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NMR evidence for Mott-Hubbard localization in (NH3)K3Cqgq
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13C, 'H, and ¥*K-NMR measurements of (NYJK;Cg, unambiguously demonstrated that its magnetic
properties are described a$Sa 1/2 localized spin system over the entire temperature réd@@K-4.2 K. A
possible antiferromagnetic structure that appeared below 45 K is compatible with the orientational order of K-
NH; pairs on the octahedrdlO) site. The present NMR study strongly suggests that the Mott-Hubbard
localization occurs due to the removal of thg, €, ,-orbital degeneracy.

In alkali (A) fullerides A;Cq, having face-centered-cubic enabled us to extract intrinsic behaviors. For example, a Cu-
(fce) structure, the triply degenerated @, band(e.qg., ¢y, rie tail observed at low'’s in the susceptibility data corre-
¢y, and¢,) with half-filling is responsible for the observed sponds to 0.5% spins persCin a well-controlled sample,
metallic and superconducting properties. Theoretically, — (NH3)0.9d<3Cs0, Which is smaller than 2.6% spins for the
however, a simple argument based on the Mott parametePrevious sample having 1.14NH
U/w>1, whereU and w are the intramolecular Coulomb  Figures 1 and 2 show th& dependence of°C-NMR
interaction and the bandwidth, respectively, leads to a Mottspectra andC nuclear spin-lattice relaxation rate;T4/ re-
Hubbard localizatiot:? This paradox was proposed to be SPectively. AboveTs, the *°C line is narrowed by rapid
solvable by taking into account orbital degeneracy, whictfotation of the G molecules. In thisT region, the suscepti-
increases the critical value fas/w to 2.5 (Refs. 1 and % bility follows the Curie-Weiss law and yle_lds the effective
and/or competition between spin fluctuations and phonorgomem' fetr~1.74Gug/Ceo, and the Weiss temperature,
dynamics® In this perspective, the electronic state of triva- © ~ ~ 160 K, indicating the total spin S=1/2." Corre-

lent G5 compounds having distorted structure is interesting,Spond'ngly’. 1T, remains constant upon cooling, regardless
. : . of the applied magnetic field strength, as expected for a lo-
because such distortions may remove theorbital degen-

eracy. AN ' ' ' T
Rosseinskyet 'al. succeeded in preparing (N)-KSQGO ’g (1(\?[){3)0.981(3% 200K
having a noncubic structure, and found that the material does 51 “envr | 250K ]
not show superconductivify Further experiments revealed £ B4T 200K |
that (NH;) K3Cgo exhibits a metal-insulator transition at 40 - HC:\ 170K
K, at which the low-temperatur@) state was believed to be § - . 140K ~
. : . : 5 120K
an antiferromagneti€AF) or a spin-density wave statg:* E | N 100K |
Recently, we reported that the ground state is an AF state of (D8O K
1ug/Cqy. However, the question as to whether the system is g - MMMWM(H)SOK
insulating had not been resolv@th this paper, we report the . ¢ Awce, B, ; .
NMR results that the magnetic properties of (JJK;Cqo are 2000 10*00 0 '1200 -2000
described as a localized spin system over the eiitirenge ) :
(300 K-4.2 K. S
Sample preparatidrt* and NMR techniqués? have been g -
reported elsewhere. The crystal structure is a face-centered- 2 -
orthorhombic(fco) structure, in which I5-NH; pairs in the =z R 7
O-site (K, refers to the O-site potassiyrare ordered in an ST s & Ton0n
antiferroelectric(AFE) fashion atTs~150 K!* NMR spec- 5 [ Shift (ppm) |
tra at 4.2 K were taken point by point as the frequency was bS] i
varied. We used a sample having a Nédntent of 0.98NH “ :
per Gy, Which is the same batch as samplén the x-ray coBT 1 P
20000 10000 0 -10000 -20000

diffraction (XRD) studiest* dc-SQUID (superconducting
guantum interference devicsusceptibility shows anomalies
at TSN 150 K andTN""45 K a.SSOCiated W|th the AFE and the FIG. 1. T dependence O'F'SC-NMR Spectra aH=94 T (a)

AF orderings, respectively. We also perform€@-NMR for  apoveT, and(b) at 4.2 K. (1)80 K and(11)80 K show the spectra
other samples having 1.14NHand 1.05NH. Microscopic  optained at different timest£5 sec and 20 msec, respectively
examinations revealed that the magnetic character strongbfter saturation of the nuclear magnetization. The dashed line is the
depends on the sample-quality, i.e., Nebntent. Improve- calculation forug=1ug/Cg, and the solid line is that for a 20%-
ment of the quality and accumulation of experimental datampurity phase.

Shift from TMS (ppm)
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FIG. 2. T dependence ofC 1/T,. Magnetization recovery FIG. 3. T dependence otH-NMR spectra. The dashed line is
(MR) aboveTg is fitted by a single exponential function. Beldvy, the calculation forue=1ug/Cq, and the solid line is that for
the 1T;’s are measured for lines A, B, and C. 20%-impurity phase. Here, the calculated line was convoluted by a

computed spectrum using the Lorentzian fit to the 50 K spectrum.
The inset shows the local symmetry of the octahedral site below

calized spin system. In this case,T1/is expressed &3 T

1T 1= 27(gyn) (Aot Adip2)S(S+1)/(3wey),  where
w2,=8zFS(S+1)/(342) and Ty=|J|zXS+1)/(3kg); 0, _ _
Y+ Aisos Adip, Z andJ are theg factor, the nuclear gyro- magne_tlc spectral broa_demng k_)elow, were o_bservea.

magnetic ratio, the isotropic hyperfine coupling constant, thd hus, lines A and B are inherent in the AF ordering, whereas
dipolar coupling constant, the number of nearest-neighboline C originates in the impurity phase. This also implies that
moments, and the exchange constant, respectively. Usiri§je electronic state is very sensitive to the Nédntent and

Aisoc=0.326 kOe/fug/Cgp),*? Agip=1.58 kOe/fug/Cqp).t?  that off-stoichiometric ammoniation leads to imperfect AFE

Ty=45 K, andS=1/2, 11T, is estimated to be 13.04 sec  and AF ordering.

for the fco structure in whicla= 8. This agrees well with the In contrast, both I7;, and 17,5 remain constant upon
observed value, 13 set, implying that a localized model cooling throughT, suggesting that the local moment picture
havingS=1/2 is applied to the present system. is maintained. This implies that the averaged effective ex-

Below T, the ®*C-NMR spectrum broadens over the change frequency due to nearest-neighboriggspins does
range from—500 to + 500 ppm which exceeds the range of not change througfs. The difference between T/, and
— 100~ +400 ppm for various fulleride$™'**The spectra  1/T;; may instead be attributed to that of the hyperfine cou-
“(1)80 K” and “(I1)80 K” were taken at different timest(  pling constant.
=5 sec and 20 msec, respectivebfter saturation of the Below Ty~45 K, the ¥*C NMR spectrum is unusually
nuclear magnetization. The spectrunlj80 K" for t=20  proadened around a narrow center Ijsee Fig. 1b)]; the
msec splits into several line@t least more than thre@t  \idth is about 27000 ppm~2.7 MH2) at 4.2 K, which
around 500 ppniline A), —300 ppm(line B), and 195 ppm  igjcates the AF order. Since the line broadening is mainly
(I|r}‘e ), suggesting a hybridization effect, as discussed laterygihyted to on-site dipolar hyperfine interactions with the
In“(1)80 K_ fpr ,t=5 Sec, we can see that qnly line C forms local spin density at the carborp2 orbital, we can deduce
a peak. This indicates that, for line C (T,¢) is longer than the dipolar field due to the spin density as,
those for lines A and BT, andT;g, respectively. B 3 . N Pz
In order to avoid mixing of the T/, of line C, which has = — 0-&1/r")2p u2p COSasiNBCOSB, and uzp, = po/60. wo
a large peak intensity, and those of lines A and B, we used s defined as the magnitude of the magnetic moment pgr C
longer rf-pulse width, 40usec, for lines A and B than that, anda and 3 are the polar angles between the applied mag-
6 lisetchf%f line C. 1Tt%AIafnd 1t7|'15 \t/vere obtai_ne(il_ by fitting  netic fieldH and the carbon 2, orbital. Here, we assume the
a stretched exponential function 1o magnetization recovery, i, q,, hhase of the AF ordered statg,L H.2>® The line
(MR) data using parameter~0.8. Meanwhile, 17, was width is estimated to be Af~2.4 MHZ/(ug/Cqg)

tentatively  determined by fitting Mc(t)=Mg[1 . 3 .
g EXPtT L) — S exp(—tT,0)] to MR data, ForT,>T (~24000 ppr using (1/r%),, ~1.89/4, where g is the

>Ty, Sap/Sc~0.8/0.2 is obtained, suggesting the intensity Bohr radiust?> We found that the observed spectrum can be
of the line C is 20% for the entire range. Far<T,, reproduced by the calculation using,=1ug/Cgy and the
Sap/Sc~0.2/0.8 because of a wipeout effect due to a mag20%-impurity phase, as shown in Figbl
netic ordering. Figures 3 and 4 display NMR spectra fbd and tetrahe-
1/T,c shows a remarkable drop by an order just below dral site potassium3K;),'” respectively. BelowT,, the
and is nearly proportional t& down to 4.2 K, without any 3K NMR shows the isotropic positive shift 6200 ppm
anomaly afTy . In the sample having 1.14NHneither the with spectral broadening to be different from that of
spectral splitting related to lines A and B beldw nor the  K3Cgp,'® whereas the!H NMR does not show any anoma-
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39 _ Rugby balls and open large and small balls repreggnor ¢, of
FIG. 4. T dependence of*K-NMR spectra. The dashed line is 4 Gy ty, Orbitals, K and NH, respectively. Black and white

the calculation forug=1ug/Cqy, and the solid line is that for the rugby balls correspond to opposite spins. For simplicity,aoms
20%-impurity phase. Here, the calculated line was convoluted by are not shown.

computed spectrum using the Gaussian fit to the 50 K spectrum.

. _— - . electron syster? In itinerant electron magnets, however, the
lies. These findings suggest that thg, @ybridizes with the total spin usually shrinks in the ordered state, igq/ o

)Iiggrsbtﬁzli;sltlher than the H orbital, as expected from the_; Thus, (NH)K;Cso is described as a localized electron

Below Ty, H- and *K-NMR spectrég also show line system having a low-spifLS) configuration of S=1/2 over

broadening. ThéH- and 3K ;-NMR provide information on the entireT range, strongly suggesting that the stoichiometric
loc (NH3)K5Cgp is a Mott-Hubbard insulator

the AF# orolerlng 5ve£:tor Sthrough tt]e_ local ﬂe?l_d_"” Why does the Mott-Hubbard localization take place? The
=2i[3(poi-ri)ri /1= poi /1{]), wherer; is the position of  |attice expansion and the distortion from a cubic structure
ith Cgo molecule and the notation||” represents the com-  geem insufficient to induce the localization, because both fcc
ponent ofH'°¢||H. For simplicity, any helical or noncollinear A3Cqso's having almost the same cell volume and;Cg
magnetic structure was disregarded and we confined OUkaving a distortion are not insulatdr!* A possible origin
selves to perform*calculatlons only for the AF structures withjg the symmetry breaking ategsites due to an interaction
ordering vectorsQ=(0 0 2),(111,(120,(221),and with the K5-NH5 pairs. This would remove thg,, degen-
(2 2 0 with respect to the lowl fco unit cell. These struc- eracy due to a Jahn-Teller effétassisted by an asymmetric
tures are deduced from the mean-field theory and the formerystal field and lead to the Mott-Hubbard localizatich.
threeQ’s correspond to type |, II, and Il fcc AF structures, The *°C and **K; NMR spectra indicate that the interaction
respectively, whereas the latter two correspond to the bodysetween G, and Ky ions, which lowers the local symmetry
centered-tetragonal AF structures wigh=(1/2 1/2 1/2 and  at G, site, is more substantial than that in fcg@ygy's: the
(1/2 1/2 0, respectively?’ The calculations were performed broader'3C spectra and the larger shift dfK; spectra at
for the spin-flop phase withy=1ug/Cgg, and the sum runs low T.
over neighbor gy's of % (i=1to 4 and*H (i=1 to 6). Furthermore, such a strong interaction between tthe
The position of hydrogen is averaged over the 1D;Nfb-  band and the pairs may cause thg orbitals order afTs.
lecular rotatiorf* As shown in Figs. 3 and 4, good agree- This is a kind ofmolecular orbital orderof ¢, and by, as
ments with the observed spectra are obtained for a 3D-Akhown by the rugby balls in Fig. 5. Thus the close relation-
structure so as to satisfy the 3D-AFE order where 2D-AFghip hetween the AF and the AFE order is considered to be a
sheets with planer ordering vectors @f,=(1 1) andd,,  natural consequence of the molecular orbital order; the black
=(—1 1) are stacked alternatingly along the ¢ axis: other(white) rugby balls couple each other through thg &oms,
Qs yield 1.7-3.5 times as broad linewidth as the observedvhereas there is no Kbetween the black and white rugby
'H-NMR width. Here, the 20%-impurity phase was takenballs in theab plane.
into account. Figure 5 shows the obtained AF structure, in Theoretical investigations have suggested that the degen-
which black and white rugby balls correspond to oppositeeratedt;,, level is unstable for the trivalentggand may be
spins. Here we note that the AF structure is not the sif@ple split into three levels in the LS configuratiohdue to a
but rather the complicate@ that is well correlated with the strong electron-phonon interaction, i.e., the Jahn-Teller
AFE structure. This suggests that thg-KIH; arrangement effect® In the present case, the Jahn-Teller distortion and
within the ab plane plays an important role in the AF order- band splitting are realized by the aid of the interaction be-
ing. tween Ky ion and thet;, orbital. Thus, the AFE order causes
Next, we discuss the ground state of the system. Théhe molecular orbital ordering and the AF ordering. The cou-
present result satisfies the Rhodes-Wohlfarth relation opling between thd;, band and the K-NH; pairs must be
pclpo~1, where uc= (1+,u,§ff)°-5— 1, for the localized responsible for the realization of the AF ground state. This is
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consistent with the result that the imperfect AFE orderingelectronic state of the fcc £ is close to the Mott-Hubbard
prevents the AF order, as mentioned earlier. localization and is sensitive to the local symmetry g Site.

In conclusion,*C, 'H, and **K-NMR studies have pro- . :
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