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The dynamical origin of CP violation in electroweak theory is investigated in composite Higgs models.
The mechanism of spontaneous CP violation proposed in another context by Dashen is adopted to con-
struct simple models of dynamical CP violation. Within the models the size of the neutron electric di-
pole moment is estimated and the constraint on the € parameter in K-meson decays is discussed.
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I. INTRODUCTION

CP violation is described by phases appearing in the
Kobayashi-Maskawa matrix [1] in the standard theory of
quarks and leptons. The CP-violating phases are intro-
duced only when the number of the quark-lepton genera-
tions is equal to or greater than three. In other words the
reason why we have CP violation in nature is that we
have three generations of quarks and leptons. The CP
violating phases are partially determined by experimental
data in the neutral K-meson system. The prediction for
the neutron electric dipole moment [2] based on the
Kobayashi-Maskawa CP violating phases (KM phases) is
extremely small and is well below the experimental bound
[3]. Thus the standard theory with Kobayashi-Maskawa
CP violation is consistent with the present experimental
situation.

The KM phases are introduced as free parameters in
the standard theory. From the point of view of the fun-
damental theory of quarks and leptons this situation is
not satisfactory and we would like to see where the
theoretical origin of the KM phases describing the CP
violation is.

One possibility of explaining the KM phases through a
more fundamental origin is to introduce the complex vac-
uum expectation values for the Higgs field as discussed by
Weinberg more than a decade ago [4]. In this approach
it is required to have at least three Higgs doublets in or-
der to interpret the full KM phases. This mechanism
suggests that the spontaneous electroweak symmetry
breaking has something to do with the origin of CP viola-
tion.

Pushing forward this idea we are naturally led to the
composite Higgs models where the Higgs field is replaced
by a composite system of fundamental fermions. There
are a variety of composite Higgs models including the
technicolor model [5], top-quark condensation model
[6,7], fourth-generation model [8], and color-sextet quark
model [9]. In the composite Higgs models CP violation
may occur if the complex vacuum expectation value
would result for the composite field ¥y with a fundamen-
tal fermion . The realization of such a circumstance
was suggested a long time ago by Dashen in another con-
text [10].

The idea of Dashen will be recapitulated in the next
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section and will be applied straightforwardly to the com-
posite Higgs models. Eichten, Lane, and Preskill [11]
have adopted Dashen’s idea in the technicolor model to
elucidate the mechanism of the dynamical CP violation.
In their paper the general framework of generating
dynamical CP violation was presented and some physical
consequences were pointed out. Later Goldstein [12] has
reconsidered the problem and constructed a model of the
dynamical CP violation with two quark and techniquark
doublets. This model, however, fails to give rise to the
CP-violating phase unless one introduces extra leptons or
one assumes an existence of the strong CP violation in the
technicolor sector.

In this paper we would like to construct some simple
examples of dynamical CP violation in the composite
Higgs models. In our models we assume the presence of
two flavors of up- (down-)type extra fundamental quarks
and three flavors of up-(down-)type ordinary quarks. We
start with the Lagrangian with flavor symmetry (i.e., all
fermions massless) in which a nonvanishing vacuum ex-
pectation value develops for the composite field ¥ with
1 the fundamental fermion. To this Lagrangian we add
flavor-symmetry-breaking terms to realize the quark mass
hierarchy. We consider transformations which mixes the
flavors of quarks. We find a special solution for the
transformations which gives the true vacuum with the
proper direction. According to this special solution the
CP violating terms are generated in the flavor-symmetry-
breaking part of the Lagrangian.

The main purpose of our argument is to show the use-
fulness of the Dashen mechanism for the dynamical CP
violation in a transparent way. Our model is too simple
to explain the KM phases practically and should be ela-
borated to reproduce the standard theory as a low-energy
effective theory. If our model has something to do with
nature, it has to be consistent with the existing experi-
mental observations. Thus we calculate the contribution
in our model to the electric dipole moment of the neutron
and the € parameter in K decays. Both quantities are
found to be consistent with the experimental data if the
cutoff A existing in the model is larger than 800 TeV
which is consistent with the cutoff set by the flavor-
changing neutral current (FCNC) restriction [13].

It should be remarked that any model of the spontane-
ous CP violation suffers from the cosmological domain-
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wall problem. In this paper we are interested in con-
structing simple examples of dynamical CP violation and
we tentatively circumvent the problem by assuming that
dynamical CP violation takes place before the inflation
period.

II. DASHEN MECHANISM IN COMPOSITE
HIGGS MODELS

In this section we briefly review the Dashen mecha-
nism of spontaneous CP violation with the application to
the composite Higgs models.

We start with the Lagrangian .L, symmetric under the
flavor group

Gr=1IUy(n,)®U 4(n,), 2.1
P

where n, is the number of quark flavors belonging to the
irreducible representation p in the underlying gauge
group and Uy, (U ) is the unitary group associated with
the vector (axial-vector) currents. Here by the term
“quark” we mean the ordinary quarks as well as the fer-
mions required for generating the composite Higgs field.
The quark fields included in the Lagrangian £, are all
massless to guarantee the underlying gauge symmetry
and the flavor symmetry.

We assume that the flavor symmetry G is broken
dynamically by the presence of the nonvanishing vacuum
expectation value for the composite field ¥y made of fer-
mion fields ¢:

(P)+#0 . 2.2)
Here we have chosen the vacuum for which
(Pysy)=0. (2.3)

The condensation (2.2) is responsible for generating the
mass of quarks according to the dynamical breaking of
the flavor symmetry Gr. The remaining flavor symmetry
if any will be denoted by Sp. As is well known the vacu-
um satisfying Egs. (2.2) and (2.3) is not unique and thus
we have degenerate vacua in Gr/Sy. These degenerate
vacua point to arbitrary direction in G /Sp.

We add to .L, the term .L’ which explicitly breaks the
flavor symmetry Gr. We assume that £’ is CP invariant.
The degeneracy of the vacua mentioned above is now
resolved in the system described by the total Lagrangian

L=Lo+ L. 2.4)

The direction of the vacuum thus determined, however,
does not necessarily guarantee the conditions (2.2) and
(2.3). Hence we need to make a transformation on the
field to recover the conditions

V=Uy, (2.5)

with U the transformation belonging to Gy. By this
transformation the form of the symmetry-breaking term
L' will be modified so that CP-violating terms, in general,
show up in .£’. We will call this mechanism of spontane-
ous CP violation [10] the Dashen mechanism. In the fol-
lowing we would like to apply the Dashen mechanism to

the case of the composite Higgs models.

In electroweak theory the Higgs fields are introduced
as elementary scalar fields. Accordingly the Higgs boson
mass, Higgs self-coupling constant, and Higgs-fermion
Yukawa-coupling constants are all arbitrary parameters.
In the composite Higgs model the Higgs particle appears
as a composite system of some fundamental fermions and
some of the parameters in the standard electroweak
theory are predictable in principle. The Lagrangian cor-
responding to this model may be given by

Lo=Locp+Lew+Lagn » (2.6)

where .Lcp is the ordinary QCD Lagrangian for quarks,
Lgw is the electroweak Lagrangian without Higgs fields,
and L, is the dynamical term which is assumed to be
responsible for generating the fermion-antifermion con-
densation as well as the composite Higgs system as a
bound state (this term may be thought of as a low-energy
effective Lagrangian stemming from the more fundamen-
tal Lagrangian).

The Higgs particle appears as a bound state of the fun-
damental fermions ¥ and the bound state is assumed to
generate a condensation:

()70 .

The fundamental fermions as well as the ordinary quarks
acquire a mass according to the condensation. The mass
of the fundamental fermions should be of the order of the
weak scale in order to guarantee that the resulting
effective theory be the standard electroweak theory.

In the technicolor model [5] the fundamental fermion
is the techniquark, in the top-quark-condensation model
[6] it is the top quark with a mass close to the weak scale,
in the fourth-generation model [8] it is the heavy quark in
the assumed fourth generation, and in the color-sextet
model [9] it is the quark in the sextet representation of
the color SU(3).

For the flavor-symmetry-breaking term .L’ we choose
the four-fermion interaction made of fundamental fer-
mions and ordinary quarks.

In the following we would like to present simple mod-
els of the dynamical CP violation in the composite Higgs
models.

(2.7

III. SIMPLE MODELS
OF DYNAMICAL CP VIOLATION

A. General formalism

Here we first present a general argument in construct-
ing simple models of the dynamical CP violation in the
composite Higgs model. We consider n, flavors of funda-
mental quarks in the representation p of the color SU(3)
or other symmetry group (we call this symmetry govern-
ing the fundamental quarks the symmetry S) and n;
flavors of ordinary quarks in the triplet representation of
the color SU(3). The fundamental quarks may or may
not have a color degree of freedom.

We will discuss transformations which mix the flavors
of the fundamental and ordinary quarks among them-
selves. Since this transformation has to conserve charges,
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the mixing occurs only among the up-type (or down-type)
fundamental and ordinary quarks. For simplicity we
consider only up-type fundamental and ordinary quarks.

According to Goldstein’s analysis [12] one finds that
only two flavors of the fundamental and ordinary quarks
are not sufficient to realize the Dashen mechanism.
Hence we try a model with two flavors of the up-type
fundamental quarks Q and three flavors of the up-type
ordinary quarks g:

0=(U,C), q=(u,c,t). (3.1)

We assume that Q belongs to the N-plet of the fundamen-
tal symmetry S and g belongs to the color triplet. It is
understood that our model equally applies to the system
of the down-type quarks

Q=(D,S), q=(d,s,b) . (3.2)

In the following by the term ‘“quark” we generically
mean both fundamental and ordinary quarks.

As a G breaking Hamiltonian density %' we take the
four-fermion terms

H=—L'= Grg’ss’éLr QRr’QRs QLs'
+ Grggss'QLr QRr’qu qrs +H.c.
+ Grqr’ss’ququ’qu drs' »

where G2, G, and GZ.. are coupling parameters
among fundamental quarks @ and ordinary quarks ¢
which depend on the flavor U(2) indices r,r' and the
flavor U(3) indices s,s’, respectively. In Eq. (3.3) the fun-
damental symmetry indices and color indices are
suppressed and are understood to be contracted between
adjoining quarks. There would be other possibilities of
contracting these indices. We, however, confine our-
selves to the case of Eqg. (3.3).

(3.3)

|

E(W)= Grg’ss’ <0| QLt ULQt: URQr’t’QRt'QRu URQuTs Ul?s’u’QLu’l())

We require the CP invariance and Hermiticity of the
Lagrangian (3.3). We then have

G2, =G%,,=(GS

)*
s'sr'r s'sr'r ’

G :(GQg ¥

rr',ss’ rr'ss
q9 = = *
Grr’ss' Gs sr'r ( qu'sr'r ) ’

where indices r,7’,s,s’ represent flavors of Q and g¢, i.e.,
U,C,u,c,t.

Our first task is to find the correct vacuum under the
Lagrangian

L=Log+L",

(3.4)

(3.5)

where L is the Lagrangian given by Eq. (2.6) and .L’ is
given by Eq. (3.3). Let us denote by |0) the ground state
(vacuum) for a system governed by the Lagrangian (3.5)
and by |0) the ground state for .L, which is invariant un-
der Si. To find the ground state |0) we try to minimize
the energy

E(W)=(0|#'|0)=(o|wW#'W|0) , (3.6)

by suitably choosing the transformation W in Gg. The
transformation W is induced by the transformation U of
fermion fields Q and g:

QL',R:UI?,RQL,R, QL,R:UE,RQL,R ’ (3.7

where U LQ r is the transformation belonging to the left-
handed (right-handed) flavor U(2) for fundamental quarks
Q and U/  belonging to the U(3) for ordinary quarks g.
The transformation W is a function of these fermion
transformations:

w=w(U), (3.8)

where we represent generically by U the transformations
UPy and Uf . We find

+G 2,010, URTUZ  Or, Try UfL Ufyvqr,+H.c.|0)

+ Grqr'ss’ <O|th UZ:r Uzr’t'th’qRu Uzls UZs'u'qLu’

Since the state [0) is invariant under SF, we may express
the amplitudes

(010, Q10> =A85,,,, (01g;,qx-10) =085, ,
(0101, 0r,Ors Qr,/10) =A95,,.8,.+A95,.5,, ,
(010, Qr,qrs91,10) =2995,,:8,, ,

(017,98, qrsq110) =A%, 8+ A'98,:8,;

(3.10)

where parameters A are chosen to be real. After some
algebra we obtain

EW)=g2 USUS +rg2 .U U +H.c.

rr'ss
+r2g%.  US, U +const. , (3.11)

where matrices U2 and UY and parameters g, 9%,

0) . (3.9

[
gl and r are given by the relations

ve=vgug', vi=uvguyg’, (3.12)
grg'ss' = Grg’ss' AQ’ "grg"ﬂs' = Grg%s’AQq >

) (3.13)
r grqr’ss' :Grqr'ss'Aq ’
r=<{gq)/{0Q) . (3.14)

Here we introduced the parameter r in order to show ex-
plicitly the relative size of the three kinds of parameters
GS., G2 and GZ . The parameter r is the ratio of
the ordinary and fundamental mass scale [5] and its size
is assumed to be

r~(1 GeV/1 TeV)’=10"" . (3.15)
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Our task is to minimize E (W) given in Eq. (3.11) by
changing U and find the solution for U. With U deter-
mined in this procedure we rewrite .L’ to see whether
CP-violating terms are generated in .L’.

B. Special solutions

A comprehensive model of the dynamical CP violation
may be obtained within our framework if we find a gen-
eral solution for U which minimizes E (W) of Eq. (3.11)
and generates CP-violating terms in .L’. However, it is
not a simple task to determine the full matrix elements of
U including off-diagonal elements. For our present pur-
pose it is enough to confine ourselves to the case of diago-
nal matrices U and hence we specialize our model by set-
ting

g;g'ss' nggsrr'sss' H

grg’qss’ :grgqarr’sss’ >

(3.16)
gf <0, g8 <0, g&=o0.
In this case Eq. (3.11) takes the simple form
EW)=g8 UG >+g% US> +r(g2UUs +H.c)
+0(r?) . 3.17)

Here and in the following we neglect terms of O(r?) in
E(W). If we parametrize the diagonal elements of U by

U2=ulexp(i69)

Ul=ufexp(if?) ,

(3.18)

the above equation (3.17) is rewritten as

EW)=g8(uf)+g% (uf)+2rg 2% Ludcos(62—69)

+0(r?) . (3.19)

We would like to find a set of parameters ¥ and 6 which
minimizes E ( W) given by Eq. (3.19).

Since we are interested only in the solution which gen-
erates the CP violation, we take into account the condi-
tion of either

gfieSieHe S <0,

gfigSieHe g <0, (3.20)
or

gfe e He % <0.

Moreover the resulting quark mass matrix M has to
reflect the size of the realistic quark mass m,,, m_, and m,
and hence we require

u 0 0 €
0 m, O
0O 0 m, 1

m

M= =g% € (e<<1), (3.21)

where ¢ is a small number of order
Mue 1
m, 100 °
A simple choice of the set of coupling constants g which
respects the above condition is, for example,

gff=g¥ <0, gff=gf <0,
0 0 (3.22)
a gl =gf <0, ag¥=—g%>0,
where a; and a, are a small number of order .

We expand parameters u’s and 0’s in powers of » and
look for the minimum of E (W) to the first order of :

E=E°+E'r+0(r?),
u=u+ulr+0(?) ,
6=60°+6r+0(r?),

(3.23)

where we have omitted the indices i and j and the super-
script Q or g in the parameters u and 6. After some alge-
bra we find

+2g 7 [u %u {cos(62°— 01°) +u £%u §%cos(6£°— 6°) + a; 'u £°u §° cos( 20— 69°) ]

+2g % [u$%u{°cos(09°—01°)+ u £°u §° cos(69° — 6°) + oy 'u 2°u P cos(69°—69%)] .

With the choice of coupling constants (3.22) we find by
looking at Eq. (3.24) that the minimum of E (W) is at-
tained when u$=u$=1 and 6/=69 (4 ¢ and u ¢ are less
than 1 by unitarity of the matrix U). We differentiate Eq.
(3.25) by 6 to obtain the condition of the minimum:

(3.24)
(3.25)
[
¢ @1sin(62°—01°) +g Wsin( 69— 61°) =0 ,
g sin(6P°—61") +g fsin(0f°—01=0,

2g %sin(69°—61°)+ g Ysin(6L°—6°)=0 ,
2g %sin(69°— 67°) +g Lsin(6£°—64°)=0 .
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We look for a nontrivial solution with u=u$=1 for
Eq. (3.26). For this purpose we rewrite Eq. (3.26) in the
form
sin(6€°—69°)
ogy=—2——
' sin(0£°—61°)
sin(6£°—61°)
al=2 . 0 0y (327)
sin(6%°—67°)
sin(65£°—61°)
sin(6¢°—61°)

’

where a is given by
a=g%/gY . (3.28)

We require that the strong CP violation in the sector of
ordinary quarks is absent and therefore

07°+69°+69°=0 . (3.29)
Neglecting the difference between u and ¢ we set
01°=6%°, (3.30)
and we have
01°=65"=—167°=07 . (3.31)
.|

H' =GP UL Ug U UL +G$,C  CrCrC
i(0—e)—, _y ilm+6+e) =,
+GIQ{7”[(e” EI)ULUR +a lez( Sz)CL

it

Since we wish to keep the parameters a; and a, smaller

than a by order of -+ we set
69°+2070= —¢
(3.32)
0£°4+20%=7+-¢, ,

where €, and ¢, are a small number of order L.

Inserting Eq. (3.32) into (3.27) and neglecting terms of
O(e?) and O(&?) we obtain

—_ &
AT 2 sing
€
azzm , (3.33)
a=1+(g,+£,) 2 |
sin6

where we have set 6= —3607°. Equation (3.33) is the gen-
eral solution for our present problem. It will provide us
with a model in which the CP violation is dynamically
generated and the realistic quark mass matrix is obtained.

We use the above solution to rewrite .L'(= —%f') in the
new quark fields Q' and g’ obtained by transforming Q
and g by U. We find

Cp Nihu, +They)

1 —igy==y o, _ THe)) =) 41 v .1
+ayle UL Up—a;'a" e 2'C; Cyp)txts 1 +H.c.

oy B -y ’ e (Ot 41—t 1 e
+G{ i ugligu, + +Gl3ze U tpiigty +

) (3.34)

where we chose UZ= UJ =1. Obviously we see that the CP-violating terms are generated in Eq. (3.34).

For u ¥ =uf =1 the mass matrix reads

a cos(0€°—07)+cos(68°—67) 0
M~g 0 a cos(6£°—69)+cos(6£°—69) 0
0 aj 'cos(6€°+267)—a; 'cos(6%°+269)

If we take into account Eq. (3.33) we find

€, te,
—_— 0 0
sinf
g ,te
M~g,Q1q 0 # 0 (3.36)
g,te, |
0 0 2 sin6
€18,

Hence the ratio of the quark masses is given in the

present model by
m u,c —

m, 2 sin?0

€18y

(3.37)

(3.35)
[
By keeping £, ~¢&,~ + and sin?6~ 1 we obtain
mu c 1
— 3.38
m, 100 (3.38)

Thus our model well reflects the real situation. We may
elaborate our model by tuning parameters €, €,, and 6 so
as to reproduce the actual quark masses. In this paper,
however, we will not go into the detail of such analysis.

It should be noted that the absence of the strong CP
violation has been required only in the sector of ordinary
quarks g [See Eq. (3.29)] and no such requirement has
been set in the sector of fundamental quarks Q. Our
point of view is that the strong CP problem in the sector
of the fundamental quarks should be resolved when the
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underlying theory of the fundamental quarks is disclosed.

Of course we can construct a model without the strong
CP violation in the sector of the fundamental quarks, i.e.,
08+ 6£=0, in our present approach although we consid-
er such a model to be unnecessary for the present pur-
pose. A typical example which respects the condition
detU%=detU?=1 is given by

0 e Tilm/4) 0

U= 0 e?i(‘n’/4) H

e Fi(m/2) 0 0 (3.39)
Ui= 0 e Filw/2) 0

0 0 eii#
where we required

gl =gf=—gfi=—g%>o0,
g% =2g%>0, (3.40)

g =—2g%>0.

The quark mass matrix corresponding to the solution
(3.39) is given by

1

M g 1 , (3.41)

C. Models

We found the CP-violating interaction Lagrangian as a
result of special solutions of the minimum E (W) condi-
tion. Thus we succeeded in constructing the simple mod-
el of the dynamical CP violation. In deriving the model
we made some simplifying assumptions. This
simplification made the model far from explaining the
real situation in standard theory. For example, our mod-
el Hamiltonian does not reproduce the KM matrix
correctly. In order to get the full KM matrix we have to
relax our assumptions and minimize E(W) with the full
expression of the transformation matrix U. (We have to
abolish the assumption that U be a diagonal matrix.)
This attempt will be made in a separate work. We are,
however, interested in estimating physical effects in low-
energy phenomena which are predicted by the Hamiltoni-
an. Such estimation may help examine whether our mod-
el serves as a prototype of the real theory of the dynami-
cal CP violation for standard theory.

The system of quarks we assumed consists of the up-
type two-flavor fundamental quarks Q and three-flavor
ordinary quarks g as shown in Eq. (3.1). We have not yet
specified the symmetry group S to which the fundamental
quarks Q belong.

A natural possibility is to identify the symmetry group
S to the technicolor SU(N). In this case the fundamental
quark Q is the techniquark [5] belonging to the N-
dimensional fundamental representation of the tech-
nicolor SU(N). Another possibility is to identify the sym-
metry group S to the color SU(3). In this case the funda-
mental quark Q is the color-sextet quark [9] belonging to
the six-dimensional representation of the color SU(3).

These two possibilities fit the previous argument quite
well and constitute two practical models of the dynamical
CP violation.

It is also possible to identify the fundamental quarks Q
to the top quark in the top-quark condensation model [6]
(or in the top-color model [7]). In this case, however, we
are not able to get the nontrivial CP-violating phase
within our framework.

Yet another possibility is to identify the fundamental
fermion Q to the quark in the assumed fourth generation
[8]. In this case, it is again impossible to obtain the non-
trivial CP-violating phase in our approach.

In the following application we keep in mind the tech-
nicolor model as well as the color-sextet quark model.

IV. LOW-ENERGY EFFECTS

In our simple model introduced in the last section the
KM matrix is real and diagonal. This is because we have
taken a particular choice for a G breaking Lagrangian
L’ and have neglected the higher-order terms in r. Start-
ing with the more general assumption we could have ob-
tained the KM matrix with off-diagonal elements and
complex phases.

In this section we consider possible low-energy effects
originating from the model Lagrangian (3.34). By this
analysis we will be able to compare the low-energy CP-
violating effects of dynamical origin with the one in the
standard origin of the CP violation (i.e., through the KM
phase).

Our Hamiltonian reads

H=H,+H_, +H,, ,

cons

(4.1)

where H is the Hamiltonian derived from Lagrangian
Ly, H,, is the CP conserving part of the Hamiltonian
defined by integrating Eq. (3.34) over the space variables,
and H ., is the CP-violating part. In the following we
consider two typical low-energy effects derived from the
Hamiltonian (4.1).

A. Neutron electric dipole moment

Since the Lagrangian £’ includes the energy scale at
which the four-fermion interactions are induced from the
more fundamental gauge theory, it is expected that our
estimate of the neutron electric dipole moment depend on
this energy scale. This means that this fundamental ener-
gy scale, i.e., the cutoff parameter A, may be constrained
by the experimental information on the neutron electric
dipole moment.

We estimate the size of the contribution to the neutron
electric dipole moment coming from our CP-violating La-
grangian L’ given in Eq. (3.34).

The neutron electric dipole moment d, is given in
terms of the quark dipole moments d,, and d; in the naive
quark model such that

d,=(4d;—d,)/3 . (4.2)

The electric dipole moment of quarks is calculated
through the following term in the quark electromagnetic
form factor at zero-momentum transfer:



—d,io,vsq"u , (4.3)
where the index g represents the u or d quark, q" is the
momentum transfer for quarks (momentum carried by
the virtual photon), and u is the Dirac spinor for quark g.
We start with the Lagrangian L’ given in Eq. (3.34).
For the later calculational convenience we introduce aux-
iliary fields B and use the following effective Lagrangian
instead of the four-fermion type Lagrangian (3.34):

1—
2

1+
Vs i gV lyrG BB . (4.4

r— T
L'=—§|B 5

The use of the above auxiliary-field Lagrangian makes it
easier to classify the relevant Feynman diagrams contrib-
uting to the quark electric dipole moment and to perform
the higher-order loop calculations.

At the one-loop level, the diagrams shown in Fig. 1
contribute to the quark electromagnetic form factor. As
is easily seen the diagram in Fig. 1(a) has no tensor struc-
ture corresponding to the electric dipole moment. The
contribution of Fig. 1(b) to the electric dipole moment is
found to vanish. Thus there is no one-loop contribution
to the quark electric dipole moment.

We next examine the two-loop contribution to the
quark electric dipole moment. The relevant diagrams are
shown in Fig. 2. The Feynman amplitudes corresponding
to these diagrams are, in general, quartically divergent.
The quartically divergent part of the amplitudes, howev-
er, has no tensor structure of the electric dipole moment
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(a) (b)

FIG. 1. One-loop diagrams for the electromagnetic vertex
function of quarks represented by the use of auxiliary field B.

and hence the leading contribution of these diagrams to
the quark electric dipole moment is quadratically diver-
gent. As is seen by direct calculations, the diagrams in
Figs. 2(a) and 2(b) have no quadratically divergent contri-
bution to the quark electric dipole moment. The reason
for this is that the helicity of the quark flips three times
in these diagrams. Accordingly the leading quadratic
divergence exists only in the diagram in Fig. 2(c). In the
following we will calculate the quadratically divergent
part of the Feynman amplitude corresponding to the dia-
gram in Fig. 2(c).

The Feynman amplitude F corresponding to the dia-
gram in Fig. 2(c) reads

_Ef dp d’ G4, G 1+ys 1 1—ys 1
S mti ot [T 2 gt 2 m—p PP
1—y 1+
% . 5 1 (le?’,u) 1 Ys
P Sy m,—p,+6 2
1+y 1 1—y
5 5 1 (QjeV,;)
2 mi—pb+8 2 m—p+E+p
1 1—ys 1 I+ys
m;—p,tP+p 2 mp—ptp 2
1+y 1 1—
+ > 5 ,(QieVﬂ) 1 , Vs
m;—p,tp¢ m;—p,+p 2
1 1=ys 1 1+ys
m;—p, TPty 2 m—pt8 2

+ngjiGﬁ4kj(7’5“’ —7s)

4.5)

’

where p,(p,) is the momentum of the incoming (outgoing) quark. Here in Eq. (4.5) the charge Q; is equal to 3 for up-
type quarks, i.e., j=u,c,t, and is equal to —1 for down-type quarks, i.e., j=d,s,b. By extracting the quadratically

divergent part F4" of Eq. (4.5) we obtain

Fdiv— 2A?
(47)*

i,k

where 4; and B; are given by

2 Qe Im(G, Gy, Im;(id;k,ys—B;o,,4"Ys) ,

(4.6)
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2
4,=2 [mA 1
m;j
1 1 1—y x(l—x)+1—y—=z 3Ix(1—x)(1—2y) x(1—x)
+ | d d dz {(3—5y)1 —
fo xfo yfo Z[( »)In l—y—z x(1=x)+1—p—z [x(l— )+1—y—2z]?
4 2
x(1—x) 3(3—7y)-—;(2—3y) +(1—y —2z) 2(3—7y)—-x—(2—3y) ,
4.7)
1 1 1=y 1 | —x(1—x)[2x(1—x)+(1—y —z)]
B;=| dx | d dz —
J fo fo yfo z [x(1—x)+1—y —z]?
[
After some algebra we derive the following formula for we find
the quadratically divergent part of the electric dipole mo-
ment of the up quark d,,: d =e——— 4ln——2 01 4.11)
5 “ a8y 2A2 ‘
du=— v zlm Gl Ghjiy)m;(A;+B;) . (4.8)

( bk

Performing the integration in Eq. (4.7) we finally find the
explicit expression for the quadratically divergent part of
the up-quark electric dipole moment:

2
2In— A —2 01
mJ

22A

dug

> Im(G

(447) 4 Y jluk ngiu )mj

(4.9)

Apparently the dominant contribution in the above
formula to the up-quark dipole moment comes from the
top-quark intermediate state. Keeping only the top-
quark contribution to Eq. (4.9) and taking into account
that

4 2 2
Im(G;‘}uk ng,u )Ng— L—Fﬁ)* )

(4.10)
4A* A4

Q, a
— Q. a \1
. B

a /R
\_/ »®
(a) (b)
2o S B B ...
q iq q

(c)

FIG. 2. Two-loop diagrams for the electromagnetic vertex
function of quarks.

Since d, >>d,;, we find that d,=d, /3. Assuming that
m, =140 GeV and taking into account the experimental
upper bound of the neutron electric dipole moment [3]
we realize that the effective cutoff of the loop integral
should satisfy

A>800 TeV . (4.12)

The above lower bound for the cutoff A is of the same
order as the one set by the FCNC restriction [13]. If we
use the value of A set by the FCNC restriction which will
be described in Eq. (4.22) and calculate d, through Eq.
(4.11), we find d,~5X10"?ecm. This prediction is
surely much smaller than the present experimental
bound. In the standard model with the KM phase the
neutron electric dipole moment is calculated and is found
to be extremely small [2]. Our results (4.11) and (4.12)
guarantee this property of the standard model.

B. K-meson system

The only known experimental information on the CP
violation exists in the K-meson decays. In this subsection
we discuss the & parameter which is determined by
measuring the charge asymmetry in the semileptonic de-
cay of the K% meson and the 27 decay of the K meson.

K %meson states |K? ) and |KQ) are defined as

1 _
Kz Ve ) I
1 _
|KQ) = ——e—[(1+¢)|K°) —(1—¢)|K°)
N \/2(1+|e|2)[ el el ]
(Ik°)=—CP|IK®)). (4.13)

With the nonvanishing € the K-meson mass eigenstates
are different from the eigenstates of CP. We have

- (KO|H|EO>1/2—(EOiH|K0>1/2
 (K°lHIR®) 2+ (K°|H|K )2
(K°|H ;0| K
(K°|(H0+H K°)

(4.14)

cons |

Here we require that
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[{(KO|(Hy+Hop |IK°) | >>|(K°|H.;;IK°)| . (4.15)
The Hamiltonian H ;,; contains the term
i Im(G) [ d°x 5 dg5xd, +H.c. , (4.16)

where G is the corresponding four-fermion coupling con-
stant and s and d represent the s- and d-quark fields. Al-
though in our model Im(G) vanishes, we consider here
the more general case in which Im(G)70. Using the
PCAC (partial conservation of axial-vector current) rela-
tion [it should be remembered that a specific choice of the
contraction of color indices is made in Eq. (3.3)], we find

_ By(u)fgmg

(K°|5, dpsrd; |K°)= ,
|L RR L| 2(ms-|-md)2

(4.17)
where Bg(u) is the so-called B parameter, fy is the K-
meson decay constant and mg, m,, and m, are the mass
of the K meson, d quark, and s quark, respectively. After
some calculation we obtain

_ Im(G)Bg (u)fimp
(K Hop|K®) =~ —i KEKTK (KOIKO)
4(my+my)
(4.18)
We see by definition
’ r 1 j
<K°|(H0+Hmns)|K°>25 AM—éAl" (KIK°) ,
(4.19)

where AM and AT are the K; -K difference of the mass
and decay width, respectively. Accordingly we obtain

—i Im(G)Bg(u)fimp

£~ . 5 - (4.20)
2[AM —(i /2)AT J(my+my)
By inserting experimental data in Eq. (4.20) we find
Im(G)~107° TeV 2. 4.21)

The above result (4.21) is about 10? times smaller than
that obtained by the FCNC restriction [13]:

Re(G) <1077 Tev 2, (4.22)

V. CONCLUSION

Applying Dashen’s mechanism to the composite Higgs
models we succeeded in finding simple models of the
dynamical CP violation. Although our models have to be
further elaborated to explain the actual KM phase, they
represent an essential ingredient of the dynamical CP
violation in the standard model and may be thought of as
prototype models which accommodate the CP violation
in the standard model.

In order to see whether our model could be in confor-
mity with experimental situations we examined low-
energy consequences of our model. By estimating the ¢
parameter in the neutral K-meson decays and the neutron
electric dipole moment we derived the lower bound on
the cutoff parameter using the available experimental in-
formations. The cutoff parameter signals, at the scale
determined by the low-energy data, the existence of the
deeper theory for which our model is an effective theory.
The lower bound we obtained is consistent with the one
required by the constraint on the flavor-changing neutral
current.

Although our model is a simple toy model for the
dynamical CP violation, it may be elaborated to fully ac-
count for the CP violation in the standard model. The in-
vestigation in this direction is in progress.
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