~9! with respect to the
gauge couplingb, keepings constant.

FIG. 2. String tension as a function of gauge coupling. Solid l
represents a fit to Allton’s parametrization.
0-3
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V. CRITICAL TEMPERATURE

We determine the critical couplingbc(Nt ,Ns) for the de-
confinement transition on anNs

33Nt lattice by the peak lo-
cation of the susceptibilityx of the Z~3!-rotated Polyakov
line. The values ofbc for Nt53, 4, 6 have been reported i
Ref. @3#. In order to computebc for Nt58, we perform an
additional simulation of 24 000 iterations atb52.710 on a
32338 lattice. Theb dependence ofx is calculated by the
spectral density method@14#. We estimate the error by th
jack-knife method with the bin size of 2000 iterations. T
values of bc(Nt ,Ns) for finite Ns are summarized in the
second column of Table IV.

Calculating the critical temperature requires an extrapo
tion of bc(Nt ,Ns) toward infinite spatial sizeNs→` for
eachNt . For the first-order transition of the pure gauge s
tem, the spatial volume dependence ofbc(Nt ,Ns) is ex-
pected to follow@2#:

bc~Nt ,Ns!5bc~Nt ,`!2c~Nt!
Nt

3

Ns
3

. ~13!

It has been reported in Ref.@3# that results forNt53 and 4
reasonably satisfy~13! with c(Nt)50.122(54) forNt53 and
0.133(63) forNt54. An approximate scaling of the coeffi
cient c(Nt) motivates us to apply~13! for Nt56 ~as was
made in Ref.@3#! and also forNt58, adopting the value
0.133(63) for the coefficient. Substituting values
bc(Nt ,`) in the parametrization of the string tension~9!, we
calculateTc /As51/(NtaAs). We tabulate results of this
analysis in the third and fourth column of Table IV.

In Fig. 3 we plot the results forTc /As as a function of
1/Nt

2 ~filled circles!. Also shown are the values previous
reported in Ref.@3# ~open circles! and those for the plaquett
action from Ref.@16# ~open squares!. A slight difference be-
tween the present results and those from Ref.@3# for the
same action stems from the fact that an exponential an
Asa5A exp(2Bb) with fit parametersA andB was adopted
in the previous work, which deviates from the parametri
tion ~9!. We think that the present parametrization gives
better estimate ofs, being theoretically consistent with th
asymptotic scaling behavior for largeb. The results for the
plaquette action is obtained with a parametrization@15#

TABLE IV. Critical coupling of the deconfinement transitio
for the RG-improved action on anNs

33Nt lattice, infinite spatial
volume extrapolation and the ratioTc /As for infinite spatial vol-
ume. Allton’s parametrization of string tension is employed to
the temperature scale.

Ns
33Nt bc(Nt ,Ns) bc(Nt ,`) Tc /As

12333 2.1528~9! 2.1551~12! 0.665~10!

16334 2.2863~10! 2.2879~11! 0.654~4!

18336 2.5157~7! 2.5206~24! 0.654~5!

32338 2.7103~32! 2.7124~34! 0.652~6!
09451
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~aAs!~b!5 f ~b!@110.2731â~b!220.01545â~b!4

10.01975â~b!6#/0.01364 ~14!

with b156.0.
We observe that the new value ofTc /As for the RG-

improved action forNt58 is consistent with the previou
results forNt53, 4, 6 @3#. The difference in this ratio ob-
tained for the two actions, however, still remains. Making
quadratic extrapolation in 1/Nt , we find Tc /As50.650(5)
for the RG action, which is 3% higher than the valu
0.630(5) for the plaquette action@16#. A possible origin of
the discrepancy is systematic uncertainties in the determ
tion of the string tension for the two actions, which differ
details. We consider that checking an agreement beyon
few percent accuracy, as is needed here, would require
generation and analyses of potential data over the rele
range of lattice spacings in a completely parallel manner
the two actions, which is beyond the scope of the pres
work.

VI. EQUATION OF STATE

A. Results for RG-improved action

Our results forDS at Nt54 and 8 are shown in Fig. 4. In
order to integrateDS in terms ofb to obtain the pressure, w
have to make an interpolation of the data points. At largeb
whereT>2Tc is satisfied, we fit the points by a perturbativ
ansatz,

DS5
a2

b21
a3

b31
a4

b41•••, ~15!

truncating the series at the orderb24. The absence of the
linear term in perturbation theory can be checked easily.
DS at lowerb values corresponding toT<2Tc , we perform
a cubic spline fit with the requirement that the cur
smoothly joins to the large-b fit curve atT52Tc . The in-
terpolation curves are shown in Fig. 4.

FIG. 3. Tc /As as a function of 1/Nt
2 . Open circles are results

reported in Ref.@3#. Open squares are values for the plaquette
tion @16#.
0-4
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EQUATION OF STATE FOR PURE SU~3! GAUGE . . . PHYSICAL REVIEW D60 094510
We use these curves to evaluate the integral for pres
in ~5!. The lower limit of integration is chosen to beb0
52.20 (Nt54) and 2.63 (Nt58). The results are show
by solid lines in Fig. 5. Combining these results forp with
those fore23p computed using~7!, we also obtain the en
ergy densitye, which we show in Fig. 6.

The statistical errordp(T) for the pressure, plotted at rep
resentative points in Fig. 5, is evaluated from the contri
tions d i p(T) at each simulation pointb i which is estimated
by the jack-knife method. Since simulations at differentb i
are statistically independent, we compute the final error
the naive error-propagation rule,dp(T)5A( idpi(T)2, sum-
ming up all the contributions fromb i smaller thanb corre-
sponding to the temperatureT. The errorde(T) of the energy
density is calculated by quadrature from the error of 3dp(T)
and that fore(T)23p(T), the latter being proportional to th
error of DS.

We observe in Figs. 5 and 6 that the energy density
pressure exhibit a sizable increase betweenNt54 and 8.
This increase is opposite to the trend for the plaquette act

FIG. 4. Action differenceDS for Nt54 and 8 as a function o
b.
09451
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but it is consistent with the prediction of the leading ord
perturbative result shown by horizontal lines at the right
the figure. The values from the integral method, howev
overshoot those from perturbation theory toward high te
peratures, particularly forNt54 for which the perturbative
value is quite small. We discuss this point further in S
VII.

We now extrapolate the results for energy density a
pressure to the continuum limitNt→`. The RG-improved
gauge action has lattice discretization errors ofO(a2).
Therefore, at a fixed temperature in physical units, we exp
deviations of thermodynamic quantities from the continuu
limit to be O(1/Nt

2)

FIG. 6. Energy density forNt54 and 8. Meaning of horizonta
lines is the same as in Fig. 5.

FIG. 5. Pressure forNt54 and 8. The dashed horizontal line o
the top-right represents the leading order perturbative value in
high-temperature limit in the continuum, and solid and dotted lin
are the corresponding lattice values forNt58 and 4.
0-5
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S F
T4D

Nt

5S F
T4D

cont

1
cF~T!

Nt
2

, F5p,e. ~16!

Extrapolating the results fore and 3p at Nt54 and 8 with
this form, we obtain the continuum predictions drawn
solid lines in Fig. 7.

B. Comparison with results for the plaquette action

We compare our results with those of the Bielefeld gro
obtained with the plaquette action@2#. Care is needed in this
comparison since they used a scheme different from our
fix the temperature scale: their scheme is based on the
quirement that the critical temperatureTc is independent of
the temporal sizeNt .

Since a difference in the scale can sizably affect res
for thermodynamic quantities@17#, we first examine the pos
sible influence of this difference. For this purpose we rea
lyze the raw data of Ref.@2# for the action density employing
the scale parametrization~14!. The results forp and e are
shown by solid lines in Fig. 8 for the temporal sizesNt56
and 8 used by the Bielefeld group for the continuum extra
lation. Compared with their original results, drawn by dash
lines, the influence of the scale determination is well with
the statistical error of 1–3 %.

We extrapolate the pressure and energy density obta
with the scale~14! to the continuum limit according to~16!.
This leads to the dash-dotted curves shown in Fig. 7. Er
are evaluated in the same way as for the case of the
improved action. We observe that the curves for the R
improved action~solid lines! and those for the plaquette a
tion ~dash-dotted lines! are in good agreement, within th

FIG. 7. Equation of state in the continuum limit for the RG
improved action~solid lines! and for the plaquette action~dash-
dotted lines!. The latter is obtained with the Allton’s parametriz
tion of string tension using raw data in Ref.@2#. Dashed horizontal
line on the top-right shows the free gluon gas value in the hi
temperature limit.
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error of 3–4 %, over the entire temperature interval show
This is highly nontrivial since results for the two action
differ significantly at finite lattice spacings.

In Fig. 9 we compare the pressure atNt54 from the two
actions to the result in the continuum limit. We note that t
continuum results for the RG-improved action are a
proached from below, while those for the plaquette act
from above. We also find that the magnitude of deviati
from the continuum limit is comparable for both actions. T
form of the RG-improved action we employed is determin
so as to best approximate the renormalized trajectory aft
few RG transformations, within those limited actions with
maximum of six-link loops. Therefore, low-momentu
modes, with a momenta smaller than the inverse of sev
lattice spacings, are improved. On the other hand, a mom
tum scale which is significant at high temperatures isT
51/Nta on finite-Nt lattices. From Fig. 9, it appears to b
required to add further terms in the action in order to redu
the cut-off effects for high-momentum modes with mome
tum *1/4a, thereby improving the behavior of the pressu
at high temperatures onNt54 lattices.

-

FIG. 8. Energy density~lower figure! and pressure~upper fig-
ure! for the plaquette action forNt56 and 8. Solid lines uses th
Allton’s parametrization ofs for scale and dashed lines are origin
results of the Bielefeld group using a different scale fixing schem
0-6
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VII. COMPARISON WITH RESULTS WITH
OPERATOR METHOD

In Sec. VI A we noted that the pressure and energy d
sity calculated by the integral method exceed the values
responding to the perturbative high temperature limit. This
a puzzling result, especially for pressure; whilep/T4 has to
decrease at high temperatures to agree with the perturb
result, we expect it to be an increasing function of tempe
ture since it is given by an integral ofDS which is generally
positive. The discrepancy is particularly large forNt54 for
which the leading-order perturbative results on the lattice
quite small compared to those in the continuum as first no
in Ref. @18#. In Table V we list the perturbative value o
pressure on aNs

33Nt lattice in units of the free gluon ga
value in the continuum forNt54 –12 for the RG-improved
and plaquette actions.

In order to further examine this problem, we calcula
thermodynamic quantities in an alternative way using
formulas of the operator method@9# given by

e

T4
5

18

g2
Nt

4@cs~g!~^Ss&2^S&0!2ct~g!~^St&2^S&0!#,

~17!

FIG. 9. Pressure atNt54 from the RG and plaquette action
For comparison, we also plot the result in the continuum limit o
tained with the plaquette action using our choice of the scale
cussed in the text.

TABLE V. Perturbative high-temperature limit of pressure
the lattice in units of its continuum value (pSB/T458p2/45). Re-
sults for the caseNs /Nt54 are listed.

p(Nt ,Ns)/pSB

Nt 4 6 8 10 12

RG 0.1971 0.7086 0.8213 0.8734 0.902
Plaquette@4# 1.4833 1.1697 1.0748 1.0398 1.022
09451
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T4
5

1

3

e

T4
2Nt

4b~g!@^Ss1St&22^S&0#, ~18!

where Ss and St are the spatial and temporal part of th
action density, and the asymmetry coefficients are defined

cs~g!512g2
dgs

22

dj
U

j51

, ct~g!511g2
dgt

22

dj
U

j51

.

~19!

The one-loop values of the asymmetry coefficients for
plaquette action have been long known@19#, and preliminary
values for the RG-improved action have recently been
ported@20#.

FIG. 10. Results for energy density and pressure forNt54 and
8 obtained with the operator method using one-loop values for
asymmetry coefficients as compared with those from the inte
method drawn by dashed (Nt54) and solid (Nt58) lines. Upper
figure is for the RG-improved action, and lower figure for th
plaquette action.

-
s-
0-7
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M. OKAMOTO et al. PHYSICAL REVIEW D 60 094510
We compare results for the energy density and pres
from the integral method and the operator method with o
loop asymmetry coefficients in Fig. 10 forNt54 and 8. For
both types of actions, the values for the operator method
above those for the integral method, and the difference
minishes with increasingNt . For Nt54 for the RG-
improved action, in particular, we do not observe any in
cation of decrease toward the perturbative high-tempera
limit, both with the integral and operator methods, at le
within the temperature range where we have results.

A possible source of the discrepancy is breakdown of p
turbation theory due to the infrared divergence@21# of the
theory. In the continuum there are nonperturbative contri
tions to free energy beyond three-loop level. This probl
should also exist on the lattice, and the magnitude of n
perturbative contributions may vary depending on the cho
of lattice actions.

VIII. CONCLUSIONS

In this article we have presented results on the equatio
state for a pure SU~3! gauge theory obtained with an RG
improved gauge action. The continuum result for the ene
density and pressure show an agreement with the resul
M
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et
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the Bielefeld group for the plaquette action within the err
of 3–4 %. This provides a concrete support for the expec
tion that continuum results are insensitive to the choice
lattice actions.

We also found that the energy density and pressure
finite Nt overshoot the perturbative high-temperature lim
Understanding the origin of this behavior shall be explor
in the future.
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