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Parallel and Distributed Trajectory Generation of
Redundant Manipulators Through Cooperation

and Competition Among Subsystems
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Abstract—The autonomous distributed control (ADC) is one
of the most attractive approaches for more versatile and au-
tonomous robot systems. This paper proposes a parallel and
distributed trajectory generation method for redundant manip-
ulators through cooperative and competitive interactions among
subsystems composing the ADC that is based on a concept of
virtual arms. The virtual arm has the same kinematic structure
as the manipulator except that its end-point is located on a joint
or link of the manipulator. Then the redundant manipulator
can be represented by a set of the virtual arms. In this paper,
trajectory generation and point-to-point control of the redundant
manipulator are discussed, and it is shown that the kinematic
redundancy of the manipulator can be utilized positively in the
generated trajectories by using the virtual arms.

I. INTRODUCTION

A REDUNDANT manipulator has more joint degrees of
freedom than the one required for a given task. Therefore,

it can offer significant advantages, for instance, avoiding
obstacles or singular configurations in performing a given
task. Many investigators have proposed the inverse kinematic
solutions utilizing the manipulator redundancy [1]–[4]. Most
notably, Tsutsumi and Matsumoto [5], Lee and Kil [6], and
Kawato [7] proposed trajectory generation methods utilizing
the manipulator redundancy using neural networks. It should
be noted that the control of the manipulator using the methods
described above requires the computation of the joint torques
from the derived inverse kinematic solutions.

On the other hand, the manipulator control system usually
use only one computer and control all joints by means of time
sharing. The larger the number of joint degrees of freedom the
manipulator has, the following problems will arise:

1) Flexibility: since control software will be extensive and
complex, expansion, revision and maintenance of the
control system will become difficult.

2) Reliability: partial failure of the software or hardware
may cause a crucial system breakdown.
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3) Real time computation:it is very difficult to perform
highly advanced information processing required for an
intelligent robot control by a single computer.

One of the possible approaches to overcome such problems
is to develop an autonomous distributed control (ADC) system
which is composed by a set of autonomous subsystems.
Neural control may be considered an example of the ADC.
In order to establish such a system for robot control, we
should first consider how to design each subsystem to behave
autonomously and cooperate with each other.

Corresponding to the coordinate system for motion de-
scription of the manipulator, two possible approaches can
be considered. One is a method for defining a subsystem
based on the joint space, and the other is based on the
task space. In the joint space approach, physical components
such as joints and links are defined as subsystems. Most
of the ADC of the manipulator proposed before can be
categorized in this approach [5]–[8]. Although this approach is
easy to understand intuitively, a large amount of information
exchanging among subsystems becomes necessary because of
existing complicated kinematic and dynamic interactions, so
that it is quite difficult to design each subsystem that should
work autonomously and cooperate with each other.

On the other hand, under the task space approach, a task
given to the whole system may be directly distributed into
each subsystem, since the tasks of the manipulator are usually
represented in the task space. This means that the task planning
of each subsystem in this case is comparatively easier than
the one under the joint space approach. In order to establish
the task space approach, however, motion description of each
subsystem in the task space must be transformed into the
control of the joint space through cooperation and competition
among subsystems.

This paper introduces a concept of a virtual arm as a
subsystem based on the task space approach. The virtual arm
has the same kinematic structure as the controlled manipulator
except that its end-effector is located on a joint or link of
the manipulator. Providing that the appropriate number of the
virtual arms are used, the configuration of the manipulator
can be represented by a set of the end-points of the virtual
arms, and then motion planning of the redundant manipulator
can be performed in the task space. If the ADC system of
the manipulator is implemented based on the virtual arm,
the following advantages can be realized: 1) each subsystem
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(a) (b)

Fig. 1. Virtual arms for a five-joint planar manipulator. (a) Actual arm and
(b) virtual arms.

corresponding to each virtual arm can behave autonomously,
2) geometrical relationships between the whole manipulator
and the task environment can be described in terms of the
end-points’ motion of the virtual arms, 3) each subsystem
has the same structure as the multi-joint manipulator, and 4)
the whole control system composed by subsystems includes
enough redundancy to be able to work properly, even if a part
of subsystems breaks down.

The present paper proposes a trajectory generation method
using the virtual arms, that is based on a distributed rep-
resentation of the manipulator’s kinematics using the back-
propagation typed neural networks. Each subsystem can work
fully autonomously independent of others, and the arm trajec-
tory of the redundant manipulator can be generated through
cooperative and competitive interactions among subsystems.

In the remainder of this paper, Section II formalizes kine-
matics of the virtual arms. Sections III and IV provide a detail
of the trajectory generation method based on the kinematic and
dynamic control of the redundant manipulators, respectively.

II. V IRTUAL ARM AND ITS KINEMATICS

We consider a redundant manipulator having joints
(hereafter referred to as an actual arm). Then a virtual arm
is defined which has an end-effector on a joint or a link of the
actual arm. Fig. 1 shows an example of setting virtual arms for
a five joint planar manipulator. The parameters of the virtual
arms such as the base position, joint angle, link length and so
on, are the same as those of the actual arm. Here, () virtual
arms are generally to be set, and the actual arm is regarded
as the th virtual arm. This allows the configuration of the
actual arm to be expressed as a set of virtual end-points in
the task space.

In order to control the redundant manipulator using the
virtual arms, the following problems should be solved:

1) Planning the desired end-point position of each virtual
arm in the corresponding subsystem independent of
others.

2) Computing the joint motion of the actual arm from the
desired position of the virtual end-points.

With respect to the first problem, the authors have proposed
a trajectory planning algorithm for obstacle avoidance [9],
[10]. This paper discuss the second problem, that is, how to
control the joint motion corresponding to the planned desired
position of the virtual end-points.

(a) (b) (c)

Fig. 2. Three cases of the virtual arms: (a) redundant case, (b)
over-constrained, and (c) singular.

Let the end-point position vector of theth arm be denoted
as where is the dimension of the task coordinate
system. Let also the joint angle vector of the actual arm be
denoted as . For redundant manipulators, is larger
than . The forward kinematics of theth arm is given by

(1)

where is a nonlinear function. Concatenating (1) for all
virtual arms, we can obtain

(2)

where and
.

When the desired virtual end-effector position,, is given,
the inverse kinematic problem of (2) can be categorized into
three cases as shown in Fig. 2 depending on the joint degrees
of freedom of the actual arm and the locations of the virtual
end-points. In Fig. 2, the actual arm is a seven-joint planar arm
( ), and the dimension of the task space includes two
translations and one rotation ( ). As a result, the actual
arm is a redundant manipulator. Locating a virtual end-point on
the fourth link as shown in Fig. 2(a), the desired concatenated
virtual end-point position in (2) has six elements. Then
the actual arm still has redundant joint degrees of freedom
since . Therefore, the kinematic equation (2) is under-
constrained.

In Fig. 2(b), five virtual arms are located. The desired virtual
end-point position has 18 elements, so that the manipulator is
over-constrained. Any joint angle vector of the actual arm does
not satisfy (2), since too many virtual arms are used comparing
to the joint degrees of freedom of the actual arm.

On the other hand, Fig. 2(c) shows a singular case where a
virtual arm has its end-point on the sixth link. At first sight,
the manipulator still seems to be redundant, because the joint
degrees of freedom are more than the dimension of the desired
concatenated virtual end-point position in (2). In this case,
however, since there is only one joint between the actual and
virtual end-points, it is impossible to control the positions of
both the actual and virtual end-point at the same time. In order
to design the control system using the virtual arms, the above
three cases should be taken into consideration.

In this paper, a subsystem corresponding to a virtual arm is
composed by using a neural network, and a method solving
the nonlinear simultaneous equation of (2) through compe-
tition and cooperation among subsystems is proposed. The
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method can be applied to all cases including redundant, over-
constrained and singular, and can generate joint trajectory of
the redundant manipulator in a parallel and distributed manner.

III. T RAJECTORY GENERATION

A. Subsystem Represented by Neural Network

A subsystem corresponding to a virtual arm consists of
an end-point’s trajectory planning(ETP) part and aneural
network(NN) part. The ETP part of each subsystem indepen-
dently plans a target trajectory of its virtual end-point based
on the task environment [9] and [10]. The NN part computes
the optimal joint trajectory of the actual arm by competing
and cooperating with the NN parts of other subsystems. This
paper concentrates on the NN part.

The neural network model adopted here is based on the
cascade typed one [7] that includes a number of module
networks connected in series. Instead of the serial connec-
tion, each module network assigned to the NN part of each
subsystem are connected in parallel in this paper. This NN
works in two modes: the training mode (or learning mode) for
learning kinematic properties of corresponding virtual arm and
the trajectory generation mode for computing a joint trajectory
of the actual arm.

1) Training Mode: Fig. 3 represents a structure of the train-
ing mode, where NN’s are included corresponding to each
virtual end-point. The NN of the subsystemis of a multi-
layer type that uses a joint angle vector of the actual arm as
an input signal and task space coordinates of the virtual end-
point as an output signal. Therefore, the number of the input
units and output units of each NN are and , respectively.
A linear output function is used for the input and output units
and a sigmoidal function is used for the hidden units. It is
assumed that appropriate number of hidden layers and units
are used to represent arm kinematics.

Learning of the subsystemis performed using the error-
back propagation in order to reduce an error between the
virtual end-point position and the output of the NN:

(3)

When the training mode is completed, the NN acquires the
network representation of the nonlinear functionof (1). It
should be noted that the learning of the forward kinematics
may be performed more efficiently by using nonlinear func-
tions such as trigonometric functions as output functions of
the hidden units [6], because the computation of the forward
kinematics includes only some specific nonlinear functions as
shown in Section III-C.

2) Trajectory Generation Mode:Fig. 4 shows the system
block diagram during the trajectory generation mode. Differ-
ences from the training mode are summarized as follows:

• The joint angle vector as the input signal and the virtual
end-point position as the teaching signal, which are given
from the outside of the NN during the training mode, are
stopped.

• Instead of the teaching signal, a desired virtual end-point
position for each subsystem is given to compute

Fig. 3. Training mode. The NN’s are prepared corresponding to each virtual
end-point. The NN of the subsystemi (i = 1; 2; � � � ; n) is of a multilayer
type with m input units andl output units.

a weighted squared error between the output signal of
the NN and the desired virtual end-point position. The
steepest descent vector of the weighted squared error is
used to modify the input signal of the NN that represents
the joint angle vector of the actual arm. If the weighted
squared position error reaches zero, the input signal of the
NN can be expected to represent the joint angle vector that
satisfies the desired virtual end-point position .

• The synaptic weights between units in the NN are fixed
during the trajectory generation mode.

• A set of units representing an initial joint angle of the
actual arm, , are added and put together with the
corresponding input units.

• A differentiable nonlinear function is used as an
output function of the input unit.

Under these modifications, the NN updates its internal state
from a given initial state to an equilibrium one minimizing
an energy function. A motion equation of the NN of each
subsystem is described as follows.

Motion equations of a state vector of input units of the
subsystem , , and a joint angle vector, ,
are given as

(4)

(5)

(6)

(7)

and

(8)
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(a)

(b)

Fig. 4. (a) Schematic diagram of the trajectory generation mode. All sub-
systems interact each other. (b) Block diagram of the subsystemi.

where is a positive time constant,
is an output function of the input unit, and

diag and
diag , is the

steepest descent direction vector of the weighted squired
error, , ,

, , and
denotes the Euclidean norm. Also represents a

Lagrangian multiplier vector, , and
is a weighting matrix diag ,

where is a weighting coefficient for theth element
of the desired end-point position of theth arm. If movements
of some specific elements of the virtual end-point’s position
vector are important for a given task purpose and environment,
weighting coefficients corresponding to the elements can be
set to larger values than the ones corresponding to other
elements in order to give priority. Therefore an order of
priority of each virtual end-point can be specified by these
weights. It should be noted that a method to choose an
appropriate weighting matrix according to a given task is
considered as a future research problem in this paper. Also,

an initial value of state and Lagrangian multiplier are
given as and , respectively.

Each subsystem works in a similar manner to the artificial
potential field approach. In Fig. 4(b), the transformation from

to and the computation of the error signal can
be performed by a forward computation and a error back
propagation of the NN for subsystemlearned in the training
mode, respectively. The Lagrangian multiplier monotoni-
cally increases with time and it works to increase a feedback
gain of the virtual end-point position error [6]. In particular,
when the denominator of (6) that is a sum of the weighted
squared errors between the output signals of the NN’s and
the desired virtual end-point positions approaches zero, the
Lagrangian multiplier goes to infinity and it can be easily seen
that the gain factor reduces to be constant. The gain factor

is effective to cancel out the influence of the joint angle
feedback to the equilibrium point of the whole system. On the
other hand, when the denominator of (5) approaches zero, the
gain factor goes to infinity. It can be seen from (4) that this is
caused by local minima, so that we can detect a system trap by
the local minima through the gain factor. In the next section,
stability and kinematic characteristics of the equilibrium point
of the system are analyzed under the condition that
and exist along the convergence trajectory.

B. Stability and Kinematic Characteristics
of the Equilibrium Point

Now, the following energy function is defined

(9)

where the first and second terms of the right side denote
a weighted error between the current and desired virtual
end-point positions and a Euclidean norm of the joint dis-
placements, respectively. Time change of the energy function,

, is obtained as

(10)

Substituting (4)–(8) into (9) and expanding it with care to
and , then we have

(11)

Since and , the energy function behaves like
a Liapunov function and decreases monotonically until
as long as and exist. One of the advantages
of the method is that a simulated annealing is not necessary
because the Lagrangian multiplier increases with the time
variable .

Let us consider the kinematic meaning of the equilibrium
point at . The steepest descent direction vectorof the
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error function is given as

(12)

where is the Jacobian matrix of the
th virtual arm. The matrix concatenating all Jacobian matrices

of the virtual arms is denoted as , and then we can derive

(13)

where and
block diag . Since at any
equilibrium point, we have

(14)

where is a displacement vector of the virtual end-points
from the initial position , and

. Consequently, at the equilibrium
point, each virtual end-points must exist at the points corre-
sponding to the solutions of the simultaneous equation (14).
The rank of matrix dominates the simultaneous equation
as follows:

1) The Case of Rank : Since the matrix is of
positive definite, that is rank , a solution of (14)
is uniquely determined by

(15)

This guarantees the convergence of each virtual end-point to
the corresponding desired position as long as the whole arm is
redundant such as shown in Fig. 2(a). Furthermore when
is a small displacement, we can write . Then the
joint displacement can be computed as

(16)

where is the pseudo inverse matrix of , is a unit
matrix, and is an arbitrary vector. The second term of the
energy function [see (14)] requires that the joint displace-
ment becomes smaller, so that the NN may be expected to
converge to the minimum norm solution .

2) The Case of Rank : In this case, the solution
of the simultaneous equation (14) becomes indeterminate and
the general solution is given as:

(17)

where is a unit matrix and is an arbitrary vector. This
indicates that the virtual end-point converges to one of the
solution of (17) when the whole arm is in an over-constrained
case [Fig. 2(b)] or a singular case [Fig. 2(c)].

When is a small displacement, a general solution of
can be derived from (17):

(18)

By the effect of the second term of the energy function
[see (9)], the NN may be expected to converge to the

minimum norm solution of (18). Using the maximum
rank decomposition of the matrix

rank rank rank , the
first term in the right side of (18) is reduced to

(19)

This equation gives the minimum squired error solution with
the minimum norm of the simultaneous equation

, and the virtual end-point displacement becomes
equal to the first term of the right side of (17). Consequently,
in the cases where the nonlinear simultaneous equation of (2)
does not have any solution, the NN converges to the point that
the squired positional error of the virtual end-points becomes
the smallest.

As things mentioned above, when the distributed trajectory
generation method proposed in this section is used, the joint
angle of the actual arm corresponding to the desired virtual
end-point position can be computed through exchanging the
steepest descent direction of the error function among
subsystems. Simultaneously, in the output units of the NN,
each virtual end-point position can be calculated. Also, if a
saturation function is used as an output function of the input
unit, , a restricted range of joint angle can be considered
easily.

C. Computer Simulations

1) Training Mode: The distributed trajectory generation
method for point-to-point control of the redundant manipulator
proposed in this paper is applied to a five joint planar
manipulator shown in Fig. 1, where each link length is 0.4 m.
For the training mode of the NN’s, four virtual arms ( )
are used, each end-point of which is on each joint except for
the first joint.

The forward kinematics of theth virtual arm is given as

(20)

(21)

or

(22)

(23)

where and are and coordinates of theth virtual
end-point, respectively, and denotes length of theth link.

Two types of structurally customized network models [11]
for learning of arm kinematics are used as shown in Fig. 5
instead of a typical error-back propagation neural network of
Fig. 3: Fig. 5(a) corresponds to (20) and (21), and Fig. 5(b),
to (22) and (23). In both networks, units in the third layers
have sinusoidal output functions and all other units in the
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(a) (b)

Fig. 5. Two types of structurally customized network models for learning of arm kinematics.

Fig. 6. An example of learning history. The solid and dashed lines corre-
spond to the learning results of the networks in Fig. 5(a) and (b), respectively.

networks have linear output functions. Only the synaptic
weights between units in the third and fourth layers are
modified and all other weights are fixed as 1.0.

An example of learning history is shown in Fig. 6, where the
vertical axis denotes the learning error [see
(3)] and the horizontal axis denotes the learning iterations. The
solid and dashed lines in the figure correspond to the learning
results of the networks in Fig. 5(a) and (b), respectively. Five
different angles for each joint 0, 0.5, 1.0, 1.5, 2.0
(rad) are selected, and possible 3125 (5 ) different arm
postures and corresponding positions of the virtual end-points
computed by (20) and (21) are used as the teaching signals.
Initial values of the synaptic weights are randomly chosen
from [0.0, 1.0] and the same learning rate is
adopted for both networks. From Fig. 6, both of the network
models can learn arm kinematics and the learning speed of
the network of Fig. 5(b) is faster than the other because of
its highly customized structure. It should be noted that all
synaptic weights modified through learning converged to the
corresponding link length li after 100 learning iterations.

2) Trajectory Generation Mode:To avoid computational
error caused by the training mode, the nonlinear equations
of (20) and (21) are directly incorporated in a NN of each
subsystem using the network model shown in Fig. 5(a). Also,
a sinusoidal function is used as an output functions of (8)
(see Fig. 7):

(24)

Fig. 7. The output function.

where denotes a restricted range of theth joint angle,
, and and denote the

maximum and minimum angles of theth joint. Using this
function, the NN part calculates the solution with an inequality
condition:

(25)

Fig. 8 is an example of simulation results. In Fig. 8(a), the
desired position for the actual end-point is shown asand no
virtual arm is used. In Fig. 8(b), using a virtual arm which has
its end-point on the third joint of the manipulator ( ), both
the desired positions of the actual and virtual end-points are the
same goal . Also, in Fig. 8(c), nine virtual arms ( ) are
used, each end-point of which is on the middle point of each
link and on each joint except for the first joint. The desired
position for each virtual end-point is set to the corresponding
initial position. In Fig. 8(d), the same virtual arms as Fig. 8(c)
are used and the base position of the manipulator is specified
as the desired position to each virtual end-points except for
the actual arm. As a result, Fig. 8(a) and(b) are categorized in
the redundant case, while Fig. 8(c) and (d) categorized in the
over-constrained case. In all cases, each joint angle is restricted
in the range rad, and the weighting matrix is set
as inversely proportional to a distance between the current and
desired positions of the actual end-effector [9].

Fig. 8 shows that all actual end-effectors can reach to the
goal, while generated trajectories and also final postures are
quite different. In Fig. 8(a), the actual end-effector moves
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(a)
(b)

(c) (d)

Fig. 8. Simulation results of the distributed trajectory generation method.

toward a goal by rotating all joints. On the other hand, although
the virtual end-points try to keep their initial positions, the
virtual end-points move to the direction to the goal because
they are pulled by the actual end-effector as seen in Fig. 8(c).

In Fig. 8(b), not only the actual end-effector but also the
third joint move toward the same goal. Also the actual end-
effector arrives at the goal in Fig. 8(d) with the posture that
seems to be winding around the manipulator base since all
virtual end-points move toward it. By planning the desired
position of the virtual end-points on the task space, the
inverse kinematics problem of a redundant manipulator can
be solved distributively through competition and cooperation
among subsystems.

On the other hand, Fig. 9 shows a simulation result under
the same condition as Fig. 8(a) except for a different restricted
range of the fourth joint angle rad and the fifth
joint angle rad. It can be seen that, keeping the
joint angles in the corresponding restricted ranges, the actual
end-effector can reach to the goal using redundant degrees of
freedom.

One of the most important characteristics of the autonomous
distributed control system is that the whole system possesses
enough redundancy to work properly, even if a part of sub-
systems breaks down. Simulation results in Fig. 10 show the
case where a few of specified joints are fixed assuming some
trouble of the joints. Fixation of the joint can be achieved

Fig. 9. A simulation result under restriction of joint movements.

simply clamping the corresponding unit state:

(26)

and it should be noted that no change in subsystem structure
and motion equation is required. Fig. 10 shows examples of
obstacle avoidance where three obstacles are placed in the task
space. The desired position of each virtual end-point is
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(a) (b) (c)

Fig. 10. Simulation results of the distributed trajectory generation method in the task space including some obstacles: (a) all joints can work normally,
(b) the first joint is fixed, and (c) the first and second joints are fixed.

(a)

(b)

Fig. 11. Distributed feedback control based on virtual arms.

determined by a direction opposing to the obstacles, and the
one for the actual end-effector is based on a composing vector
of the direction opposing to the obstacles and the direction
toward the goal. In this way, the desired position of each end-
point is determined like a kind of the artificial potential field
approach (for more details, see [9]). Fig. 10(a) shows a case
where all joints work normally, while Fig. 10(b) and (c) show
the cases where a few joints are fixed. In all cases, the actual
end-effectors can reach the goal without any collision. It was
shown that the method proposed in this paper is robust to some
failure of physical elements constituting the manipulator such
as joints.

IV. DYNAMIC CONTROL

The method presented in Section III was based on only
the kinematics, not the dynamics of the manipulator. In this

TABLE I
LINK PARAMETERS OF A THREE-JOINT PLANAR MANIPULATOR

section, the distributed control of redundant manipulator for
PTP control is presented, which can directly compute the
joint control torques from the desired position of the virtual
end-effectors. Each subsystem can work fully autonomously
independent of the others and compute the joint control torques
in a parallel and distributed way.

A. Control Law

A motion equation of the manipulator is generally given by

(27)

where is the nonsingular inertia matrix,
is the Coriolis and centrifugal term,

is the gravity term and is the joint control torque
vector. In the present paper, we propose the following control
law:

(28)

(29)

where is a positive weighting coefficient representing an
order of priority for the th arm, is the control
torque for the th arm, is a Lagrangian multiplier
satisfying ,
is a differentiable potential function, is a
positive definite velocity feedback gain matrix, and
is the joint torque for gravity compensation which satisfies

. In this paper, it is assumed that the
gravity compensation torque, , can be computed in each
subsystem. Also, is defined as

(30)
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(a)

(b) (c)

Fig. 12. Changes of manipulator trajectory by potential functions.

where is the desired position of theth virtual end-
point, and is the Jacobian matrix of theth virtual arm.
Fig. 11 shows a block diagram of the control system. The
weighted sum of joint control torque for each virtual arm
is the control torque for the actual arm.

Next, we consider to specify a weighting coefficient for each
degree of freedom of the virtual end-effector. Introducing a
weighting matrix for the th virtual end-effector,
the control law is revised as

(31)

(32)

(33)

where we define , ,
, , and diag .

is a positive weighting coefficient for theth element of the
th virtual arm.

B. Stability

Now, the following energy function is defined.

(34)

(35)

(36)

is the kinetic energy of the manipulator, is the squared
position error between the desired and the virtual end-effector,
and is a differentiable potential function. The time
derivative of the energy function is given by

(37)

On the other hand, substituting (31) and (32) into (27), we
can see

(38)

where we define and . Sub-
stituting (38) into (37) and using the relation

, we can obtain

(39)

Then, we introduce a state variableand define

(40)
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where is a differentiable and monotonically increasing
function, such as

(41)

is a positive constant. Also we define the time derivative
of the state variable as

(42)

where is a positive constant, denotes the Euclidean norm
of the vector and . From (39), (40),
and (42), we have

(43)

Since is of positive definite and , we can see that
the system is asymptotically stable and the energy function
decreases monotonically until and , that is the
equilibrium point of the system.

C. Kinematic Meaning of Equilibrium Point

In this section, the kinematic meaning of the equilibrium
point is analyzed. At the equilibrium point, the error vector
can be expressed as

(44)

where is the concatenated position vector
of the virtual end-effectors at the equilibrium point,

is the concatenated
Jacobian and block diag
is a block diagonal weighting matrix. Note that at the
equilibrium point. Using a displacement vector , we have

(45)

where , , and
denotes the initial position of the virtual end-effectors. Con-
sequently, at the equilibrium point, the virtual end-effectors
must exist at the points which are solutions of the simultaneous
equation (45). The rank of the concatenated Jacobian matrix

dominates the simultaneous equation in the same way as
the kinematic control in Section III.

D. Computer Simulations

1) Role of the Potential Function : Firstly, computer
simulations were carried out for a three-joint planar manipula-
tor without use of the virtual arm ( , , ). Note
that the manipulator is redundant. Fig. 12 shows examples of
simulation results. The weighting matrix and the velocity
feedback gain matrix [see (33)] were set as
diag N/m and diag
N/m/(rad/s), respectively. The other parameters used in the
simulations are shown in the figure. We used the Appel method
for the manipulator dynamics [12] and the link parameters of
the manipulator are shown in Table I.

In Fig. 12, the initial and desired positions of the end-
effector are set as m and
m, respectively and the potential functions are set as

(46)

(a)

(b)

Fig. 13. Dynamic behavior of squared sum of joint displacements and
manipulability measure.

TABLE II
LINK PARAMETERS OF A FIVE-JOINT PLANAR MANIPULATOR

in Fig. 12(a), and

(47)

in Fig. 12(b), where . Since ,
Fig. 12(a) is equivalent to the feedback control method by
Takegaki and Arimoto [13]. On the other hand, Fig. 12(c)
shows a simulation result using the manipulability measure
[4] as the potential function

det (48)

where . In this case, the potential function was
maximized by changing the sign of the term, , in
(29) or (32).

In Fig. 12(a), the third joint rotated largely. As s result, the
second and third links were overlapped. On the other hand,
in Fig. 12(b) and (c), the end-effector reached to the goal
point without such a overlapping, since rotating largely some
specific joints cause decreasing the squared sum of the joint
displacement of (47) and the manipulability measure of (48)
is also decreasing near rad, that is, at the position
overlapping of the second and third links. Fig. 13 shows time
changes of the squared sum of the joint displacement and the
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(a)

(b) (c)

Fig. 14. Simulation results of the distributed feedback control.

manipulability measure (the first term on the right side of (47)
and (48), respectively).

2) Role of Virtual Arms:Table II shows the link model of
the manipulator used in simulations. The following parameters
were used: [see (41)], the initial value of the state
variable , , . Fig. 14(a) shows a
simulation result using a virtual arm ( ), the end-effector
of which is on the third joint of the manipulator. Both the
desired positions of the actual and virtual end-effectors are
given as the same goal as shown in the figure. From Fig. 14(a),
it can be seen that the virtual end-point as well as the actual
end-effector reaches at the goal point.

In Fig. 14(b), we use nine virtual arms ( ), the end-
points of which are on a middle point of each link and on
each joint except the first joint. The desired position for the
actual arm is given by the goal point shown in the figure,
and each desired position for virtual end-point is set to the
corresponding initial position. Although the virtual end-points
try to keep their initial positions, the virtual end-points move
to the directions of the goal, since they are pulled by the actual
end-effector as seen in the figure.

On the other hand, in Fig. 14(c), the same virtual arms as
Fig. 14(b) except for their desired positions of the end-point
are used. The desired position of each virtual end-point is given
as the base position of the manipulator. While the actual end-
effector reaches to the goal, the virtual end-points move in

the direction of the base of the manipulator. Consequently, it
can be seen that the configurations as well as the end-effector
of the actual arm can be controlled by planning the desired
positions for the virtual end-points in the task space.

V. CONCLUSIONS

In this paper, we have proposed two trajectory generation
methods of the redundant manipulator based on the virtual
arms: one is the kinematic trajectory generation method and
the other is the distributed PTP control method with consid-
eration of the manipulator dynamics. The advantages of both
methods are summarized as follows:

1) Each subsystem can work fully autonomously.
2) The joint motion of the redundant manipulator can be

calculated in a parallel and distributed way.
3) The kinematic redundancy of the manipulator can be

utilized positively using virtual arms.

The advantages listed above that may not be realized by
other conventional approaches have been obtained by embed-
ding the system structure of the autonomous distributed control
into the proposed method. Although numerical complexity of
the overall system of each proposed method is rather high, it
may not cause a serious problem since subsystems can share
the computational load based on a distributed system structure.
However, if the proposed distributed PTP control method is
applied to a trajectory tracking problem, dynamic control based
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only on gravitational compensation cannot work effectively for
standard robot configurations with six degrees of freedom and
complex three-dimensional trajectories. Future research will
be directed to extend the control method presented here to a
trajectory tracking problem.
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