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A lattice study of the equation of state for pure 8UJgauge theory using a renormalization-graiG)
improved action is presented. The energy density and pressure are calculated®oaahél a 39x 8 lattice
employing the integral method. Extrapolating the results to the continuum limit, we find the energy density and
pressure to be in good agreement with those obtained with the standard plaquette action within the error of
3-4%.[S0556-282(99)07819-4
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I. INTRODUCTION In this article we report on our study of the continuum
limit of the equation of state for pure $8) gauge theory

At sufficiently high temperatures, the quark-confinementwith an improved action determined from an approximate
property of QCD is expected to be lost so that hadrons disrenormalization-group argumefit]. Simulations are carried
solve into a plasma of quarks and gluons. This quark-gluomut on 16x4 and 32x 8 lattices, and the energy density
plasma state must have existed in the early universe, and itghd pressure are calculated by the integral mefl8ddwe
experimental detection is being actively pursued throughind that the results extrapolated to the continuum limit agree
relativistic heavy-ion collisions. Basic information that is re- ye|| with those obtained from the standard action in RR2¥.
quired to explore physical phenomena in the quark-gluorrhis provides us with a crosscheck of the final results in the
plasma is its equation of state, namely the energy density andyntinyum limit, and also provide support for the validity of
pressure as a function of temperature. For this reason a NUNssumptions behind the extrapolation procedures.
ber of lattice QCD studies of equation of state have been Tpig paper is organized as follows. In Sec. II, we summa-
made[1]. An important progress in this effort is the recent ;¢ the hasic formulation and our notations. Some details of
work of the Bielefeld group[Z]_ in which a systematic con- o ¢ simulations are given in Sec. lll. We define our choice of
tinuum extrapolation was carried _out for the equation of statgy,q temperature scale in terms of the string tension in Sec.
for pure SU3) gauge theory. Using the standard plaquettey; and examine scaling of the critical temperature in Sec. V.
action, they calculated bulk thermodynamic quantities on laty, sec. VI we present our results for equation of state ob-
tices with the temporal exteM,=4, 6, and 8, and extrapo- tained atN,=4 and 8, and their continuum extrapolation. A
lated the results to the continuum linht—c, assuming that - comparison of our results with those obtained from the stan-
the data alN;=6 and 8 follow the leading extrapolation for- garq action is also made. In Sec. VIl we briefly discuss re-

mula. _ sults obtained with the operator meth@. We end with a
To understand the quark-gluon plasma in the real worldyyief conclusion in Sec. VIII.

this work has to be extended to full QCD with dynamical
quarks. This is a difficult task due to a significant increase of
the amount of computations needed for full QCD simula-
tions. One approach to lessen the computational cost is to The partition function of a finite temperature &Ylattice
employ improved actions designed to have reduced latticgauge theory is defined by

cut-off effects, and hence should allow reliable continuum

extrapolation from coarser lattice spacings compared to the 7= J [dU]eSs 1)
case for the standard unimproved actions. Thermal properties '

of several improved pure gauge actions have already been 5 ) _
studied[3—6]. At present, however, no extrapolation of ther- Where3=6/g* is the bare gauge coupling, afd the lattice
modynamic quantities to the continuum limit has been mad&auge action. Denoting thiex| Wilson loop in the {,»)

II. METHOD

L . ; kx|
with improved actions. plane at a sitex as W, (x)=3 Re T{Il;x| 100pU], the
renormalization groupRG) improved gauge action we use is
given by[7]
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with ¢g=1-8c; andc,;=—0.331. On a lattice with a size TABLE |. Statistics of our runs.
N§>< N; and the lattice spacing, the temperaturel and - : :
physical volumeV of the system are given, respectively, by Lattice B No. of iterations
T=1/(N@a), V=(Na)>. 3) 16°x 4 2.20 - 2.30 26 000
2.32 -3.20 20 000
We calculate the energy densiéyand pressurg using  16° 2.20 - 3.20 10 000
the integral metho@8]. For a large homogeneous system, the32°x 8 2.60 - 3.80 36 000
pressure is related to the free energy denfsttyrough 32 2.60 — 3.80 12 000
T
p=—1f= vInZ. 4 the value ofAS. The statistics of our runs are compiled in
Table 1.
Using an identity §/dB)In Z=(S;), we then have We measure Wilson loops and Polyakov loop at every
iteration. Errors are determined by the jack-knife method.
1 p _ ﬁd 'AS 5) The typical bin size dependence of the jack-knife error for
T4 4 B Bo BTAS the action density is shown in Fig. 1. The errors are almost
0 constant over a wide range of bin sizes, and we adopt the bin
where size of 1000 iterations for asymmetric lattices and 500 on
symmetric lattices.
AS=N{((S)1—(S)o), (6) In Table Il we list the expectation value of the action

density (S); calculated on asymmetric lattices of size®16
with (S); the expectation value of the action densBy x4 and 38x8 and that for(S), on symmetric lattices of
=Sg/N§Nt at temperaturd. The zero-temperature expecta- size 16 and 32.
tion value(S), is introduced to subtract the vacuum contri-
bution, which is conventionally computed on a symmetric IV. TEMPERATURE SCALE
lattice with the same spatial volunhdgx Ns. Once the pres-
sure is known, the energy density can be computed using  In order to determine the temperature- 1 N.a(B) ], we
need to compute the lattice spaciagas a function of the

e-3p _dg gauge coupling3. We use the string tension of static quark

?_Td_TAS’ () potential to fix the scale of this relation. In Table Il we
compile results for the dimensionless string tensiqfe- ob-
where tained with the renormalization-grolG) improved action
[3,12]. We fit these results by an ansatz proposed by Allton
T2 -—afopg) ® 13
dT da R R
, _ (Vo) (B =F(B)[1+ca(B)*+csa(B)*+- - 1Icy, (9)
is the QCD beta function.
~ f(B)
lll. SIMULATIONS aAB=15)

The fundamental quantity used in the integral method is
the action differencé S defined by(6). In order to calculate 0.00008
(S)T and (S)o, we need to simulate both asymmetri3(

X N,) and symmetric 3x N,) lattices. The spatial lattice
size Ng should be sufficiently large to suppress finite size
effects. Past finite-size studigk),11,3 suggest that the con-
dition Ng/N;=3 is the minimum requirement. As with the
work of the Bielefeld group for the plagquette actig], we
chooseN¢/N;=4 and perform simulations on 184 and
32°x 8 lattices as well as on t@nd 32 lattices for a set of
values of 3 around and above the critical point.

Gauge fields are updated by the pseudo-heat-bath algc
rithm with five hits, followed by four over-relaxation
sweeps; the combination of these updates is called an itere
tion. We always start from the completely ordered configu- 0.00000
ration, and perform 20 000 to 36 000 iterations after thermal- 0
ization on asymmetric lattices, and about 10000 iterations
on symmetric lattices. We find these number of iterations to FIG. 1. Bin size dependence of the jack-knife error of the action
be sufficient for a statistical accuracy of 2—3 % or better fordensity.

oo 16°x4 =2.50
+—e16" B=250

0.00006 ]

jack—knife error of <S>,

0.00004 .

0.00002 _

500 1000 1500
bin size
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TABLE Il. Expectation value of action densitys) for our runs.

B 16°x 4 16 32x8 32

2.200 11.65296@41) 11.65265787)

2.250 11.85645392) 11.855865135)

2.270 11.93312836) 11.931458117)

2.300 12.05301@49) 12.03932787)

2.320 12.12359183) 12.108015141)

2.350 12.221928 44 12.20642193)

2.400 12.37314A77) 12.360168129

2.500 12.645009 44) 12.636627102

2.600 12.88555811) 12.88032(93) 12.8802888225) 12.8802498199)
2.650 12.992347240 12.992320252)
2.700 13.099066857) 13.0987350177)
2.750 13.200917255 13.200071(171)
2.775 13.249792213 13.2489256162)
2.800 13.29901E 38 13.29678699)

2.850 13.389784486) 13.389045(186)
2.900 13.478010383 13.4773656201)
3.000 13.644308.41) 13.64350263) 13.6438088141) 13.6433112162)
3.200 13.9387787) 13.93848069) 13.9385442174) 13.938306(0150)
3.400 14.193453320 14.1933090150)
3.600 14.416500062 14.4164202114)
3.800 14.613579341) 14.6135304117)

wheref(B) is the two-loop scaling function of SB) gauge
theory,

With this parametrization, the temperature in units of the
critical temperaturd .. is given by

1
f(B=6/g%)=(bgg?) "12% exp( —mz>, T (aVo)(Be)

—=— 12
Te  (ayo)(B) 12
11 102

T amr P .

with B the critical coupling. The beta function is obtained
by differentiating the left-hand side ¢®) with respect to the

andc, (n=2,4, ...) parametrize deviations from the two- gauge couplings, keepinge constant.

loop scaling. Truncating the power correctionsnat4 and
choosingB;=2.40, we obtain from this fit,

co=0.52415), c,=0.27476), c,=0.10536)

(11)

with x?/DOF=0.356 for four degrees of freedom. As shown
in Fig. 2 the fit curve reproduces the data very well.

TABLE lll. Results for string tension obtained with the RG- 70
improved action. @
B aJo Lattice No. of conf. Ref.
2.1508 0.505@®3) 9% 18 400 [3]
2.2827 0.386@2) 122x 24 200 [3]
2.40 0.309664)  16°x32 50 [12]
2.5157 0.255@3) 1836 100 [3]
2.60 0.231859) 16°x 32 50 [12]
2.70 0.196834) 16°x 32 100 [12]
3.20 0.102019) 32 50 [12] FIG. 2. String tension as a function of gauge coupling. Solid line

represents a fit to Allton’s parametrization.
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TABLE 1V. Critical coupling of the deconfinement transition
for the RG-improved action on aNgx N, lattice, infinite spatial
volume extrapolation and the ratif./\/o for infinite spatial vol-
ume. Allton’s parametrization of string tension is employed to fix 0.70 -
the temperature scale.

(<]
NSX N, Be(N¢,Ny) Be(N;,) T /No S o.ss]M
[ _
122x 3 2.15289) 2.155112) 0.66510) iﬁﬁ-g ———————— e o
163x 4 2.286310) 2.287911) 0.6544) a8 | ]
186 2.51577) 2.520624) 0.6545) '
328 2.710332) 2.712434) 0.6526)
0.55 - -
0.00 0.05 , 010
V. CRITICAL TEMPERATURE 1N,
We determine the critical coupling.(N,,N,) for the de- FIG. 3. T./\/o as a function of IM?. Open circles are results

confinement transition on amgx N, lattice by the peak lo- reported in Ref[3]. Open squares are values for the plaquette ac-
cation of the susceptibilityy of the Z3)-rotated Polyakov tion [16].
line. The values of3; for N;=3, 4, 6 have been reported in

Ref. [3]. In order to computgd, for N;=8, we perform an a —=f 1+0.273%8(8)2—0.0154%( B8)*
additional simulation of 24 000 iterations gt=2.710 on a ( \/;)('8) (B (B) (B)
32°x 8 lattice. TheB dependence of is calculated by the +0.0197%(3)%]/0.01364 (14

spectral density methofdl4]. We estimate the error by the
jack-knife method with the bin size of 2000 iterations. Thewith g,=6.0.

values of B(N;,Ns) for finite Ng are summarized in the We observe that the new value @t./\/o for the RG-
second column of Table IV. _ improved action forN;=8 is consistent with the previous
Calculating the critical temperature requires an extrapolaresyits forN,=3, 4, 6[3]. The difference in this ratio ob-
tion of B¢(Ni,Ns) toward infinite spatial sizNs—c for  tained for the two actions, however, still remains. Making a
eachN;. For the first-order transition of the pure gauge sys-guadratic extrapolation in b, we find T./+/o=0.650(5)
tem, the spatial volume dependence &f(N;,Ns) is €x-  for the RG action, which is 3% higher than the value
pected to follow[2]: 0.630(5) for the plaquette actidi6]. A possible origin of
the discrepancy is systematic uncertainties in the determina-
tion of the string tension for the two actions, which differ in
details. We consider that checking an agreement beyond a
few percent accuracy, as is needed here, would require the
generation and analyses of potential data over the relevant
range of lattice spacings in a completely parallel manner for
It has been reported in Rdf3] that results foN,=3 and 4 the two actions, which is beyond the scope of the present
reasonably satisfg13) with c(N,) =0.122(54) folN,=3 and  Work.
0.133(63) forN;=4. An approximate scaling of the coeffi-

N3
Be(N{ ,Ng) = Bc(N; ,oc>—c(Nt>N—;. (13

cient c(N;) motivates us to apply13) for N;=6 (as was VI. EQUATION OF STATE

made in Ref.[3]) and also forN,=8, adopting the value

0.133(63) for the coefficient. Substituting values of A. Results for RG-improved action

Bc(N¢,) in the parametrization of the string tensi@®), we Our results forAS at N,=4 and 8 are shown in Fig. 4. In
calculate T./\Jo=1/(N;a+/o). We tabulate results of this order to integraté\S in terms of 3 to obtain the pressure, we
analysis in the third and fourth column of Table IV. have to make an interpolation of the data points. At Igége

In Fig. 3 we plot the results fof /o as a function of whereT= 2T, is satisfied, we fit the points by a perturbative
1/Nt2 (filled circles. Also shown are the values previously ansatz,
reported in Ref[3] (open circles and those for the plaquette
action from Ref[16] (open squargsA slight difference be- AS
tween the present results and those from R&f.for the
same action stems from the fact that an exponential ansatz
Joa=A exp(-Bp) with fit parametersA andB was adopted truncating the series at the ordgr *. The absence of the
in the previous work, which deviates from the parametrizadinear term in perturbation theory can be checked easily. For
tion (9). We think that the present parametrization gives aAS at lower 8 values corresponding fb<2T., we perform
better estimate oé, being theoretically consistent with the a cubic spline fit with the requirement that the curve
asymptotic scaling behavior for largg The results for the smoothly joins to the larg@ fit curve atT=2T.. The in-
plaguette action is obtained with a parametrizafib] terpolation curves are shown in Fig. 4.

a, a; a
=B—§+F§+B—i+--~, (15)
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5-0 T T 2.0 T T T
16°x4 ]
40 | .
15 A
30 .
2 Eoor 1
< a
20 | .
0.5 - i
10 .
0.0 . . .
2.0 25 3.0 35 0.0 4.0
p T/T,
5.0 ' FIG. 5. Pressure fdl,=4 and 8. The dashed horizontal line on
23 the top-right represents the leading order perturbative value in the
32'x8 high-temperature limit in the continuum, and solid and dotted lines
40 1 are the corresponding lattice values fy=8 and 4.
30 | but it is consistent with the prediction of the leading order
’ perturbative result shown by horizontal lines at the right of
‘2 the figure. The values from the integral method, however,
o0 | | overshoot those from perturbation theory toward high tem-
' peratures, particularly foN,=4 for which the perturbative
value is quite small. We discuss this point further in Sec.
10l 1 V.
We now extrapolate the results for energy density and
pressure to the continuum limiNi;— . The RG-improved
0.0 gauge action has lattice discretization errors ®@fa?).
25 4.0

Therefore, at a fixed temperature in physical units, we expect
deviations of thermodynamic quantities from the continuum

FIG. 4. Action differenceAS for N,=4 and 8 as a function of limit to be O(1/N?)

B.

We use these curves to evaluate the integral for pressur 60 ' ' '
in (5). The lower limit of integration is chosen to he,
=2.20 (N;=4) and 2.63 N;=8). The results are shown I S
by solid lines in Fig. 5. Combining these results forvith
those fore—3p computed using7), we also obtain the en-

ergy densitye, which we show in Fig. 6.

The statistical errobp(T) for the pressure, plotted at rep-
resentative points in Fig. 5, is evaluated from the contribu-<
tions 6;p(T) at each simulation poing; which is estimated
by the jack-knife method. Since simulations at differght
are statistically independent, we compute the final error by 20 -
the naive error-propagation rulép(T) = =;p;(T)Z, sum-
ming up all the contributions frons; smaller than3 corre-
sponding to the temperatufe The errorde(T) of the energy
density is calculated by quadrature from the error 6p@T)
and that fore(T) — 3p(T), the latter being proportional to the 0.0

error of AS.

4.0

%

T/T,

We observe in Figs. 5 and 6 that the energy density and
pressure exhibit a sizable increase betwdgr4 and 8. FIG. 6. Energy density foN,=4 and 8. Meaning of horizontal
This increase is opposite to the trend for the plaquette actiorlipes is the same as in Fig. 5.
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6-0 T T T ! ! ! ! !

20 - standard acon Bl
—————— 18
50 | T Pse/T'
15 i
4.0 -
TS. 1.0 | ]
30
20 | 05T 1
4 . ,
g —— RG improved action
1.0 —-— standard action | %0 20 3.0 40 50 60
TT,
0.0 : ' '
1.0 2.0 3.0 4.0 T T
/T, 60} standardacton 368
—————— - 8
FIG. 7. Equation of state in the continuum limit for the RG- 50 - S _ eo/T
improved action(solid lineg and for the plaquette actiofdash-
dotted lineg. The latter is obtained with the Allton’s parametriza- a0l ]
tion of string tension using raw data in Rg2]. Dashed horizontal ’
line on the top-right shows the free gluon gas value in the high-T:
temperature limit. @ 30 F i
20 .
F F cAT)
) Il e + N F=p,e€. (16) ol
N, cont t )
i . 0.0 /1 L L L 1
Extrapolating the results for and 3 at N;=4 and 8 with 1.0 20 4.0 5.0 6.0

3.0
this form, we obtain the continuum predictions drawn by T,

solid lines in Fig. 7. FIG. 8. Energy densitylower figure and pressuréupper fig-

ure) for the plaquette action foN,=6 and 8. Solid lines uses the
B. Comparison with results for the plaquette action Allton’s parametrization ot for scale and dashed lines are original

We compare our results with those of the Bielefeld groupresults of the Bielefeld group using a different scale fixing scheme.

obtained with the plaquette acti¢pf]. Care is needed in this
comparison since they used a scheme different from ours terror of 3—4 %, over the entire temperature interval shown.
fix the temperature scale: their scheme is based on the r&his is highly nontrivial since results for the two actions
quirement that the critical temperatufe is independent of differ significantly at finite lattice spacings.
the temporal sizé\, . In Fig. 9 we compare the pressureNyt=4 from the two
Since a difference in the scale can sizably affect resultsictions to the result in the continuum limit. We note that the
for thermodynamic quantitigd 7], we first examine the pos- continuum results for the RG-improved action are ap-
sible influence of this difference. For this purpose we reanaproached from below, while those for the plaquette action
lyze the raw data of Ref2] for the action density employing from above. We also find that the magnitude of deviation
the scale parametrizatiofl4). The results forp and e are  from the continuum limit is comparable for both actions. The
shown by solid lines in Fig. 8 for the temporal sizds=6  form of the RG-improved action we employed is determined
and 8 used by the Bielefeld group for the continuum extraposo as to best approximate the renormalized trajectory after a
lation. Compared with their original results, drawn by dashedew RG transformations, within those limited actions with a
lines, the influence of the scale determination is well withinmaximum of six-link loops. Therefore, low-momentum
the statistical error of 1-3 %. modes, with a momenta smaller than the inverse of several
We extrapolate the pressure and energy density obtainddttice spacings, are improved. On the other hand, a momen-
with the scalg(14) to the continuum limit according tl6).  tum scale which is significant at high temperaturesTis
This leads to the dash-dotted curves shown in Fig. 7. Errorss 1/N;a on finiteN; lattices. From Fig. 9, it appears to be
are evaluated in the same way as for the case of the RGequired to add further terms in the action in order to reduce
improved action. We observe that the curves for the RGthe cut-off effects for high-momentum modes with momen-
improved action(solid lineg and those for the plaquette ac- tum =1/4a, thereby improving the behavior of the pressure
tion (dash-dotted lingsare in good agreement, within the at high temperatures dN;=4 lattices.
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2.0 T T 6_0 T T
5 | 4
a0 B 4 — & ]
Eoof .
o}
2.0 | . 1
0.5 | ©3p/T (N=4)
—— RG Ng=4 n 3p/;l' (N;=8)
————— standard Ni=4 oefT ) (N=4)
—-—- continuum 00 Ae/T" (N=8)
00 1.0 20 3.0 4.0 ’ w :
/T, 1.0 2.0 3.0 4.0
FIG. 9. Pressure ai;=4 from the RG and plaquette actions. T/TC
For comparison, we also plot the result in the continuum limit ob- 0 . . . .
tained with the plaquette action using our choice of the scale dis-""
cussed in the text.
@ﬁgﬁiﬁiﬁiﬁ & P & g g % % 8
@
VII. COMPARISON WITH RESULTS WITH 6.0 - 2 o ®
OPERATOR METHOD | & _ Q- "~ 5 i"f

In Sec. VI A we noted that the pressure and energy den-
sity calculated by the integral method exceed the values cor4.0
responding to the perturbative high temperature limit. This is
a puzzling result, especially for pressure; whilélr* has to

standard

decrease at high temperatures to agree with the perturbativ O 3p/T 4(Nt=4)
result, we expect it to be an increasing function of tempera-=-*~ | m 3P/T4(Nt=8)

ture since it is given by an integral &fS which is generally o e (N=4)
positive. The discrepancy is particularly large fér=4 for AgT (N=8)

which the leading-order perturbative results on the lattice areg o | 18 i
quite small compared to those in the continuum as first notec ' : : :

in Ref. [18]. In Table V we list the perturbative value of 1.0 2.0 3.0 4.0 5.0
pressure on &AZX N, lattice in units of the free gluon gas T/,

value in the continuum foN,=4-12 for the RG-improved

and plaquette actions. FIG. 10. Results for energy density and pressureNfgr 4 and

In order to further examine this problem, we calculate8 obtained with the operator method using one-loop values for the

thermodynamic quantities in an alternative way using theasymmetry coefficients as compared wi_th those fr_om the integral
formulas of the operator methd@] given by method drawn by dashedN{(=4) and solid N;=8) lines. Upper
figure is for the RG-improved action, and lower figure for the

plaquette action.

€ _18|\|4 s < b 1 \
T g tLCs(9)((S9)—(S)o) — D (SY —(S)) ], 7= 37 NBOUSHS)=2S)]. (18
17

where S; and S; are the spatial and temporal part of the

TABLE V. Perturbative high-temperature limit of pressure on action density, and the asymmetry coefficients are defined by

the lattice in units of its continuum valuggg/T*=872/45). Re- dgo? dg; 2
— i S t
sults for the cas®&l;/N;=4 are listed. CS(g):l_ngg K Ct(g):1+92 al
£=1 =1
P(N¢,Ns)/psg (19
N 4 1 12 ..

! 6 8 0 The one-loop values of the asymmetry coefficients for the
RG 0.1971 0.7086 0.8213 0.8734 0.9024 plaquette action have been long knol®], and preliminary
Plaquettd 4] 1.4833 1.1697 1.0748 1.0398 1.0229 Vvalues for the RG-improved action have recently been re-

ported[20].
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We compare results for the energy density and pressurine Bielefeld group for the plaquette action within the error
from the integral method and the operator method with oneef 3—4 %. This provides a concrete support for the expecta-
loop asymmetry coefficients in Fig. 10 fof;=4 and 8. For tion that continuum results are insensitive to the choice of
both types of actions, the values for the operator method lidattice actions.
above those for the integral method, and the difference di- We also found that the energy density and pressure for
minishes with increasingN,. For N;,=4 for the RG- finite N; overshoot the perturbative high-temperature limit.
improved action, in particular, we do not observe any indi-Understanding the origin of this behavior shall be explored
cation of decrease toward the perturbative high-temperaturi@ the future.
limit, both with the integral and operator methods, at least

within the temperature range where we have results. ACKNOWLEDGMENTS
A possible source of the discrepancy is breakdown of per- ) o
turbation theory due to the infrared divergeried] of the We thank S. Sakai for communications on the asymmetry

theory. In the continuum there are nonperturbative contribucoefficients for the RG-improved action, F. Karsch for al-
tions to free energy beyond three-loop level. This problenOWing us to reproduce their results in Fig. 8, and H. P.
should also exist on the lattice, and the magnitude of nonShanahan for useful comments. Valuable discussions with B.
perturbative contributions may vary depending on the choic&@tersson and F. Karsch are gratefully acknowledged. Nu-
of lattice actions. merical simulations for the present work have been carried
out with the CP-PACS facility at the Center for Computa-
tional Physics of the University of Tsukuba. This work was
supported in part by Grants-in-Aid of the Ministry of Edu-

In this article we have presented results on the equation afation (Nos. 6768, 6769, 7034, 09304029, 10640246,
state for a pure S(3) gauge theory obtained with an RG- 10640248. A.A.K. and T.M. are supported by the JSPS Re-
improved gauge action. The continuum result for the energpearch for Future Program. M.O., S.E., and K.N. thank JSPS
density and pressure show an agreement with the results &r financial support.

VIIl. CONCLUSIONS

[1] For reviews, see E. Laermann, Nucl. PhygPBoc. Supp).63, [11] QCDPAX Collaboration, Y. Iwasakét al, Phys. Rev. D46,
114 (1998; A. Ukawa, ibid. 53, 106 (1997). 4657(1992.

[2] G. Boyd, J. Engels, F. Karsch, E. Laermann, C. Legeland, M[{12] CP-PACS Collaboration, T. Kanelet al. (in preparatioh
Lutgemeier, and B. Petersson, Nucl. PhBd69 419(1996. [13] C. Allton, hep-lat/9610016.

[3] Y. lwasaki, K. Kanaya, T. Kaneko, and T. YoshRhys. Rev.  [14] I. R. McDonald and K. Singer, Discuss. Faraday Stg;. 40

D 56, 151(1997). (1967; A. M. Ferrenberg and R. H. Swendsen, Phys. Rev.
[4] F. Beinlich, F. Karsch, and E. Laermann, Nucl. PhB462, Lett. 61, 2635(1989; 63, 1195(1989.

415 (1996. _ [15] R. G. Edwards, U. M. Heller, and T. R. Klassen, Nucl. Phys.
[5] F. Beinlich, F. Karsch, and A. Peikert, Phys. Lett3B0, 268 B517, 377 (1999

(1997. ; '

[16] B. Beinlich, F. Karsch, E. Laermann, and A. Peikert, Eur.
Phys. J. G5, 133(1999.

[17] S. Ejiri, Y. lwasaki, and K. Kanaya, Phys. Rev.d8, 094505
(1998.

[18] F. Karsch, Nucl. Phys. BProc. Supp). 60A, 169(1998.

[9] J. Engels, F. Karsch, I. Montvay, and H. Satz, Phys. Lett.[lg] F. Karsc.h, Nucl. PhysB205[FSS), 28_5(1982'
101B, 89 (1981. [20] S. Sakai, A. Nakamura, and T. Saito, Nucl. Phys(Moc.

[10] M. Fukugita, M. Okawa, and A. Ukawa, Nucl. PhyB337, Suppl) 73, 417(1999; S. Sakai(private communucatign
181 (1990). [21] A. D. Linde, Phys. Lett968, 289 (1980.

[6] A. Papa, Nucl. PhysB478 335 (1996.

[7]Y. Ilwasaki, Nucl. Phys.B258 141 (1985; University of
Tsukuba report UTHEP-118.983.

[8] J. Engels, J. Fingberg, F. Karsch, D. Miller, and M. Weber,
Phys. Lett. B252 625(1990.

094510-8



