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Decomposability of polynomial valued 2-forms
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Abstract: We give a characterization of decomposable polynomial valued 2-forms in terms of their
components. Such 2-forms must satisfy some cubic condition in addition to Plucker's quadratic
relation. Several GL(z, K) X GL(n, K)-invariant varieties naturally appear during this character-
ization, and we state the mutual relation of these varieties and study their geometric properties
in detail.
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Introduction

Let V be an n-dimensional vector space over the field K of real numbers or complex numbers
(n2>2) and V* be its dual space. As is well known, an element CE /A\2V* is decomposable i.e., it can be

expressed as C=a /B for some «, B € V* if and only if C satisfies Pliicker's relation
C1, v2) Clvs, v4) —Cv1, v3)Clw2, v4) +C1, v4)Cl2, v3)=0

for any »;€V. (For example, see [9], [19]). The main purpose of this paper is to give a similar
characterization of decomposable “polynomial valued” 2-forms. This problem is closely related to
the existence of local isometric imbeddings of Riemannian manifolds into the Euclidean space
with codimension 1 (cf. [2], [7]).

To explain the results, we first fix the notations. We put V=K" (K=R or C) and let A be a
polynomial ring over K with m variables x1, * * *, m: A=Klx1, -+, #m], and A=Z >0 A? (A°=K) be the
homogeneous decomposition of A. An element a €EV* X A! may be considered as an Al-valued 1-
form on V. Then, for 8 EV*, the exterior product a A 8 € A2V* X Al is naturally defined as in the
scalar valued case, and we say that CEA2V* X) Al is decomposable if it is expressed as a/\ B for some
a €V¥ X Al and B €V*. In this polynomial valued case, decomposable 2-forms also satisfy
Plucker's relation. But this relation is not sufficient to characterize decomposable 2-forms in
contrast to the scalar valued case. In fact the algebraic set of /A2V* X A! defined by only Pliicker's
relation is not irreducible and it decomposes into two irreducible components, one of which just
coincides with the set of decomposable 2-forms. To obtain a complete characterization of

decomposable 2-forms, we must add one cubic condition on C. This additional condition is stated
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as follows: “For any »:€V, the polynomials C(v1, v2), Cw1, v3), C(v2, v3) are linearly dependent in
AY”. We here give one example: Consider the 2-form C=x101 A w2 + x201 A\ 03+x302 Aws, where
{oi} is a basis of V*. Then, it is easy to see that C satisfies Pliicker's relation, but does not satisfy
the above cubic condition, and hence we know that this form C is not decomposable.

The other irreducible component of the algebraic set defined by Pliicker's relation consists of
Al-valued 2-forms that can be reduced to some 3-dimensional subspace of V. As in the case of
Plucker's relation, the algebraic set defined by the above cubic condition also decomposes into two
irreducible components; one is the variety of decomposable forms, and the other is the variety
consisting of 2-forms that take value in two variables x1, x2 after some variable transformation.

In order to understand the variety of decomposable 2-forms, it is natural to treat these three
varieties simultaneously. All these varieties are characterized by two types of conditions on C,
and they are related to each other by possessing one common defining equation for each pair
(Theorem 1). In addition, the algebraic set defined by only one type of condition on C splits into
two irreducible components (Theorem 2). In considering this mutual relation, another three
varieties naturally appear as subsets of the above varieties. In this paper, we characterize these
six varieties completely by giving their defining equations, inclusion relations, dimension, and
clarify their geometric meaning by introducing a parametrization of each variety (Proposition 3
and Theorem 8).

The space A2V* X) Al may be considered as a sort of 3-tensor space, and the results of this
paper possess some resemblance to the case of the 3-tensor space C2 X C2 X C2 studied in [3]. It is
desirable and also interesting to extend our results to more general 3-tensor spaces such as /A3V*,
¢ X C1 X C, ete (cf. [5], [6]).

As stated above, the decomposability of polynomial valued 2-forms C is naturally related to
the problem of local isometric imbeddings of Riemannian manifolds through the notion of the
partial Gauss equation that was introduced in [2]. By definition, the partial Gauss equation is

expressed as
(A) C=a1/\ Bi1+---+ar/By,

where CE€ A2V* X Al is a given 2-form and «iEV* X Al, B;EV*. Roughly speaking, if an -
dimensional Riemannian manifold M* (#=dim V) is locally isometrically imbedded into R”*, then
certain 2-form C constructed from the curvature of M must be expressed in the above form (A).
(For the precise statement, see [2].) In particular, the results stated in this paper is related to the
case of hypersurfaces of R**1 (the case r=1), and the conditions on the decomposability of C serve
as obstructions to the existence of local isometric imbeddings of M into R»*!. For further

applications in geometry, we must obtain a similar characterization of 2-forms C in (A) for larger 7.
§1. Statement of the main results

In this section, after fixing some notations, we state the main results of this paper. The proof

of Theorem 1 and Theorem 2 stated below will be given in the subsequent sections.
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Let C be an element of A2V* &X) Al. We define two linear maps dc and ec as follows:

dc: V—V* X A1, dcw)=vIC,
ec: N2V—AL,  eclvi A v2)=C1, v2),

where v]C implies the interior product. In terms of these maps, we define the following five
subsets of A2V* X Al

S1={CENV* W AL|C = a /B for some a EVF X Al fEVH},
So={Ce A2V* X Al|rank dc < 3},
S3={CE A2V* ® A!|rank ec < 2},
24 ={CENV* ® Al|rank dc < 2},
Y5 ={Ce A2V* ® Al |rank ec < 1}.

As we will see later, these five subsets are all irreducible varieties of A2V* X Al. We remark that
if rank dc < k, then C can be considered as an element of A2IW* X Al where W is a k-dimensional
subspace of V. In fact, since dim Ker dc > n—k, there exists a basis {e1, * * * ,ex} of V satisfying ex+1/C
=-+-=¢,|C=0. Then, by using the dual basis { ®i}, the 2-form C is expressed as Elf'jzlc:ija)i N oj,
where Cij=Clei, ¢j). Similarly, it is easy to see that if rank ec < [, the number of variables m can be
reduced to [ after some variable transformation.

Next, we define several conditions on CE/A2V* X Al in order to describe the defining equations

of Xi. We say that C satisfies condition (Cp) if it satisfies classical Pliicker's relation:
C@1, v2)Clws, v4) —C1, v3)Clvz, v4) +Cl1, v4)Clvz, v3) =0EA2
for any vectors vi € V. This condition is equivalent to CAC=0& A4V* X A2. Next, if the polynomials
Cl1, v2), Clw, v3), Clwz, v3)
are linearly dependent in A! for any vi, we say that C satisfies condition (Cg). Using the
components of C, this condition is expressed as cubic polynomial relations of C. Finally, for
positive integer k, we say that C satisfies condition (Ck) if the polynomials
Clr, v2), Cv1, v3), -+, Cw1,0k+2)
are linearly dependent in A! for any vi. It is easy to see that this condition is equivalent to

rank w|C)<k for any vEV,

where “rank” means the usual rank of the (m, #n)-matrix v]C EV* X Al In this paper, we use this

condition only in the cases k=1 and 2. Note that condition (C1) is quadratic and (C2) is cubic, and
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clearly, condition (C1) implies (C2) and (Cg). By using these four conditions (Cp), (Co), (C1), (C2), we
can completely characterize the subset X; C A2V* X Al in the following way.

Theorem 1. (1) CE 1 if and only if C satisfies (Cp) and (Cq).
(2) C< o if and only if C satisfies (Cp) and (C2).
(3) C€& X3 if and only if C satisfies (Cq) and (C2).
(4) CE Z4if and only if C satisfies (Cp) and (C1).
(5) C€& X5 if and only if C satisfies (C1).
In addition, each subset Zi (1<{<5) is an irreducible algebraic variety of /\2V¥ X A1,

In particular, the decomposability of C € A2V* X Al is completely characterized by two types of
conditions (Cp) and (Cq). In the case m<2, we remark that C is decomposable if and only if it
satisfies condition (Cp) only, because condition (Cq) is automatically satisfied in this case.

By definition, an element C belongs to X2 if and only if rank dc< 3, and hence, X2 is defined
by quartic polynomials. But, the above theorem asserts that this condition can be reduced to
lower degree conditions (Cp) and (C2).

By Theorem 1, we have clearly X1 N 22= 21N X3= 2N X3, and C belongs to this algebraic set
if and only if C satisfies three conditions (Cp), (Cg), (C2). In the following, we denote this algebraic
set by Ze.

Next, we characterize the algebraic set of A2V* &X) Al defined by one of (Cp), (Co), (C2).

Theorem 2. (1) C satisfies condition (Cp) if and only if C € £1U Xa.
(2) C satisfies condition (Cq) if and only if C € £1U X3,
(3) C satisfies condition (C2) if and only if C € Z2U Xs.

By definition, any element CEX1 can be parametrized by the pair («, ) EV* W AIXV* as C
=a/\B. Other varieties X2~ X6 also have similar parametrization, by which we can understand

their geometric meaning.

Proposition 3. (1) CEZXZ2 if and only if C=f1B1/\ B2+f2B81/\ B3+13B2/\ B3 for some fiEA and BiEV*.
(2) CEXsif and only if C=HQ1+12Q2 for some fiEA and QiE NV*.

(3) CEZX4ifand only if C=fB1/\ B2 for some fEAL and BiEV*.

(4) CEZsif and only if C=fQ for some fEAY and Q € \2V*,

(5) CE€ZXZ6if and only if C=(f1B1+/2B2) A\ B3 for some fiEA and BiEV*.

Proof. For the statements (1) and (3), “if” parts are easy to see. The converse parts are already
proved after the definition of the varieties X1~ X5, where we show C =2’§J=1Cijwi A oj under the
condition rank dc < k. The statements (2) and (4) are almost trivial because the condition rank ec
< Iimplies that the number of variables m can be reduced to [, as stated in the same place. For
the statement (5), we assume for some time that the definition of X6 is X2N X3 (since we did not
prove Theorem 1 yet). Then, if CE Z6, C is expressed as f1B1/\ B2+f2B1/A\B3+f382/\ B3 from the
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condition CEXs. Next, since the number of variables is reducible to two, we may put, by the
symmetry, 3=af1+bf2 (a, bEK). Then, after substituting this into the above expression, we have C
=(B1+bB2—aPBs) A(f1B2+/283). The converse part is trivial from (1) and (2). q.e.d.

This parametrization may be considered as a canonical form of each variety ;. This
proposition is useful in the proof of Theorems 1 and 2. We summarize the inclusion relations of X;

in the following figure:

21
decomposable
(Cp), (Co)
X4 26 29
rank dc<2 (Cp), (Co), (C2) rank dc<3
(Cp), (CD (Cp), (C2)
25 23
rank ec<1 rank ec<2
(o)) (Co), (C2)

(Note that condition (C1) implies (C2) and (Cg), as stated before.)

Finally we state one remark. The group GL(n, K) X GL(n, K) acts naturally on the space /A\2V*
&) A1, and it is easy to see that the above varieties 1~X¢ are invariant under this group action.
It is an interesting problem to classify all GL(z, K) X GL(m, K)-invariant subvarieties of A2V* X Al
as in the case of the 3-tensor space C2 ® C2 X C2 (cf. [3]). Perhaps another new concept is
required to solve this problem in addition to (Cp), (Cq) and (Cr), and to know such fundamental

concept is one important step to understand the 3-tensor space A2V* X Al,
§2. Preliminary lemmas
In this section we prepare several lemmas to prove the results in §1. Each lemma plays a
crucial role in the proof of Theorems 1 and 2.

First, we prove the following lemma.

Lemma 4. Assume CE /\2V* X Al satisfies conditions (Cp), (Cq), and there exists vEV such that rank
W1C)2>2. Then, there exist a basis {e1," * *, en} and az~an €K satisfying

Ci=a;jCii—aiCyj,

for 1<, j<n, where Cij=Clei, ¢j) and a1=—1. In addition, such {ai} uniquely exists if we fix a basis lei}.
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Proof. We choose a basis {e1," * *, ex} such that e1=v, and let {w1,* - *, wxn} be the dual basis of fei}.

Then we have
v]C=Cr202+ *** +Cruon.

By rearranging the indices if necessary, we may assume that {C12, C13} is linearly independent
because rank (v]C)>2. Since {Ci2, C13, C23} is dependent from condition (Cg), C23 is uniquely
expressed as C23=a3Ci2—a2C13. Next, for 4<i<#n, we substitute this equality into Pliicker's

relation
C12C3i— C13C2i+ C1iC23=0.
Then we have immediately
C12(Csita3C1) =C13(C2it+a2C1).

Since {Ci2, Cis} is independent, the above expression is equal to ¢iCi2Cis for some ai€K. In

particular, we have
Coi=aiCi2—a2Chi.

(Note that this equality holds for 1<i<#x.) Uniqueness of a4~ax is clear from this expression. We

substitute this equality into
C12Cij— C1iCoi+ C1jC2i=0.
Then we have the desired equality Cij=a;C1i—aiC1j because C1270. q.e.d.

Before proving the next lemma, we introduce a notation |fi f2 f3| (i€A1), which we often use

in the following arguments. We express fi€A! as %=1 fip xp, and put

S fa S
lf1f2f3lper=| fla foq [3q| EA3.
flr f2r fBr

We define |f1f2f3| by
(3)

L1 /2 f3l =11 f2 3] par)1<p<q<r<m EA3D - - - DA3,

ie., |fifafs| is the set of (3) polynomials |f1f2f3]per (1<p<g<r<m) arranged in some fixed order.

Then, addition and scalar multiplication of |f1 f2 f3| is naturally defined. For example, we have
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the equalities

lfitfefafal = f1fsfal + |f2f3 fal,
lafifefs|l=alfifafsl.

Clearly, |f1f2f3] is skew symmetric with respect to {f1, f2, f3}, and |f1 f2f3] =0 if and only if {1, f2, f3}
is linearly dependent in A®.

Using vectors vi€V, we put Cij=Ci, vj). Then, in terms of the above notation, condition (Cg) is
expressed as

| Cij Cir Cje | =0.
By replacing the vector vr by vr+vi, we have
| Cij Cir Cit| +| Cij Cit Cir | =0.
In the same way, condition (Cs2) is expressed in the form
| Cij Cir Cit] =0.
In this equality, we replace vi by vi+v;. Then it follows that
| Cij Cie Cit| + | Cij Cir Cit| =0.
In particular, if C satisfies both conditions (Cg) and (C2), we have from the above two equalities
| Cij Cie Cit] =0
because |Cij Cir Cit| =— | Cij Cit Ciz | . In addition, by replacing v: by vi+ vy in this equality, we have
| Cij Cor Cit| + | Cpj Cie Cjt| =0.

Now, using this notation, we prove the following lemma.

Lemma 5. Assume C € /\2V* X Al satisfies condition (Cp) or (C2). In addition, there exist v1, vz, v3EV
such that {Ci2, C13, Cz23} (Cij=Ci, v))) is linearly independent in AL. Then C is expressed in the form C=f1p1
A B2+f2B1/A\Bs+f3B2/\ B3 for some fiEAY, BiEV*.

Proof. We fix a basis {e1,***, ey of V such that e1=v1, e2=v2, e3=v3. Since {Ci2, Ci3, Ca3} is

linearly independent, we may assume Ci2= x1, C13=x2, C23=x3 after some variable transformation.

Now, we divide the proof into two cases.
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(1) The case where C satisfies condition (Cp). In this case, we have for 4<i <z,
C12C3i—C13C2i+ C1iCo3=x1Csi —x2C2 +x3C1i=0.
From this equality, we have easily
Cii=ai x1—bi x2,
Coi=cix1—bi x3,

Csi=cix2—aix3

for some ai, bi, ci. Note that by putting a2=1, bs=c1= —1, a1=as=b1=bz2=c2=c3=0, the above
equalities hold for 1<i<z. Next, we substitute them into

C12Cij— C1iCej+ C1;C2i=0.
Then, we have
Cii=(ai cij—aj ci)x1~+(bj ci—bi ¢cj))x2+ (aj bi—ai bj)xs.
Hence, by putting B1= Zaiwi, B2= Zbiwi, f3= Zcioi (i} is the dual basis of {ei}), we have
C =x1B81/\B3—x2B2/\ B3—x3B1/\ B2.

(ii) The case where C satisfies condition (C2). In this case, as prepared above, we have | Ci2 C13
Cii| =|C21 C23 C2i| =|C31 C32 C3i| =0, and hence, Cii€ (x1, x2), Cai€ {x1, x3), C3iE (x2, x3). In
addition, from (C2), we have

| C12 C13 C2i| + | C12 C23 C1i| =0,
| Ce3 C21 C3i| + | Ce3 C31 C2i| =0,
| Cs1 Cs2 C1i| + | Cs1 Ci2 Csi| =0.
Using these conditions, we obtain easily
Cii=ai x1—bi x2,
Coi=ci x1—bi x3,
Csi=ci x2—ai x3.

Next, for 2<i<x and t€K, we have

(e1+te) ] C=Cr2m2+ * + + + Crnown+t(Cirw1+ * * * +Cinwn)
=tCiio1+(Ci2+tCidwa+ + + + +(Cin+tCin) wn.
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Since rank ((e1+te;) | C) <2 for any parameter ¢, we have in particular, dim (Ci2+¢Ciz2, C13+1Cis, Cyj

+tCij) <2 for 2<i, j<n. If || is sufficiently small, first two elements are linearly independent,

and hence
Cij+tCii € (Ci2+1tCiz, Ci3+tCis) C (x1, x2, x3) .
Since CijE€ (1, x2, x3), we have C; € {x1, x2, x3), and we may put Cij=pij x1+¢qi x2+7ij x3. Next, we
take out the coefficient of x1, x2, x3 in the above three elements C12+tCi2, C13+1tCis, C1j+tCjj. Then,
since these vectors span the space of dimension<2, it follows that
1—tci 0 thi
0 1—tci tai | =ttci— (i rij+bi pii+ai gt —ri+a; bi—ai bj}=0

ajittpy —bjttq; tri

for any t. In particular, we have 7j=a;j bi—ai b;. Similarly, using the conditions rank ((e2+te;) | C) <
2, rank ((es+te)1C) <2, we obtain gii=bj ci—bi ¢j, pij=ai ¢c;—aj ci. Hence, it follows that

Cij= (@i cj—aj cidx1+ (bj ci—bi c))x2+ (aj bi—ai bj)xs.
Then, in the same way as in the case (i), we have the desired result. q.e.d.
We prepare one more lemma for later use.

Lemma 6. Assume that CE N\2V* X Al satisfies condition (Cq) and there exists a vector vEV such that
rank W] C) > 3. Then, there exist a basis te1,* * *, en} of V and az~an €K satisfying

Ci=ajCii—aiCij (@1=—1).

Proof. We fix a basis {e1," -+, ex} such that e1=v. Then, in the same way as in the proof of
Lemma 4, we may assume that {Ci2,* -+, Cip} is linearly independent and C1,p+1~CinE (Ci2," ",
C1p). (Note that p>4 because rank @]C)>3.) From condition (Cq), the set {C1i, C1j, Cij} is linearly
dependent for 2<i#;<p, and hence, we may put

Ci=aijCii—ajiCyj
for some a; €K. (Note that Cij=—Cji.) In addition, we have from condition (C)

| C1i Cij Cir | + | C1i Cir Cij| =0

for 2<4, j, k<p @, j, k are all distinct). By substituting the above expression into this equality, we

have immediately
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(@ji—ari) | C1i C1j C1e| =0.

Since {C1i, C1j, C1x} is linearly independent, we have gji=aki. Therefore, we may put gji=ai for 2 <

i <p. Hence, by putting a1=—1, we obtain Cij=a;C1i—aiCy for 1<, j<p.
Next, we express C1,p+1~C1x as

C1,p+1=bp+1,2C12+ * - +bp+1,pC1p,

Cin=0bn2C12+ -+ +bupC1p.
Then, for 2<i#;<p, p+1< 1 <n, we have from (Co)

0 =|C1i Cy Cia| +|Cri Cin Gij
= | C1i Cyj Cir| + | C1i C1r ajCri—aiCyj |
= | C1i Cyj Cir +aiC1r].

In particular, we have Cix +aiC1. € {C1i, C1j) . Since p >4, there exists an index k (2<k<p), different
from 4, . Hence, by replacing j by k, we have in the same way, Ciz +aiC1. € (C1i, C1x), which implies

Cir. +aiC1. € {C1i) . Therefore, we may express
Cir=ai.Cii—aiCia

for 1<i<p, p+1< 1 <un. (We may include the case ;=1 because a1= —1.) We will show that the
value ai». does not depend on i. For this purpose, we put v1=e1, va=ei+¢j, va=er+ter (24, 5, k<p,
i, j, k are all distinct, p+1< 1 <z and €K is a parameter). Then, from (Cg), we have

0 =|C1, v2) Clv1, v3) Clvz, v3) |
= | C1i+Cyj Crie+tC1r Cie+1tCir +Ci+tCjo|
= | C1i+Cy Cue+tCir arCri—ai Cik+arCri—a;Cie+Hair C1i—aiC1:. +ajr C1j—ajC12.) |
=t|C1i+Cy Cie+tCir airCri+ajrCij|
=t|C1i+Cij Cir+tbi2Cia+ + -+ +b1yC1p) (@jrn—aiz)Cij |.

Then, by taking out the coefficient of C1i, C1j, Cit, we have

1 1 0
t thi thyy  1+thw |=Hair—ajn)(1+thir) =0
0 ar—air 0

for any ¢, which implies ai1x =g;j.. In particular, we may put ai» =a., and therefore,
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Cir=arCii—aiCir

for 1<i<p, p+1< 2 <.
Finally, we show the equality

Cri=a.C1.—arCiu

forp+1< 2, u <n.Inthe same way as above, we put v1=e1, v2=ei+sex, va=ej+te. (2<i#<p, p+
1< 2 # 1 <n, and s, tEK are parameters), and apply condition (Cg). Then, we have

0 =|CiitsCu Cyj+tCiu Cij+tCin +sCajt+stCusl
= | Cii+sCin Cy+tCiu aj Cri—aiCyi+tau Cii—aiCin) —s(ar Cij—ajC12) +stChyl
= | C1i+sCin Cij+tCin tan Cri—sarCrj+stCoul
=|Cri+sCu. Cij+tCiu sHCou —auCur +arCiy) |
=st|Ciit+sCu. Cij+tCiu Crp—auCir+arCiul.

Now, assume that st#0 and |s|, |¢| are sufficiently small. Then, since {C1i+sCiz, Cy+tCi is

linearly independent, we have
Crui—auC12 +arCiu € (C1i+sCin, Cyy+tCiu).
In particular, taking the limit s, =0, it follows that
Cin—auCir +arCiu € {Cui, Cyj).

Using an index k (2<k<p), which is different from i and j, we repeat the same procedure. Then,

we have
Cru—anC12.+ai.Ciu € (Cui, C1j) N {Cui, C1ky N {C1j, C1r) =10},
which implies Cirx=auC12 —ax.C1,, and we complete the proof of the lemma. q.e.d.
§3. Proof of Theorems

Using the lemmas prepared in §2, we give a proof of Theorems 1 and 2 in this section.

Proof of Theorem 1. (5) If CE X5, then Cis expressed as f Q (fEAL, Q € A2V*) by Proposition
3 (4), and hence, condition (C1) clearly holds. Conversely, assume C satisfies condition (C1). Then,
for any vector v €V, we have rank (v]C) < 1. If C=0, then the theorem holds trivially, and hence we
may assume that there exists » such that rank (v]C)=1. We fix a basis {e1," * *, e} such that e1=y,
and by the symmetry, we may put Ci2=x1, C1;€ (x1). From the condition rank (2] C)<1, we have
dim{Ca1, C23,* * *, Can) <1, in particular, C2i€ {(x1). Next, for 2<i<#x, we have
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(e1+1e) ] C=tCirw1+ (Ci2+1Ci2) w2+« + + +(Cin+tCin) won,

as in the proof of Lemma 5 (ii). Since rank ((e1+te)]C)<1, we have dim (Ci2+tCiz, C1j+tCij) <1
for 2 <i, j<n. If || is sufficiently small, C12+¢Ciz is not zero, and hence

Ciy+tCij€ (Ci2+1Ciz) = (x1).

In particular, we have C; € (x1) because Ci;E {x1). Therefore, the coefficients of C are all contained

in the space {¥1), and hence, rank ec<1, i.e., CE Z5.

(4) If CE X4, C is expressed as f81/\ B2 by Proposition 3 (3). Then, we have clearly CAC=0
and C satisfies condition (Cp). In addition, from Proposition 3 (4), we have clearly CE X5, which
implies that C satisfies (C1), just we showed above. Next, assume that C satisfies (Cp) and (C1).
From condition (C1), we have CE X5, and we may express C as fQ(fZ0EA!, Q € A2V¥). Then, from
condition (Cp), we have CAC=£2Q A Q =0, i.e., Q A Q =0, which is equivalent to classical Pliicker's
relation. Hence Q is decomposable, and C is expressed as f81/\ B2. Thus, by Proposition 3 (3), we
have CE 24.

(1) Assume that CE€ X1. Then C is expressed as « /A §, and hence it satisfies Pliicker's relation
CAC=0. Next, for any vectors vi€V, we put C;j=Ci, vj), Bi= B @i). Then from the condition g AC
=0, we have B1C23— B2C13+ B3C12=0, which implies that {Ci2, C13, C23} is linearly dependent in
the case (B1, B2, B3)#0.If f1= B2= B3=0, we have clearly C12=C13=C23=0, and we obtain the
same conclusion. Now, we prove the converse part. First, assume that there exists v €V such that

rank (v]C)>2. Then, by Lemma 4, Cjj is expressed as
Ci=a;jC1i—aiCyj,

for some ¢i€K. Then, by putting « = XCiini and B = Zaioi, we have C = a /A B, which implies
that C is decomposable. Next, assume that rank ]C)<1 for any ». In this case, the 2-form C
satisfies two conditions (Cp) and (C1). Hence, by Theorem 1 (4), which we showed above, we have
CE %4. In particular, from Proposition 3 (3), C is expressed as f81/\ B2, which implies that C is
decomposable.

(3) By Proposition 3 (2), “only if” part is clear. We assume that C satisfies conditions (Cg)
and (C2). From (C2), we have rank (0] C) <2 for any v €V, If rank (v] C)<1 for any v, then C satisfies
condition (C1), and in particular, CE X5C X3 (cf. Proposition 3 (2), (4)). If there exists v such that
rank (|C)=2, then, as before, we can choose a basis {ei} such that e1=v, {C12, C13} is linearly
independent and Ci14~CixE€ (Ci2, C13). Since two conditions (Cq) and (C2) hold, we have the

following two equalities, which we showed in §2, after the proof of Lemma 4.
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B) | Cij Cir Cit| =0,
© | Cij Cok Cit| + | Cyj Cir Cit | =0.

From (B), we have |Ci2 C13 Ca1| =0, i.e., Ca€ (C12, C13). From (C), we have |C21 Cpe C13| + |Cp1
Car C13| =0. Since Cp1, Cox € (Ci2, C13), the second term is zero, and hence, we have Cp € (C12, C13),
which shows that the 2-form C is (Ci2, Ci3)-valued. In particular, the number of variables is

reducible to two, and hence we have CE X3.

(2) If CE Xy, it is expressed as f1B1/AB2+f2B1/\ B3+f382/\ B3 by Proposition 3 (1). And in
addition, without loss of generality, we may assume {fS1, B2, B3} is linearly independent, by
changing f; if necessary. We extend { 8} to a basis of V* and denote its dual by {e;}. Then, for any
vector v= X ai ¢i€V, we have

v]C =a1e1]C+aze2)/Ctases)C
=a1(f1B2+f2B3) +a(—f1B1+/3B83) —as(f2B1+/3B2)
=—(az2 fitas o) B1+ (a1 fi—as f3) B2+ (a1 f2+az f3) B3.

By using the equality
—ar(az fitas f2) taza1 fi—as f3) +asai f2+az2 f3)=0,

we can easily check that rank @]C)<2, and hence, C satisfies condition (C2). From the above
expression of C, Plicker's relation CAC=0 is clearly satisfied.

Next, we assume that C satisfies conditions (Cp) and (C2). If there exist vi€V such that {C(v1,
v2), Cw1, v3), Clwe, v3)} is linearly independent, then by Lemma 5 and Proposition 3 (1), we have CE
Yo, If {C1, v2), Clw1, v3), Clvz, v3)} is dependent for any vi, then C satisfies conditions (Cp), (Cg),
(C2). Hence, by Theorem 1 (1), (3), it is decomposable and the number of variables can be
reducible to two. Using these two facts, it is easy to see that C is in the form (f1581+/282) /\ 83, and
by Proposition 3 (1), we have CE Xa.

Finally, we show that X is an irreducible variety. By definition and Theorem 1 (1), each Zi is
an algebraic set of /A2V* X) Al because it is defined by the vanishing of some polynomials of C. In
addition, by Proposition 3, it is just equal to the image of certain polynomial map from some
affine space, and hence it is irreducible. q.e.d.

Proof of Theorem 2. For three statements, “if” parts are all clear from Theorem 1. We prove
“only if” parts.

(1) Assuming that C satisfies (Cp) and C& X1, we show CE X2. By Theorem 1 (1) and the
condition C& X1, C does not satisfy condition (Cg), namely, there exist v1, v2, v3 such that {Cw1, v2),
Cv1, v3), Clvz, v3)} is linearly independent. Then, by Lemma 5, C is expressed in the form f181/\ B2
+72B1/\ Bs+f3B2/\ B3, and hence CE 2.



66 Yoshio AGAOKA

(2) We assume that C satisfies (Cg) and C& Z3. Then, C does not satisfy (C2), as above. Hence,
there exists v such that rank @/C)>3, and by Lemma 6, we have Cj=a;C1i—aiCy for some ai.

Using this expression, we have immediately CE X1 as we have done in the proof of Theorem 1 (1).

(3) Assume that the conditions (C2) and C& X3 hold. Then, since C does not satisfy (Cq), we
have CE X2 by Lemma 5, in the same way as (1). q.e.d.

§4. Dimension and the inverse formula

Scalar valued decomposable 2-forms CE AZV* are expressed as $1/\ B2. But two 1-forms B1, B2
E€V* are not uniquely determined from C. In contrast, for Al-valued decomposable 2-forms C= a A
B, two 1-forms o EV* X Al and B EV* are essentially uniquely determined if C is sufficiently
generic (precisely, if CE 21\ X4). In this section, using this result, we express o and S explicitly in
terms of the components of C. In addition, we determine the dimension of each variety i by

using the results obtained in previous sections.

Proposition 7. Assume CE X1\Z4and C=a N\ B = o'\ B' (a, «'EV¥ R AL, B, B'EV*). Then
there exist k (#0)EK and fEA! such that «'= ka + f B, B'= 1/k- 8.

Proof. Since C satisfies conditions (Cp) and C& X4, it does not satisfy (C1), and hence, there
exists v €V such that rank (v]C)>2. Then, by Lemma 4, Cj; is expressed as

Ci=a;jCii—aiCyj,

by using some @i €K, which is uniquely determined. In addition, as stated in the proof of Lemma
4, we may assume that {C12, C13} is linearly independent by changing the indices if necessary. We put
ai= ale), Bi= Bei), o'i= a'e) and B'i= B'(). If B1=0, then we have Ci2=a182 and Ci3=wo183,
which implies that C12 and Ci13 are parallel. Hence, we have f17#0. In the same way, we have B17#
0. Then, from the condition 8 AC= B A a A B =0, we have

B1Cij— BiC1j+ B;C1i=0,
namely,

Bi

Cij:'CIj_ﬁCIi.
1 B1

Since the coefficient Bi/f1 is uniquely determined from Lemma 4, we have Bi/f1="/f"1, which

implies f'=p"1/B1- B . Next, from the equality Cii= a18i— aif1, we have
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1
ai=— (a1Bi—Cu).
B1

Then, in terms of the dual basis { i}, we have

a =X aioi

%E(MBi—Cu) wi

1
E(mﬁ —e1/0).

Using this equality, we obtain

1
o =E(a'1l3'—ele)

_ By L —
o 315 8'1(MB Bia)

=fB *ka,

where f= o'1/ f1— a1/ f'1€A and k= 1/ B'1.
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q.e.d.

Remark. As is easy to see, we cannot drop the condition C¢ 24 in this proposition. In particular,

it is necessary 723 and m 22 to hold the above condition, because rank @]C)>2 for some vEV.

(Note that (w1C)®)=0.)

Now, we give the explicit inverse formula for generic C. Using a basis {e1, - *, ex}, we put Cij=

Clei, )= 2% =1Cijp xp. Then, since {C1i, C1j, Cij} is dependent, we have

Cip Ciyp Cip
Cliq Cqu Cijq = O,
Cur Cyr Cijr

and this equality implies

Ciip Cijp

Cijp Cip Cr—0
1y — U,
Cliq Cqu /

C 1jq Cijq

| Cuip Ciip
-
Cliq Cijq

Clj‘l‘

C1ip Cijp

Hence, if
lig Cqu

#0, we have
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Ciip Cijp Cijpp Cip
— Cui
Ci = Cliq Cijq CIjq Cijq
Y C1ip Cijp
Cqu Cqu
Then, combining with the expression
Bi Bj
Cij:_lcu__jcn,
B1 B1
appeared in the proof of Proposition 7, we have
Clip Cijp
,Bi _ Cliq Cl]q
B1 Ciip Cijp|’
Cliq Cqu

because the coefficient of Cij is uniquely determined from Lemma 4. From this expression, the 1-
form B is uniquely determined up to a non-zero constant, and this gives the inverse formula of .
Note that the right hand side of this expression does not depend on the choice of indices j, p, ¢q
unless the denominator is zero. The inverse formula for « is already given in the proof of

Proposition 7:
1
a=—(a1B —e1]O).
B1

From this expression we know that the 1-form « is essentially equal to e1/C up to a non-zero
constant. We remark that CE X1 belongs to X4 if and only if the determinant

Ciipp Cirp
(D)
Cijq Cikq

is zero for all vectors vi and indices p, g, where Cij=C(@;, vj)). The denominator of the inverse
formula of B is a special case of this determinant (D).

Finally, we determine the dimension of the varieties X1~ Ze.
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Theorem 8. The dimension of the variety Xiis given in the following table:

n=2 m=1 n>3 and m>2
3 m 2n—3 n—10m+1)
P m 2n—3 3(n+m—3)
X3 m () 2@)+2m—4
IV m 2n—3 nt+m—4
s m (g) (g)-f—m—l
26 m 2n—3 3n+2m—17

In the case n=2, all varieties X; are equal to the whole space /\2V* X A1~AY, and in the case m=1, 3= X5
= N\2V* R Al ~ N2V* and 1= X2= X4= X6 coincides with the set of scalar valued decomposable elements
of N2V* R AL ~ N2V,

Proof. If n=2, then any element CE /A2V* X Al can be expressed as fB1/\B2. Hence, by
Proposition 3, we have CE X; for i =1~6, which implies Xi= A2V* X Al. Next, in the case m=1, it
is easy to see that any element of X1, X2, X4, X6 (resp. X3, X5) is expressed in the form x181/\ B2
(resp. x1Q). (Note that B1/A B2+ B1/A B3+ B2/ B3=(B1+ B2) A(B2+ B3), and it is decomposable.) In
particular, the variety 1= X2= X4= X¢ coincides with the set of decomposable elements of AZV*
and X3= X5 is equal to the whole space. The dimension of X1 is easily determined by calculating the
dimension of the isotropy subgroup of B1/\ B2(#0) under the action of the general linear group
GL(, K), because GL(n, K) acts transitively on the set X1\{0}. We omit the explicit calculations.

Next, we consider the case n >3 and m2>2. If C= a A B € Z1\ X4, then by Proposition 7, the
parametrization of C by a and B has the freedom which is expressed uniquely by the pair (., ) &€
KXA'. Hence, we have dim X1=dim V* ® Al+dim V¥*—1—dim Al= (e—1)m+1).

For the variety X2, we first assume m >3, and CE X2\ X6, i.e., C satisfies (Cp), (C2), but not (Cq).
Then, using a suitable basis feif, the set {C12, C13, C23} is linearly independent, and as stated in the

proof of Lemma 5, we have

C1i=aiC12—biC13,
Coi=ciC12—biC23,
Csi=ciC13—aiC23

for 4 <i<sn. In addition, other Cj is also expressed in terms of {Ci2, C13, C23} and iai, bi, cita<i <n.
Since these parameters are uniquely determined by C, we have dim 2=3m+3(0—3)=3n+m—3).
If m=2, any element CE X2 is contained in X1 because it satisfies conditions (Cp) and (Cg). (Note
that condition (Cg) is automatically satisfied in the case m=2.) Conversely, since any element CE
31 is expressed as (f151+f282) A B3 in the case m =2, we have X1C X2 by Proposition 3 (1). Hence,
we have X1= X2, and in particular, dim X2=dim X1=3@—1), which is equal to 3G +m —3).

For the variety Xs, we take an element CE X3\ X5. Then, from the condition C& X5, we may
assume that {C12, C13} is independent, and other Cj is uniquely expressed as a linear combination
of {C12, C13} because the number of variables is reducible to two. Hence, we have dim X3=2m+
{G)—2}x2=2()+2m—4.

Next, any element of X4 is expressed as fB1/\B2. As showed above, the dimension of the
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variety of decomposable elements of A2V* is 22— 3, and the degree of freedom of f is m. Since the
scalar multiplication appears in common, we have dim X4=2n—3)+m—1=2n+m—4.

For the variety X5, any element of X5 is expressed in the form fQ, and by the same reason as
above, we have dim X5=()+m—1.

Finally, for the variety X6, we take an element CE X6\ X4. Then, since it does not satisfy (C1),
we can apply Lemma 4. As stated in the proof of this lemma, {C12, C13} is linearly independent,
and in addition, we have C14~C1,€ {C12, C13) from condition (C2). Hence, we may put C1i=b:Ci2+

¢iC13 for 4<i<n. Since other Cj is expressed as
Ci=ajCri—aiCyj

for some ai (@1=—1), C is parametrized by {Ci2, C13, a2,* * *, an, b, * * b, c4," * *, cu). It is easy to check
that these parameters are uniquely determined by C, and therefore, we have dim X¢=2m+®n—1)
+20—3)=3n+2m—71. q.e.d.

We remark that the exceptional case #=2 or m=1 in this theorem corresponds to the case
where the action of the product group GL(, K) XGL(m, K) on A\2V* X A! reduces to the single
group GLon, K) or GL(, K), i.e., the case where the 3-tensor space /\2V* X Al is reduced to a 1- or
2-tensor space. And so we must treat separately to determine the dimension of the variety,
though two equalities dim 4= 2n+m—4 and dim Zs5=®+m—1 always hold without the

assumption # >3 and m > 2.
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